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Coupling mechanisms for damped vortex motion in superfluids
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We investigate different dissipative dynamics for a vortex line immersed into a superfluid where density
fluctuations have been excited. For this sake, we consider various linear coupling models where the vortex
interacts with the quasiparticles of the normal fluid through its coordinate or momentum. We can unambigu-
ously show that one and only one combination of these variables leads to damped evolution in agreement with
the phenomenological descriptions.@S0163-1829~97!07434-1#
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I. INTRODUCTION

Quantum dissipation has been a vivid branch of resea
for several decades1,2 in view of both the fundamental theo
retical aspects of the subject and the vast application fie
that include quantum optics, physical chemistry, nucl
physics, and condensed-matter physics. The best kn
models resort to a system-plus-reservoir description, wh
the irreversible approach to thermal equilibrium of a qua
tum object is examined using projection and/or reduct
techniques. The key ingredient to starting such a study is
Hamiltonian, which consists of three terms, respective
corresponding to the free system, to the reservoir, and
their mutual interaction. Among the most popular choices
the latter, those being linear in operators representing
coordinate or the momentum of the quantum particle
preferred for applications in the frame of standard noneq
librium statistical mechanics. In particular, those interact
models known as the rotating wave approximation~RWA!
and the full coupling~FC! model, have been favored b
many authors.3–6

In spite of the fact that the RWA has strong foundatio
especially concerning applications to quantum optics, so
of its drawbacks have been pointed out by several author
particular, being a velocity-dependent interaction, it bre
the equivalence between velocity and momentum media
by the inertia parameter.7 This brings some undesirable co
sequences, mainly the fact that one may not recover the c
sical limit of a semiclassical evolution. The FC model is,
contrast, well behaved in the classical limit of the semicl
sical description of quantum dissipative motion.7 However, it
is well known that such interaction mechanisms induce
tential terms which localize the Brownian particle, whic
ought to be artificially removed adding a counterterm in
original, unperturbed Hamiltonian.1,2

We have investigated these aspects of the RWA and
FC model focusing upon quantum harmonic motion7 and
spin relaxation.8–10 However, the realm of physical system
which can be mapped onto a simple quantal Brownian m
tion model is much wider; recently, we have shown tha
single vortex moving in a superfluid containing quanta
density fluctuations can be regarded as a quantum Brow
particle interacting with a reservoir.11 The description of the
subsequent damped motion presents a substantial agree
560163-1829/97/56~13!/8282~7!/$10.00
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with the phenomenological approaches. The most impor
aspect of the model is the interaction mechanism adop
which involves the vortex velocity in a linear approximatio

In this work we investigate to a deeper extent the differ
dissipative dynamics that coupling models of the FC fo
assign to point vortices immersed into a superfluid wh
contains some excitations. In particular, we show that
Hamiltonians expressed in terms of either the coordinate
the momentum of the vortex give rise to localization ph
nomena in phase space. In order to suppress phase-s
localization, we search the kind of mixed couplings that
volve linear combinations of coordinate and momentum
the spirit of Ref. 11. We find that there is a unique intera
tion mechanism that leads to damped evolution in agreem
with the phenomenological descriptions. This mechanism
precisely the one investigated in Ref. 11, where it appea
as a natural choice in view of the fact that the free motion
a point vortex in a fluid is electromagnetic, in other word
the driving force acts on the vortex velocity similarly to th
Lorentz force on a charged particle.

This paper is organized as follows. In Sec. II we revie
the description of the motion of a free vortex filament wi
cylindrical symmetry in a superfluid at zero temperature a
set our notation. In Sec. III, different choices for the F
interaction Hamiltonian are discussed and it is shown tha
the coupling involves only the coordinate or the moment
of the point particle, its subsequent motion is not physica
acceptable. The solution is presented in Sec. IV, where
show that the only Hamiltonian leading to realistic evoluti
of the vortex involves both the coordinate and the mom
tum of the particle linearly combined as in the velocity of t
free motion. Finally, some concluding remarks are presen
in Sec. V.

II. CYCLOTRON VORTEX MOTION

The cyclotron motion of a cylindrical vortex parallel t
the z axis in a superfluid at zero temperature is provoked
the Magnus force, which provides the lift upon a cylind
that moves with velocityv2vs relative to the fluid and ex-
hibits circulation around thez axis, vs being the superfluid
velocity andqv561 is the sign of the vorticity according to
the right-handed convention. The structure of this force i
8282 © 1997 The American Physical Society
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FIG. 1. Trajectories of mean values of Heisenberg operators in the coordinate~a! and velocity~b! planes for the cyclotron motion in Eq
~2.8!. The coordinates in~a! and the velocities in~b! are, respectively, given in units ofvs /V andvs . We have assumed a vortex initiall
at rest at the origin of the coordinate plane. Note that the center of the circle in~b! corresponds to the superfluid velocity.
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FM5qvhrsl ẑx~v2vs!. ~2.1!

In what follows we shall assume a uniform superflu
velocity pointing along thex axis. This motion has bee
described in Ref. 12 and corresponds to the Hamiltonian
namics generated by

H5
1

2M
@p2qvA~r !#21MVvsy ~2.2!

with the vector potential

A~r !5
hrsl

2
~y,2x!, ~2.3!

which gives rise to the component of the lift proportional
the vortex velocity. The component of this force depend
upon the superfluid velocity is minus the gradient of t
scalar potentialMVvsy. HereM is the dynamical mass of
vortex element of lengthl and rs is the number density o
the superfluid, which at zero temperature coincides with
total density per unit massr/m, m being the mass of a singl
atom. Furthermore,

V5
qvhrsl

M
~2.4!

is the unperturbed cyclotron frequency, whereh is Planck’s
constant.

In terms of the complex position and momentum ope
tors

q5x1 iy ; p5px1 ipy , ~2.5!

the Heisenberg equations of motion are

q̇5
p

M
1 i

V

2
q, ~2.6!

ṗ5 i
V

2
p2

MV2

4
q2 iM Vvs , ~2.7!

or, equivalently

q̈5 iV~ q̇2vs!, ~2.8!
y-

g

e

-

where the right-hand side~rhs! displays the complex form o
the classical Magnus force.

Integration of Eqs.~2.6! and ~2.7! gives

q~ t !5 f 1~ t !q02 i
2

MV
f 2~ t !p01vsF t1 i

2

V
f 2~ t !G ,

~2.9!

p~ t !5 i
MV

2
f 2~ t !q01 f 1~ t !p02 i

V

2
MvsF t2 i

2

V
f 2~ t !G ,

~2.10!

whereq0 ,p0 are the initial position and momentum and

f 6~ t !5
eiVt61

2
. ~2.11!

The above equations describe the simple cyclotron mo
whose trajectories for the mean values of the Heisenb
operators in the coordinate and velocity planes are depi
in Figs. 1~a! and 1~b!.

III. DISSIPATIVE DYNAMICS

If the superfluid contains elementary excitations, the
can behave as a reservoir to which the vortex may cou
This interaction provides a dissipation mechanism t
damps the cyclotron motion. If we denote bys the density
operator of the vortex, we can derive, in the weak couplin
non-Markovian limit,9,10 a generalized master equatio
~GME! with time-dependent coefficients; this is achiev
combining the standard reduction-projection procedure
nonequilibrium statistical mechanics13 with the time convo-
lutionless method developed by Chaturvedi and Shibat14

For an interaction of the form

H int5(
i

l iSiBi , ~3.1!

whereSi and Bi are vortex and reservoir operators, respe
tively, the GME reads
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ṡ~ t !1
i

\
@H,s#

52
1

\2(i , j l il jE
0

t

dt$@Si ,@Sj~2t!,s##f i j ~t!

1 i @Si ,@Sj~2t!,s#1#c i j ~t!%, ~3.2!

where@a,b#1 denotes an anticommutator. The operatorsSi
appearing in this expression will be either the coordinate
the momentum of the free cyclotron motion displayed
Eqs.~2.9! and~2.10!. In spite of its integrodifferential equa
tion structure, the GME is a differential one, since the u
knowns under the integral sign is taken at timet; the time-
dependent functionsf i j (t) and c i j (t) are the real and
imaginary parts, respectively, of the correlation between h
bath operators6

^Bi~t!Bj&5f i j ~t!1 ic i j ~t!. ~3.3!

We shall derive equations of motion for the expectat
values of the position and momentum components of
vortex. Taking into account very general relations involvi
operatorsa, b, andc, namely

Tr~a†b,@c,s#‡!5Tr~†@a,b#,c‡s![^†@a,b#,c‡&, ~3.4!

Tr~a†b,@c,s#1‡!5Tr~†@a,b#,c‡1s![^†@a,b#,c‡1&, ~3.5!

we readily obtain for an observableO

^Ȯ&1
i

\
^@O,H#&

52
1

\2(i , j l il jE
0

t

dt$^@@O,Si #,Sj~2t!#&f i j ~t!

1 i ^@@O,Si #,Sj~2t!#1&c i j ~t!%. ~3.6!

Since the general coupling~3.1! is linear in q and/orp,
the motion equations for the expectation values are of
form

^q̇&5aqq^q&1aqp^p&1cq ,

^ ṗ&5apq^q&1app^p&1cp . ~3.7!

In general, the coefficients in Eq.~3.7! are time dependen
and involve time integrals of the correlation function of t
reservoir. The Markovian regime suppresses these time
pendences, since in that case all upper integration limits
come infinite. In such a situation, similarly to the free cyc
tron motion, one can merge Eqs.~3.7! into a single force
equation, namely

^q̈&5 iV~11g!^q̇&1v2^q&1a, ~3.8!

where

iV~11g!5aqq1app ~3.9!

is a complex friction constant,

v25aqpapq2aqqapp ~3.10!
r

-

at

e

e

e-
e-

is the determinant of the linear system at the rhs of Eq.~3.7!
and

a5aqpcp2appcq , ~3.11!

is a reference acceleration.
In order to appreciate the effect of the reservoir con

tuted by the excitations of the superfluid, at this point it w
be instructive to compare the expectation value of the M
nus force equation~2.8! and the force equation~3.8!. In fact,
we observe that the reservoir induces both a dissipative a
conservative coupling, respectively, measured by the par
eters Im(g) and v2. We also realize that the strength an
direction of the original Magnus force@rhs of Eq.~2.8!# will
be modified through the parameters Re(g) and a. In other
words, in addition to a damping force, an harmonic restor
force plus a gravitylike component appear. This means t
in general, the motion takes place around the minimum
the induced conservative potential, which provides the
fixed point to the dynamics, namely

^q&F52
a

v2
. ~3.12!

However, it is important to remark that such a fixed po
disappears whenever the harmonic force in Eq.~3.8! van-
ishes, i.e., when the determinant of the linear system at
rhs of Eq.~3.7! is identically zero.

A. Coordinate-dependent coupling

We first consider a coupling model that describes
damping mechanism by means of an interaction Hamilton
of the form

H int5l rB•r ~3.13!

with r the position vector of the point vortex andB a vector
function of operators that create density fluctuations in
liquid. In the frame of the current description, this functio
is related to the Hermitian part of the Feynman-Cohen
eratorÔk that creates a phonon or a roton with momentumk
~Ref. 15!

Ôk
†5rk

†2
1

N (
k8Þk

k8•k

k82
rk8

† rk2k8
† , ~3.14!

where N is the number of atoms in the liquid andk5uku.
Notice that if, for example, the Hermitian operatorB is cho-
sen as proportional to

Bk5
Ôk

†1Ôk

A2
, ~3.15!

the function

^Bk~t!Bk&5fk~t!1 ick~t! ~3.16!

is related to the Fourier transform of the dynamical struct
factorS(k,v) of the superfluid, which for the case of liquid
helium isotopes is experimentally known for a wide range
transferred momenta and energy.16,17

From Eq.~3.6! we readily get
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FIG. 2. Same as Fig. 1 for tra
jectories arising from Eq.~3.28!
for a friction coefficient Im
(g)50.0045. The dashed line tra
jectories correspond to the initia
conditions of Fig. 1, while the
continuous line ones assume th
same initial velocity but an initial
position ^q0&5(0,210).
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^q̇&5
^p&
M

1 i
V

2
^q&, ~3.17!

^ ṗ&5 i
V

2
^p&2

MV2

4
^q&2 iM Vvs

2
2l r

2

\ E
0

t

dt^q~2t!&c~t!. ~3.18!

Inserting Eq.~2.9! in Eq. ~3.18! we obtain the coefficients
corresponding to Eq.~3.7! as

aqq5 i
V

2
, ~3.19!

aqp5
1

M
, ~3.20!

cq50, ~3.21!

apq52
MV2

4 S 12
4l r

2

MV2
g1D , ~3.22!

app5 i
V

2 S 12
4l r

2

MV2
g2D , ~3.23!

cp52 iM VvsF12 i
l r

2

MVS g02 i
2

V
g2D G , ~3.24!

where the involved time-dependent coefficients read

g6~ t !52
2

\E0

t

dt f 6~2t!c~t!, ~3.25!

g0~ t !52
2

\E0

t

dttc~t! ~3.26!

with f 6(t) given by Eq.~2.11!.
Specifying now the Markovian limit where any time d

pendence originated in a time integral is suppressed, we
tain the harmonic restoring strength

v25
l r

2

M
~g12g2! ~3.27!
b-

and the second-order equation for the acceleration is

^q̈&5 iVS 12
2l r

2

MV2
g2D ~^q̇&2vs!

1
l r

2

M
~g12g2!^q&2vs

l r
2

M
g0 . ~3.28!

In order to illustrate with some numerical results, we ha
considered a Gaussian reservoir.18 In this model the imagi-
nary part of the correlation function~3.3! is given by the
exponential decay lawc(t)52Aue2ut, whereu is the in-
verse of the reservoir relaxation time andA is a positive
constant depending on the specific form of theB operators.
Then all parameters of the force equation~3.28! are deter-
mined by a unique dimensionless friction coefficient Im(g)
@cf. Eq. ~3.8!#:

Im~g!5ImS 2
2l r

2

MV2
g2D .

2Al r
2

M\Vu
, ~3.29!

in addition to the dimensional parametersV andvs .
Therefore Eq.~3.28! can be straightforwardly integrate

and some of the trajectories are depicted in Fig. 2, where
set u510V in order to enforce the Markovian hypothesi
One expects that in a superfluid with velocityvs , the only
initial condition which determines the dynamics at lat
times is the vortex velocity. However, Fig. 2 shows that fo
given initial velocity, different choices of the initial vorte
position give rise to significant departures between the c
responding velocities at later times. This reflects another
desired consequence of the presence of the fixed point
~3.12!.

B. Momentum-dependent coupling

A similar behavior takes place if one assumes a coup
that depends upon the vortex momentum, i.e., if the inter
tion Hamiltonian is

H int5lpBp•p. ~3.30!

In this case, the corresponding equations of motion for
expectation values of complex position and momentum a

^q̇&5
^p&
M

1 i
V

2
^q&1

2lp

\ E
0

t

dt^p~2t!&c~t!, ~3.31!
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^ ṗ&5 i
V

2
^p&2

MV2

4
^q&2 iM Vvs . ~3.32!

Using Eq.~2.10! we obtain the coefficients

aqq5 i
V

2
~12lp

2Mg2!, ~3.33!

aqp5
1

M
~12lp

2Mg1!, ~3.34!

cq5Mlp
2vsS g22 i

V

2
g0D , ~3.35!

apq52
MV2

4
, ~3.36!

app5 i
V

2
, ~3.37!

cp52 iM Vvs . ~3.38!

In this case

v25
lp

2MV2

4
~g12g2! ~3.39!

and the corresponding acceleration in the Markovian reg
is

^q̈&5 iVS 12
lp

2M

2
g2D ~^q̇&2vs!1lp

2 MV2

4
~g12g2!^q&

2lp
2 MV2

4
vsFg02 i

4

V
~g12g2!G . ~3.40!

It should be noticed that similarly to what happens for t
coordinate-dependent coupling@cf. Eq. ~3.28!#, the trajecto-
ries will develop around a fixed point, representing a non
alistic dynamics. Moreover, if we setmp[lp and
m r[2l r /(MV) Eqs.~3.28! and ~3.40! can be written as
e

-

^q̈&5 iVS 12m j
2 M

2
g2D ~^q̇&2vs!1m j

2 MV2

4
~g12g2!^q&

2m j
2 MV2

4
vsg02 id jpMVvsmp

2~g12g2! ~3.41!

for j 5r ,p. Then assumingm r5mp the fixed point lies at

^q&F
p5^q&F

r 2 i
4

V
vs , ~3.42!

where the superscriptsr ,p indicate the type of coupling
Hamiltonian under consideration.

IV. COMBINED COUPLING MODEL

In view of the results presented in the previous section
appears natural to inquire whether a suitable linear combi
tion of the previous coupling Hamiltonians could suppre
the fixed point intrinsic to the coupling mechanisms the
discussed. For this sake, we now investigate the phase-s
dynamics that the GME associates to the interaction Ham
tonian

H int5l rr•A1lpp•B. ~4.1!

From now on we assume that the two-dimensional vec
operatorsA andB of the reservoir satisfy

^Ai~ t !Aj&5^Bi~ t !Bj&50 for iÞ j ~4.2!

and thatB5R(w)A, where R(w) is the matrix associated
with a rotation in an anglew. This hypothesis implies that
the physical operator which represents the elementary e
tation is unique, and that its different manifestations in inte
action Hamiltonians involving either the coordinate or th
momentum of the vortex cannot differ but in the orientatio
of the vector in the direction perpendicular to the vorte
filament. Accordingly@cf. Eq. ~3.3!#, we have

cAiBi
~t!5cBiAi

~t!5c~t!cosw, ~4.3!

cAxBy
~t!5cByAx

~t!5c~t!sinw, ~4.4!
osition
locity.
FIG. 3. Same as Fig. 1 for the trajectories arising from Eq.~4.18! for a friction coefficient Im(g)50.05. The dashed line in~a!
corresponds to the initial conditions of Fig. 1 while the continuous line assumes the same initial velocity but an initial p
^q0&5(20,23). Both cases yield in~b! the same trajectory on the velocity plane, i.e., a spiral curve converging to the superfluid ve
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cAyBx
~t!5cBxAy

~t!52c~t!sinw, ~4.5!

where

c~t![cAxAx
~t!5cBxBx

~t!. ~4.6!

The evolution of the mean values of the complex posit
and momentum are given by

^q̇&5
^p&
M

1 i
V

2
^q&1

2lp

\ E
0

t

dt$l r^q~2t!&eiw

1lp^p~2t!&%c~t!, ~4.7!

^ ṗ&5 i
V

2
^p&2

MV2

4
^q&2 iM Vvs2

2l r

\ E
0

t

dt$l r^q~2t!&

1lp^p~2t!&e2 iw%c~t!, ~4.8!

and the corresponding coefficients are

aqq5 i
V

2
~11 iM m rmpeiwg12Mmp

2g2!, ~4.9!

aqp5
1

M
~11 iM m rmpeiwg22Mmp

2g1!, ~4.10!

cq5MvsFm rmp

V

2
eiwS g02 i

2

V
g2D1mp

2S g22 i
V

2
g0D G ,
~4.11!

apq52
MV2

4
~12 iM m rmpe2 iwg22Mm r

2g1!,

~4.12!

app5 i
V

2
~12 iM m rmpe2 iwg12Mm r

2g2!, ~4.13!

cp5MvsVF2 i 1Mm r
2 V

4 S 2g01 ig2

2

V D
1

M

2
mpm re

2 iwS i
V

2
g02g2D G , ~4.14!

with m r andmp defined below Eq.~3.40!. The fixed point is
suppressed if the determinant of the system vanishes.
condition yields

m r

mp
5sinw6Asin2w21, ~4.15!

and sincem r andmp must be real quantities, this implies th

w56
p

2
, m r56mp . ~4.16!

One can realize that the above relationship requires

H int56lpH S px2
MV

2
yDBx1S py1

MV

2
xDByJ , ~4.17!

and this in turn, indicates that the only interaction mec
nism which does not localize the vortex in phase space,
n

is

-
n-

volves the particular combination of coordinate and mom
tum giving the free velocity of a point vortex moving und
the Magnus force. The coupling Hamiltonian thus obtain
corresponds to the case considered in Ref. 11. The sec
order equation for the acceleration now reads

^q̈&5 iV@12Mm r
2~g11g2!#~^q̇&2vs!, ~4.18!

where one can identify the friction coefficient Im(g) of Eq.
~3.8! as

Im~g!5Im@2Mm r
2~g11g2!#, ~4.19!

which may be approximated to Im(g).8Al r
2/M\Vu, un-

der the same assumptions leading to the rhs of Eq.~3.29!.
Integration of Eq.~4.18! yields the trajectories depicted i
Fig. 3 where it is shown that the shape of the orbits does
depend on the initial vortex position, as expected.

V. CONCLUDING REMARKS

The damped motion of a vortex in a superfluid was inv
tigated under different linear couplings in the vortex obse
ables. We have shown that a coupling proportional to
free velocity reproduces the basic features of a reali
damped motion. It is worth noting that this Hamiltonian co
pling is equivalent to a Lagrangian coupling proportional
the true vortex velocity. Moreover, we have shown that a
other linear combination of coordinate and momentum m
be discarded, since it produces nonrealistic trajecto
around a fixed point.

Note that in contrast to superfluids, the interaction Ham
tonian for vortices in superconductors may be proportiona
the vortex coordinate19 since in such a case, the pinning p
tential gives rise to localization. This is equivalent to taki
lp50 in our equations.

It is interesting to discuss some features regarding
simplest dissipative dynamics without localization, i.e., th
undergone by a free Brownian particle. In such a case,
coupling to the heat bath is usually modeled by a translati
ally invariant form involving only coordinates.1 However, an
interaction linear in the momentum, which in this case
proportional to the free velocity, has been shown to be us
in situations where both the system and the reservoir v
ables are functions of the same set of degrees of freedo20

This is precisely the case if the Brownian particle represe
a collective excitation interacting with intrinsic ones, and o
can then show that the dynamics do not contain any fi
point.21 In fact, the limit V→0 in our equations should in
deed correspond to such dynamics, withl r50, i.e., a cou-
pling proportional to the momentum or free velocity is th
condition for nonappearance of fixed points@Eq. ~4.15!#. Fi-
nally, we have shown that in the presence of ‘‘extern
fields’’ with VÞ0, realistic dynamics take place only whe
bothl r andlp are different from zero and related accordin
to lp562l r /MV.
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