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Coupling mechanisms for damped vortex motion in superfluids
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We investigate different dissipative dynamics for a vortex line immersed into a superfluid where density
fluctuations have been excited. For this sake, we consider various linear coupling models where the vortex
interacts with the quasiparticles of the normal fluid through its coordinate or momentum. We can unambigu-
ously show that one and only one combination of these variables leads to damped evolution in agreement with
the phenomenological description§0163-18207)07434-]

I. INTRODUCTION with the phenomenological approaches. The most important
aspect of the model is the interaction mechanism adopted,
Quantum dissipation has been a vivid branch of researctvhich involves the vortex velocity in a linear approximation.
for several decadé$ in view of both the fundamental theo- In this work we investigate to a deeper extent the different
retical aspects of the subject and the vast application fieldglissipative dynamics that coupling models of the FC form
that include quantum optics, physical chemistry, nucleamssign to point vortices immersed into a superfluid which
physics, and condensed-matter physics. The best knowrbntains some excitations. In particular, we show that FC
models resort to a system-plus-reservoir description, wherglamiltonians expressed in terms of either the coordinate or
the irreversible approach to thermal equilibrium of a quanthe momentum of the vortex give rise to localization phe-
tum object is examined using projection and/or reductiomomena in phase space. In order to suppress phase-space
techniques. The key ingredient to starting such a study is thRcalization, we search the kind of mixed couplings that in-
Hamiltonian, which consists of three terms, respectivelyyolve linear combinations of coordinate and momentum in
corresponding to the free system, to the reservoir, and tehe spirit of Ref. 11. We find that there is a unique interac-
their mutual interaction. Among the most popular choices fottion mechanism that leads to damped evolution in agreement
the latter, those being linear in operators representing th@ith the phenomenological descriptions. This mechanism is
coordinate or the momentum of the quantum particle argyrecisely the one investigated in Ref. 11, where it appeared
preferred for applications in the frame of standard nonequias a natural choice in view of the fact that the free motion of
librium statistical mechanics. In particular, those interactiona point vortex in a fluid is electromagnetic, in other words,
models known as the rotating wave approximati®WA)  the driving force acts on the vortex velocity similarly to the
and the full coupling(FC) model, have been favored by [orentz force on a charged particle.
many authors=® This paper is organized as follows. In Sec. Il we review
In spite of the fact that the RWA has strong foundations,the description of the motion of a free vortex filament with
especially concerning applications to quantum optics, someylindrical symmetry in a superfluid at zero temperature and
of its drawbacks have been pointed out by several authors. Iget our notation. In Sec. Ill, different choices for the FC
particular, being a velocity-dependent interaction, it breaksnteraction Hamiltonian are discussed and it is shown that if
the equivalence between velocity and momentum mediateghe coupling involves only the coordinate or the momentum
by the inertia parametérThis brings some undesirable con- of the point particle, its subsequent motion is not physically
sequences, mainly the fact that one may not recover the clagcceptable. The solution is presented in Sec. IV, where we
sical limit of a semiclassical evolution. The FC model is, in show that the only Hamiltonian leading to realistic evolution
contrast, well behaved in the classical limit of the semiclasof the vortex involves both the coordinate and the momen-
sical description of quantum dissipative motioHowever, it tum of the particle linearly combined as in the velocity of the
is well known that such interaction mechanisms induce pofree motion. Finally, some concluding remarks are presented
tential terms which localize the Brownian particle, which jn Sec. V.
ought to be atrtificially removed adding a counterterm in the
original, unperturbed Hamiltoniar?
We have investigated these aspects of the RWA and the Il. CYCLOTRON VORTEX MOTION
FC model focusing upon quantum harmonic mofi@nd
spin relaxatiorf*° However, the realm of physical systems The cyclotron motion of a cylindrical vortex parallel to
which can be mapped onto a simple quantal Brownian mothe z axis in a superfluid at zero temperature is provoked by
tion model is much wider; recently, we have shown that athe Magnus force, which provides the lift upon a cylinder
single vortex moving in a superfluid containing quanta ofthat moves with velocityw— v, relative to the fluid and ex-
density fluctuations can be regarded as a quantum Brownidnibits circulation around the axis, vg being the superfluid
particle interacting with a reservoit.The description of the velocity andg,= *1 is the sign of the vorticity according to
subsequent damped motion presents a substantial agreemém right-handed convention. The structure of this force is
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FIG. 1. Trajectories of mean values of Heisenberg operators in the cooréihated velocity(b) planes for the cyclotron motion in Eq.
(2.9). The coordinates ifia) and the velocities irib) are, respectively, given in units of/Q andv,. We have assumed a vortex initially
at rest at the origin of the coordinate plane. Note that the center of the cir@i¢ @orresponds to the superfluid velocity.

Fu=g,hpd ix(v—vs). (2.1) where the right-hand sidghs) displays the complex form of
’ the classical Magnus force.
In what follows we shall assume a uniform superfluid Integration of Eqs(2.6) and(2.7) gives
velocity pointing along thex axis. This motion has been

described in Ref. 12 and corresponds to the Hamiltonian dy- 2 2
namics generated by 9O =F+(O0o—i g T-(Opotogt+igf (1)),
1 (2.9
H= [P a,A(N P+ MQoy (2.2
-MQ Q 2
with the vector potential p(O)=1——T_(1)qo+ T+ (Opo—i 5 Mvgt=igf ()|,
(2.10
A(r)= e 2.3
(= 2 (¥, =), 23 whereqg,pg are the initial position and momentum and
which gives rise to the component of the lift proportional to Lot
the vortex velocity. The component of this force depending f(t)= e =l 2.19)
upon the superfluid velocity is minus the gradient of the * 2 ’

scalar potentiaM Quy. HereM is the dynamical mass of a

vortex element of length and ps is the number density of  The above equations describe the simple cyclotron motion
the superfluid, which at zero temperature coincides with theuhose trajectories for the mean values of the Heisenberg
total density per unit mags'm, m being the mass of a single gperators in the coordinate and velocity planes are depicted
atom. Furthermore, in Figs. Xa and Xb).

g,hpsl

Q= M (2.9 lIl. DISSIPATIVE DYNAMICS

If the superfluid contains elementary excitations, these
can behave as a reservoir to which the vortex may couple.
This interaction provides a dissipation mechanism that

is the unperturbed cyclotron frequency, whérés Planck’s
constant.
In terms of the complex position and momentum opera

tors damps the cyclotron motion. If we denote bythe density
operator of the vortex, we can derive, in the weak coupling—
q=x+iy; p=py+ipy, (2.5  non-Markovian limit?*° a generalized master equation
] . . (GME) with time-dependent coefficients; this is achieved
the Heisenberg equations of motion are combining the standard reduction-projection procedure of
Q nonequilibrium statistical mechani@swith the time convo-
Q=£+i—q, (2.6)  lutionless method developed by Chaturvedi and Shifata.
M 2 For an interaction of the form
.0 MQ?
Prig P g am MO, @7 Hin=2 \SB. (3.0

or, equivalently
) _ whereS, andB; are vortex and reservoir operators, respec-
q=iQ(q—vy), (2.8) tively, the GME reads
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is the determinant of the linear system at the rhs of (Bd)

. [
o)+ 5[H,0] and
1 ¢ a=aqpCp—appCq> (3.1)
=T ﬁzj Aik; fodT{[Si [S(=7),a]]¢i(7) is a reference acceleration.
’ In order to appreciate the effect of the reservoir consti-
+i[S.[S(— 7)., 0] 15 (1)}, (3.2  tuted by the excitations of the superfluid, at this point it will

be instructive to compare the expectation value of the Mag-
nus force equatiof2.8) and the force equatiofB.8). In fact,
e observe that the reservoir induces both a dissipative and a
conservative coupling, respectively, measured by the param-
eters Imfy) and w?. We also realize that the strength and
direction of the original Magnus fordehs of Eq.(2.8)] will
be modified through the parameters Re@nda. In other
words, in addition to a damping force, an harmonic restoring
Force plus a gravitylike component appear. This means that,
in general, the motion takes place around the minimum of
(Bi(m)B})= by (1) +i (7). (3.3 the induced conservative potential, which provides then a
fixed point to the dynamics, namely

We shall derive equations of motion for the expectation
values of the position and momentum components of the
vortex. Taking into account very general relations involving (@e=— E (3.12
operatorsa, b, andc, namely

where[a,b], denotes an anticommutator. The operatgrs
appearing in this expression will be either the coordinate o
the momentum of the free cyclotron motion displayed in
Egs.(2.9 and(2.10. In spite of its integrodifferential equa-
tion structure, the GME is a differential one, since the un-
known o under the integral sign is taken at tirtiethe time-
dependent functionsp;;(t) and ¢;;(t) are the real and
imaginary parts, respectively, of the correlation between he
bath operatofs

However, it is important to remark that such a fixed point
Tr(a[b,[c,o]])=Tr([[a,b],clo)=([[a,b],c]), (3.4  disappears whenever the harmonic force in B8 van-
ishes, i.e., when the determinant of the linear system at the
Tr(alb,[c,a] D=Tr([[a,b].clo)=([[a,b].cl+), (3.5  rhs of Eq.(3.7) is identically zero.

we readily obtain for an observab@
A. Coordinate-dependent coupling

(O)+ I—([O,H]} We first consider a coupling model that describes the
h damping mechanism by means of an interaction Hamiltonian
1 . of the form
I_ﬁ%: )\i)\jfod7{<[[oasi]rsj(_7')]>¢ij(7') Hine=NB-r (3.13
+i{([[0,S1,S/(— - ) 3.6 with r the position vector of the point vortex aimila vector
([0.S1.8(= 1) (7} 38 function of operators that create density fluctuations in the
Since the general couplin@.) is linear inq and/orp,  liquid. In the frame of the current description, this function
the motion equations for the expectation values are of thés related to the Hermitian part of the Feynman-Cohen op-
form eratorO, that creates a phonon or a roton with momentum
. (Ref. 15
(@) =age(a) +agp(P) +cq,
1 k' -k
’ At T_ — Tt
(P)=apq(0)+@pp(P) +Cp.- (3.7 Ok=ri= .2 oz PPw (3.14

In general, the coefficients in E(B.7) are time dependent \yhereN is the number of atoms in the liquid ard= |k|.

and involve time integrals of the correlation function of the Notice that if, for example, the Hermitian opera®iis cho-
reservoir. The Markovian regime suppresses these time degn as proportional to

pendences, since in that case all upper integration limits be-

come infinite. In such a situation, similarly to the free cyclo- Of+0y
tron motion, one can merge Eg.7) into a single force By= , (3.15
equation, namely V2
. - the function
(@)=1Q(1+y)}a)+w*a)+a, (3.8
where (Bi(7)Bi) = i(7) +ith(7) (3.16
101+ 7) = age+ app 3.9 is related to the Fourier transform of the dynamical structure

factor S(k,w) of the superfluid, which for the case of liquid-
is a complex friction constant, helium isotopes is experimentally known for a wide range of
, transferred momenta and ener§y’
W= agpApg— Agq@pp (3.10 From Eq.(3.6) we readily get



Inserting Eq.(2.9) in Eq. (3.18 we obtain the coefficients
corresponding to Eq.3.7) as

Q
aqq=| E’ (3.19)
1
aqp M, (32@
cq=0, (3.21
MQ?2 4\?
apq: - 4 - MQZ Y+ | (322
Q aN?
appzli 1- M2 v_ 1, (3.23
)\2
. .y .
Cp=—IMQUS 1—Im('y0—lﬁy_) ) (3.29

where the involved time-dependent coefficients read

2 [t
7:(t)=—gfod7ft(—7)¢(7). (3.29

2 rt
yo(t)=- 7 | drrun (326

with f.(7) given by Eq.(2.11.

Specifying now the Markovian limit where any time de-
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. (p) .Q and the second-order equation for the acceleration is
(@)=~ ti5(a), (3.17
M 2 )2
. r .
o Mo? (@)=iQ 1_MQZ‘}’)(<Q>_05)
(p)=i-(p)— (@) —iMQus
2 4 A2 2
r r
N2 [t (T D sy e (328
—TfodﬂQ(—T))lﬂ(T)- (3.18

In order to illustrate with some numerical results, we have
considered a Gaussian resen/8iin this model the imagi-
nary part of the correlation functiof8.3) is given by the
exponential decay laws(7)=—Aue "7, whereu is the in-
verse of the reservoir relaxation time aAdis a positive
constant depending on the specific form of Bi@perators.
Then all parameters of the force equati28 are deter-
mined by a unique dimensionless friction coefficient 4j(
[cf. Eq.(3.9)]:

2\?2
Ma2

in addition to the dimensional parametéisanduvs.

Therefore Eq.(3.28 can be straightforwardly integrated
and some of the trajectories are depicted in Fig. 2, where we
setu=10Q in order to enforce the Markovian hypothesis.
One expects that in a superfluid with velocity, the only
initial condition which determines the dynamics at later
times is the vortex velocity. However, Fig. 2 shows that for a
given initial velocity, different choices of the initial vortex
position give rise to significant departures between the cor-
responding velocities at later times. This reflects another un-
desired consequence of the presence of the fixed point Eq.

(3.12.

2AN?
T MAQU’

(3.29

Im(y)= Im(

B. Momentum-dependent coupling

A similar behavior takes place if one assumes a coupling
that depends upon the vortex momentum, i.e., if the interac-
tion Hamiltonian is

Hint:)\po'p- (33@

pendence originated in a time integral is suppressed, we ob- In this case, the corresponding equations of motion for the

tain the harmonic restoring strength

2

2 r

o =y (ve—y-) (3.27)

expectation values of complex position and momentum are

@="5 i@+ 32 [arta-mun. @3y
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N : . M : ,MQ
(p=im(p)——7()-iMQovs. (332 <Q>=IQ(1—M,-77)(<Q>—vs)+MJT(7+—7)<Q>

2
,MQ

Using Eq.(2.10 we obtain the coefficients .
9 Eq.2.10 _MjTU570_|5ijQUs:U~,23('Y+_'Y—)

(3.41

Q
agq=| E(l—NsM Y- (3.33  for j=r,p. Then assuming., = u, the fixed point lies at
1 (@R=(@E-i @42
= —i=vs, .
8gp=17 (1-\EM 7., (3.34 VEZ eI s
where the superscripts,p indicate the type of coupling
) Q Hamiltonian under consideration.
Cq=MNApus Y-—15 %] (3.39
IV. COMBINED COUPLING MODEL
MQ? . . , o
Apq=— , (3.39 In view of the results presented in the previous section, it
4 appears natural to inquire whether a suitable linear combina-
tion of the previous coupling Hamiltonians could suppress
a =i 9 (3.37 the fixed point intrinsic to the coupling mechanisms there
PP 2 ' discussed. For this sake, we now investigate the phase-space
dynamics that the GME associates to the interaction Hamil-
cp=—iMQu, (3.3  tonian
In this case Hine=Nr-A+App-B. (4.1
)\‘Z)M 02 From now on we assume that the two-dimensional vector
w?= 7 (vemvo) (3.39  operatorsA andB of the reservoir satisfy
and the corresponding acceleration in the Markovian regime (Ai(DA)=(Bi(1)B))=0  fori#] 4.2
1S and thatB=R(¢)A, where R(¢) is the matrix associated
2 2 with a rotation in an angle. This hypothesis implies that

the physical operator which represents the elementary exci-
tation is unique, and that its different manifestations in inter-
action Hamiltonians involving either the coordinate or the
momentum of the vortex cannot differ but in the orientation
of the vector in the direction perpendicular to the vortex

) o filament. Accordinglycf. Eq. (3.3)], we have
It should be noticed that similarly to what happens for the

o A2M _ ,MQ
(=10 1-——y | v FAp——(v+ —y-)(a)

,M0?
—)\pTvs

4

70_i5(7+_7—) : (3.40

coordinate-dependent couplifigf. Eq. (3.28], the trajecto- Uap (7)=thg A (7) = h(7)COSP 4.3
ries will develop around a fixed point, representing a nonre- i i ’
alistic dynamics. Moreover, if we setu,=\, and B _ .
w,=2\,/(MQ) Egs.(3.28 and(3.40 can be written as ¥ap,(T)= B A (T)=P(T)SING, (4.4
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FIG. 3. Same as Fig. 1 for the trajectories arising from EQ18 for a friction coefficient Imf)=0.05. The dashed line i)
corresponds to the initial conditions of Fig. 1 while the continuous line assumes the same initial velocity but an initial position
(go)=(20,—3). Both cases yield iib) the same trajectory on the velocity plane, i.e., a spiral curve converging to the superfluid velocity.
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¥a 8 (7)= B (7)=—(7)SING, (4.5

where

()= (4.6

han(T)=tgp (7).
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volves the particular combination of coordinate and momen-
tum giving the free velocity of a point vortex moving under
the Magnus force. The coupling Hamiltonian thus obtained
corresponds to the case considered in Ref. 11. The second-
order equation for the acceleration now reads

The evolution of the mean values of the complex position

and momentum are given by

(&= "2

'H\p(p(_ ) Hp(T)

+i g+ 32 [ drthfac- e
@7

2

. A‘ t
(=i (p) - g (@) - M, 5 [ arinat—m)
+Np(p(—7))e "ty 7), (4.8
and the corresponding coefficients are
.Q . i 2
agq=15 (1+iMupp€®y —Mupy-), (4.9
aqp=m(1+lM,u,,u,pe‘P'y_—M,U«p’Y+), (4.10
Q . 2 2 )
Cq=Mug ey 5 €4 Yomiqy- | THp| -5 %0,
(4.11
2 .
Apq=— —5— (1= IMurppe™ 9y —Mufy,),
(4.12
Q . i 2
app=i 5 (1=iMurppe ¢y, —Mpury ), (413
_ ,0 2
Cp=Muv) _H'M:“rz —'y0+|y,5
M Y
+ o ppr® i vom v ||, (4.14

with u, andu, defined below Eq(3.40. The fixed point is

(@=10[1-Mu(y.+y)I(q)—vy), (4.18

where one can identify the friction coefficient I of Eq.
(3.8 as

Im(y)=Im[—MuZ(y:++y-)], (4.19

which may be approximated to InyI:SA)\f/M AQu, un-

der the same assumptions leading to the rhs of (B®9.
Integration of Eq.(4.18 yields the trajectories depicted in
Fig. 3 where it is shown that the shape of the orbits does not
depend on the initial vortex position, as expected.

V. CONCLUDING REMARKS

The damped motion of a vortex in a superfluid was inves-
tigated under different linear couplings in the vortex observ-
ables. We have shown that a coupling proportional to the
free velocity reproduces the basic features of a realistic
damped motion. It is worth noting that this Hamiltonian cou-
pling is equivalent to a Lagrangian coupling proportional to
the true vortex velocity. Moreover, we have shown that any
other linear combination of coordinate and momentum must
be discarded, since it produces nonrealistic trajectories
around a fixed point.

Note that in contrast to superfluids, the interaction Hamil-
tonian for vortices in superconductors may be proportional to
the vortex coordinaté since in such a case, the pinning po-
tential gives rise to localization. This is equivalent to taking
Ap=0 in our equations.

It is interesting to discuss some features regarding the
simplest dissipative dynamics without localization, i.e., that
undergone by a free Brownian particle. In such a case, the

suppressed if the determinant of the system vanishes. Thioupling to the heat bath is usually modeled by a translation-

condition yields

% — sinp+ \sip—1, 4.15
p

and sinceu, andu, must be real quantities, this implies that

p== Mmr=Fpup. (4.16

NI

One can realize that the above relationship requires

MQ
Px— Ty Bx+ py+

Q
Hipe= ixp( TX) B ] (4.17)

ally invariant form involving only coordinatesHowever, an
interaction linear in the momentum, which in this case is
proportional to the free velocity, has been shown to be useful
in situations where both the system and the reservoir vari-
ables are functions of the same set of degrees of freéfom.
This is precisely the case if the Brownian particle represents
a collective excitation interacting with intrinsic ones, and one
can then show that the dynamics do not contain any fixed
point2! In fact, the limitQ0—0 in our equations should in-
deed correspond to such dynamics, with=0, i.e., a cou-
pling proportional to the momentum or free velocity is the
condition for nonappearance of fixed poifiEg. (4.15]. Fi-
nally, we have shown that in the presence of “external

fields” with Q) #0, realistic dynamics take place only when

and this in turn, indicates that the only interaction mechaboth\, and\, are different from zero and related according
nism which does not localize the vortex in phase space, into Ap= =2\, /M.
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