Procesos Electrodinamicos en Sélidos - 2013

Guia de Trabajos Practicos Nro. 1(Jueves, Mayo 16)

1. The usual argument as to why the sky is blue involves scattering by a single atom:
If the atoms are randomly located, then the total intensity in a given direction is the sum
of the intensities scattered by each atom, that is, it is proportional to the number of
atoms. Short wavelengths are favored because elastic (or Rayleigh)scattering is
proportional to w”. However, this argument does not explain why scattering is not
important in solids, which have a much larger density of scattering centers than for a
gas, or why scattering is so much bigger for clouds (that’s why we see them). To gain
some insight into these questions, you are asked to calculate (numerically or
analytically) the scattering intensity for a random distribution of scattering centers:

(a) Consider a two-dimensional square lattice of parameter a;. Using your favorite
software, calculate the scattering intensity

1(K) = |zn:e"“‘1
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as a function of K and n/N. Here n is the number of atoms, which are randomly
distributed,N is the number of lattice sites and djis the position of the jth atom.Consider
wavevectors such that|Kay << 1. How does I(K)depend on the magnitude and the
direction of K?

(b) Show that the behavior of I(K)at long wavelengths in the high density limit, that is,
(N-n) << N is similar to that for n << N.

2. Divide the n atoms into square sets of mxm atoms (“drops”). Recalculate the scattering
intensity for a random distribution of sets. Show that the scattering increases
enormously when A ~ may. This is roughly what happens in clouds and milk.
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1.

Guia de Trabajos Practicos Nro. 2(Martes, Mayo 21)

(a) Derive the Kramers-Krénig relations using that

I[sl (®)—1]cos(wt)dw = jsz (w)sin(wt)dw
(b) If you had a course onoccomplex variables, doothe same using the analytical properties
of the permittivity (dielectric constant) and Cauchy’s theorem.

Explain in your own words why the imaginary parts of the permittivity, ¢,(w)and the
permeability, u,(®) , are always positive. Hint: Using that
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where S=cExH/4nis the Poynting vector, show that the rate of heat dissipation per
unit volume is QE(D(82|E|2 +u2|H|2)/8n. The answer can be found in Landau and

Lifshitz, Electrodynamics of Continuous Media(Section 80).

Show that in the absence of dissipation, that is, if €,=0, d¢, /0w >0. If, instead, ¢, #0,
one can have anomalous dispersion, that is, d¢, /0w <0. Discuss these results in the
context of the Lorentz model.

Single interface: Calculate the amplitude of the reflected electric and magnetic field for
a plane wave impinging at an arbitrary angle of incidence.Discuss positive (¢ >0 and
i >0) and negative (e <0 and p<0) refraction for a monochromatic field and for a
wavepacket.

Graph the refractive index and the normal-incidence reflectivity as a function of
frequency for a metal described by Drude’s formula:

Ne’
C=—-—
m(y — i)
(a) Calculate transmission through a slab of thickness dand permittivity € for an arbitrary
angle of incidence(you should compare your results with the expressions given in Born
and Wolf, Principles of Optics).(b) Use Drude formula to show that there is an absorption
peak at the plasmon frequency for p- but not for s-polarized light.
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1. Show (calculate the corresponding integral) that the behavior of the joint density of

states near a two-dimensional Van Hove singularity of type M; is of the form In|E(-E|.

2. Use the Kramers-Krénig relations to obtain an expression for the real part of the
permittivity in the vicinity of a three dimensional Van Hove singularity of type Mgfor

which ¢, < (E-E,)">.

3. Using k.ptheory, one can show for a non-degenerate band that

[klu,)
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Here, m* is the effective mass of the non-degenerate band, m is the free electron mass,

p =—inV is the momentum operator, and K is the Bloch wavevector. u,(r)is the solution to

Schrédinger’s equation of eigenenergyEnat k = 0; Epand ug(r)are the eigenenergy and

eigenfunction of the non-degenerate band at k = 0.

(a) Using measured values of the fundamental gap and the conduction effective mass from

the literature, show that P’ = (uc uv>|2 is approximately constant for llI-V and [I-VI

semiconductors for which the direct fundamental gap involves p-like bonding and s-like
anti-bonding states. What is the average value of P2/2m(you should easily find values of

the effective mass and gap for 20-30 compounds)?

(b) Do these arguments apply to group-1V silicon? To group-IV germanium?
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Guia de Trabajos Practicos Nro. 4(Martes, Mayo 28)

1. Ignoring spin degrees of freedom, the p—like Bloch states at the top of the valence band

of a certain semiconductor are:

| X)=sink,xcosk,ycosk,z
|Y> =cosk,xsink,ycosk,z

|Z>=cosk0Xcosk0ysinkoz
whereko=2m/a and a is the lattice parameter. These states have all the same energy, that is,

with the origin of energy at thetopof the band H,|X)=H,|Y)=H|Z).

(a) Find the eigenstates and eigenvalues of H, + H, + H where the spin-orbit coupling

Zeeman
is
h

He = prEme (VV X f)).&

and the Zeeman coupling is

. en
H yenan = 9 1oB.6 =—
Zeeman g H’O (MO 2 mc j
V is the lattice potential, B is an external magnetic field, g* is the band gyromagnetic
factor, and & is the electron spin operator. Assume that the spin-orbit splitting is much

larger than the Zeeman energy (treat H as a perturbation).

Zeeman

(a) Considering a single s-like state at the bottom of the conduction band, discuss optical
selection rules for valence-to-conduction band transitions.

(b) Show that this problem can be mapped exactly to that of atomic p—states.

(c) The behavior of the set of valence states under inversion, w/2-rotations and reflections is
identical to that of the set (X,y,2), that is, p- states behave like a vector. Discuss how the
problem would have been different if we would have chosen a different set of Bloch

states with the same symmetry properties.
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2. For a uniaxial stress of magnitude F, parallel to the [001] axis, the pseudo-Hamiltonian
describing the effect of strain on the valence band edge at k = 0 for diamond or

zinc-blende semiconductors can be written as
Herran =—A (€, +8,, +£,,)—€B, [(sz —L2/3)e + (L - L2 /3)e,, + (L2 - L2 /3)822]

where gjjis the strain tensor, L is an effective angular-momentum operator and Ajand Byare

deformation potential constants. Using that the strain components are

€7 = 8117

En =8, = S,7
show that the combination of stress and spin-orbit coupling completely lifts the orbital
degeneracy of the valence band; Sjjand Sy,are elastic compliance constants. Discuss optical
selection rules for valence-to-conduction transitions. Note: The effect of uniaxial stress is
very similar to that of quantum confinement. These results apply in particular to GaAs

guantum wells.
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Guia de Trabajos Practicos Nro. 5(Jueves, Mayo 30)

1. Consider the dimerized linear chain shown in the figure. The two atoms in the unit cell
are the same, of mass equal to M, but the spring constant between nearest neighbors

takes two values,kjand k.

oL Wl i .

(a) Obtain analytical expressions for the phonon dispersion and plot Q vs. qwhereq is
the Bloch wavevector.

(b) Calculate numerically the phonon density of states for the acoustic and optical
branches.

(c) Assuming that the optical mode has a non-zero Szigeti charge, sketch the absorption

coefficient considering one-phonon and two-phonon overtone processes.

2. Consider a tetragonal (uniaxial) crystal which possesses two IR-active optical modes, one
doubly degenerate -- call it E-- and another one that is singly degenerate -- call it A. The
E-mode carries dipole moments oriented along x and y, while the atomic displacements

for the A—-mode are along the z-axis.

(a) Show that the dielectric constants along the principal axes can be written as

2 —0)2
£ _ QF,,Q
E T 02 _0O2
o Q%0
2 —0)2
& 8 040

(b) Plot the transverse and longitudinal solutions for Bloch wavevector gparallel to the
x-axis and parallel to the z-axis.
(c) Show that the dependence of the wavevector on the angle Owhich gmakes with the

optical axis (the z—axis) is given by
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Plot Q vs. O for g — « . Discuss the significance of these results .

3. Consider two coupled oscillators A and Bas in the figure. I' and krepresent the

corresponding damping (dashpots) and restoring forces. The coupling energy is

Ue=x(u, —uy, )2 /2 where, u, and u, are the corresponding displacements.

(a) Calculate the polarization P=Z,u, + Z,u, induced by an electric field of frequency ®

and magnitude E. Find the real and imaginary part of the permittivity.

(b) By performing a linear unitary transformation, of the form

0 sinB
[WAjz(COS - j[uAj cot’ 0+ (k, —ky)cot0/x =1

W, —sin® cosH )\ u,

show that the problem is equivalent to that of two coupled oscillators with
interaction damping (i.e., the spring of constant « is replaced by a dashpot).

(c) If the two oscillators are oppositely charged, show that the imaginary part of the
permittivity(the losses) must exhibit a minimum at a frequency intermediate
between the two resonant frequencies. This effect is related in some sense to EIT
(electromagnetically-induced transparency).

(d) Repeat for the case where one of the oscillators is strongly overdamped and the
other one has no damping. This is the classical analog of Fano interference between

a discrete level and the continuum in atomic systems.
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Guia de Trabajos Practicos Nro. 6(Martes, Junio 4)

1. Rutherford Problem: The effective-mass Hamiltonian describing a parabolic-band Wannier
exciton is:
h2 Vz hZ Vz e2

om ¢

e

H=—

om, " er

e

Where m, and m, are the effective masses of the electron and the hole, ¢ is the lattice

permittivity and r is the relative electron-hole coordinate. Using this Hamiltonian, show that

o
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Here ¢(r) is the solution of Schrédinger’s equation for the unbound (scattering) state of
energy E>0 and m" =mm, /(m +m,). Use this result to explain the fact that absorption
near a band edge of type Myis significantly larger than what one would expect for interband
transitions in the absence of Coulomb interaction.Hint: The solution is given in some QM

textbooks.

2. Using values of the relevant parametersfrom the literature, plot the exciton-polariton

transverse and longitudinal branches for GaAs. Consider only the 1s state.

3. The figure shows the absorption spectrum of poly (p-phenylene vinylene) at two
temperatures. The features in the data can be interpreted as due to a Frenkel exciton and
its phonon sidebands (the phonon frequency is ~ 1700 cm™). Find the best fit to the

experimental data using the Huang-Rhys model.
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Guia de Trabajos Practicos Nro. 7(Jueves, Junio 6)

1. What is wrong with the following argument?

“At large wavelengths, the permittivity of a metal is e(k)~1+k;/k* where k, is the
Thomas-Fermi screening wavevector. Since g(k) does not vanish, there are no plasmons.”

2. If one ignores retardation (i.e., in the limit ¢ —> ), plasmon frequencies are gained by
solving Poisson’s equation. Hence, they are purely electrostatic modes. Are there plasmons
described by magnetostatic expressions? If not, why not?

3. Calculate the dispersion (@ vs. ) of surface plasmons associated with infrared-active
phonons. The permittivity is given by

4. Find the electromagnetic resonances of a slab

Qo =
of thickness dand permittivity €. Distinguish N ,
plasmons from waveguide modes. Repeat for !
the electrostatic approximation (plasmons ) e

only). Find the electric field due to a point
charge Q at a distance h from one of the slab
surfaces, as in the figure. Show that the field
diverges when ¢ =—1.

5. Find the electromagnetic resonances of a spherical shell of permittivity
e with the parameters shown in the figure. Distinguish plasmons from
waveguide modes. Repeat for the electrostatic approximation (plasmons
only). Find the electric field due to a point charge at a the center of the
sphere. Discuss divergences (if any).



