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Abstract. A fu l ly  non-Markovian calculation of the generalized susceptibility of a quantum 
system weakly coupled to a heat bath is presented. In contrast to most of the treatments we 
provide B complete solution in the Sense that it includes the analytic wntinuation to ihe lower 
half-plane. Various a p p l i c ~ o n s  are discussed including the consideration of boson and fermion 
heat baths. It is shown that OUT result takes into account system-reservoir correlations which 
are neglected in the Markovian approximation. 

1. Introduction 

Since the seminal works of,.Callen and Welton [l] and Kubo [2], the intimately related 
concepts of time correlation function and generalized susceptibility (also known as the linear 
response function) have been shown to be powerful starting points for a great number of 
successful theoretical developments in non-equilibrium statistical physics. A list of the fields 
of application would be almost comprehensive, covering the simplest Brownian motion to 
dynamic critical phenomena [3,4] or the transport properties of dense fluids [SI. 

The calculations usually focus upon the time correlation function since the generalized 
susceptibility (GS) follows immediately from the fluctuation-dissipation theorem and the 
Kramers-Kronig dispersion relations [6] .  A common method starts from a set of 
Markovian master equations which may be introduced either from phenomenological or 
from microscopic theories [7]. Then the time-dependent probability distribution for the 
set of states of the system may be obtained as the solution of such equations which 
immediately yields the two-time equilibrium probability distribution and hence the time 
correlation function. This derivation, however, is in practice limited to systems having no 
more than a few degrees of freedom. If this is not the case, the method must be modified 
in order to avoid solving directly a huge numbcr of master equations gnd, in this respect, 
the Ising model provides a very interesting example. In fact, in such a case it is more 
convenient to deal with the first-order equations for the time correlation functions which 
are directly obtained from the set of master equations. Then the solution is exactly derived 
for the one-dimensional model and, for the higher-dimensional ones, it is obtained from a 
mean-field approximation [4]. 

In any case, however, if memory effects are non-negligible the above method turns out 
to be inapplicable, the main obstacle being that the canonical distribution of the system 
becomes non-stationary. In fact, this can easily be understood by taking into account the 
fact that the theory usually assumes vanishing initial correlations between the system and 
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its environment which thus excludes a stationary state for the whole system. Nevertheless, 
in the Markovian approximation correlations are built on a negligible time scale, i.e. if the 
system is assumed to possess a canonical distribution at f = 0. equilibrium correlations are 
reached instantaneously. 

The aim of this paper is to present a reformulation of the above method which, while 
conserving the simple input of an uncorrelated initial state, is fully non-Markovian with 
a unique approximation of weak coupling between the system and its reservoir. Unlike 
most of the treatments, we provide a complete solution in the sense that it consists of 
the GS together with its analytic continuation to the lower half-plane, the latter being 
particularly useful for practical evaluations in the time domain. In addition, we show that 
the analytic continuation in the form of Taylor expansions around the origin makes room 
for perturbative schemes, leading to simpler approximate expressions for the GS including 
only limited memory effects. Our expression for the GS is given in terms of matrices of 
the Hilbert space of the system with an implicit dependence on the reservoir degrees of 
freedom which is the most suitable form for an implementation of a phenomenological 
theory. A most important feature of our result follows by means of a comparison with the 
exact Kubo formula for the linear response of a quantum system. In fact, we show that the 
non-Markovian GS takes into account system-reservoir correlations which otherwise (i.e. in 
the Markovian limit) are neglected. We discuss various applications. We focus first upon 
a harmonic oscillator providing a derailed calculation of the phonon number GS both for 
boson and fermion environments. From this example it is clearly shown that the singularity 
spectrum of the GS brings valuable information regarding the dynamics of the system, e.g. 
for a highly degenerate fermion heat bath we find an infinite set of branch cuts implying 
a complex non-exponential time decay. As a second application we consider a particular 
multi-level system, namely a spin j in an external magnetic field and weakly coupled to a 
phonon heat bath. Here a brief analysis leads immediately to a connection with previous 
results which brings system-reservoir correlations into the discussion. 

Finally it is worthwhile mentioning previous work by Tanimura and Kubo [SI who 
developed a phenomenological Markovian calculation of two-time correlation functions 
valid to all orders of the system-bath interaction that, in the lowest order, reduces to the 
conventional results of the master equation approach. 

In section 2 starting from the Liouville-von 
Neumann equation of motion with the usual uncorrelated initial condition, the system is 
allowed to reach equilibrium before a driving force is turned on. Next we obtain a 'response 
density matrix' which yields the formula for the GS. We give detailed expressions for the 
two matrices appearing in the formula, provide the analytic continuation rules and discuss 
several points and applications. In section 3 we study the time dependence of the GS which 
makes room for a direct comparison with the Kubo formula and in section 4 we prove 
that our result reduces in the Markovian limit to the one obtained from the usual method. 
Finally in section 5 we state some concluding remarks. 

This paper is organized as follows. 

2. Calculation of the GS 

We start from a time-dependent Hamiltonian of the form 

where &(HA) denotes the system (reservoir) Hamiltonian and HSR the interaction potential 
between them. A is an observable of the system which, for simplicity,' is assumed to 
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commute with Hs and h(i)  is a C-number external driving force which is the only time- 
dependent quantity. The whole system (system + reservoir) density matrix in the common 
basis of eigenstates of Hs, A and H R  can be written as a sum of two terms, namely a 
diagonal matrix po and the remaining off-diagonal matrix pc. With such definitions the 
Liouville-von Neumann equation can be written as follows: 

i h  = L&pc (2.2) 
iPc = LL0po + (Ls + LR - ALA + &)Pc. (2.3) 

The above expressions are simply the diagonal and off-diagonal p"s of the original equation 
of motion. In fact, if PO (Pc) denotes a projector onto the diagonal (off-diagonal) part, we 
have Lbc = PoLsRP~ and similar definitions for LLo and L',,, where LSR denotes the 
commutator of HSR, h-'[Hs~. 1. Analogously, Ls, L R  and LA denote the respective 
commutators of Hs, H R  and A.  Note that L& = 0, since an off-diagonal HSR was assumed 
without loss of generality. 

We shall work under a weak-coupling approximation which consists of neglecting L& 
in equation (2.3). Then, assuming the simplest initial condition pc(t = 0) = 0, we have 

1 dt'Lb,exp[-i(Ls + L~) t ' Jexp  dt"h(t")La LLopo(t - t ' )  (2.4) 

which follows from solving equation (2.3) in pc and replacing the result in (2.2). The 
formal solution of equation (2.4) follows immediately via Laplace transformation: 

PO(t) = - 
+m+iO 

dze-iz'[z + q(z)]-'po(r = 0) 
2Jr -m+io 

x ~ n ( z - ~ ) - ~ ( Z ) I [ Z - ~ + + ( Z - - ~ I - ' p o ~ f  = O )  (2.3 
where we have retained only first-order terms in the driving force A. The two operators 
appearing in (2.5) are 

a ( z )  = &(LS + L R  - z)-'LAL',o 

Y(z) = Lb,-(Ls + LR - z)-'L',-O. 

(2.6) 

(2.7) 
We have assumed a driving force which vanishes for t c to and tends to zero for t .+ +w 
or, more precisely, has a regular Laplace transform at the origin. The next step consists 
of tracing in equation (2.5) over the reservoir degrees of freedom in order to obtain the 
diagonal component of the system density matrix. Recalling that po(t = 0) is assumed ro 
be of the form ps(O)p~(O) ,  we see that the task reduces to averaging the operators in the 
integrands of (2.5) over the initial state of the reservoir. In this respect, we have recently 
given a useful property of the collision operator valid in the thermodynamic limit, namely 
[I11 

where ( 0 ) ~  = T~R[O~R(O) ]  denotes the average of an operator 0 over the initial state of 
the reservoir. This decoupling property might, at first sight, seem surprising; we refer the 
reader to the appendix in [I I] for details of the proof. Here we shall only mention that the 
key point of such a proof is quite simple since it rests upon equalities such as 

and the so-called collision operator in the weak-coupling approximation [9-111, 

([*(Z)ln)R [(*(Z))Rln (n =-2.3, . . .) 

(agaLa6aJ R = (aaa;)R(a:a,)R 
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for creation and annihilation operators of reservoir particles. However, it is important to 
remark that the cases for which the above equation does not hold, i.e. 01 = p ,  become a null 
measure set in the thermodynamic limit (continuum limit of reservoir labels). In the present 
problem we shall need the following generalization of this lemma which, fortunately, can 
be shown in complete analogy with the previous derivation: 

('J'A,'J'A%. . . ~ A , , ) R  = ( Y A , ) R ( ' V ~ , ) R . . . ( ~ A . ) R  (2.8) 
where W.+ = Lb,AjL',, Ai being an operator which is a function of Ls, LR and LA. Thus 
using (2.8) the averages in (2.5) are easily extracted, leading to 

rJ( J-m+iO 

x[p(z - 0) - p(z)l [z - 0 + $,(z - o)l- 'ps( t  = 0) (2.9) 

where $(z) = (Y(z))R and rp(z) = ( S ~ ( Z ) ) R  are reduced operators acting only upon the 
system degrees of freedom. 

Now recall that the system must have reached equilibrium before the driving force is 
turned on, i.e. in (2.9) we must take in the limit t + +CO keeping r = t - ro as a constant, 
which is easily achieved via the following change of variables: 

(2.10) 

Thus one gets 

where 

eq - lim z[z + $(z)l-'ps(t = 0) ps - L*+10 
(2.12) 

is the equilibrium distribution of the system and peSp is a 'response density matrix' with a 
Laplace transform given by 

(2.13) 
L c 

Here we want to analyse a possible incidence in our derivation of the question of positivity 
breaking of the system density matrix which has recently received attention from several 
authors [12]. To this aim, let us focus upon equation (2.11); on the one hand, assuming 
a reservoir in a canonical or macrocanonical equilibrium at f = 0, p," will be simply the 
canonical distribution of the system (an explicit proof is given in the appendix). Now, 
regarding the second term of (2.11), from the infinitesimal nature of A we conclude that the 
positivity of ps(t) could only be broken for vanishing temperatures which will therefore 
be excluded from our treatment. 

Finally the mean value of A is thus 

(2.14) 
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with a(r - r') the function for which the Laplace transform is just the GS: 

&(z) = -TrsIAIz + ~ ( Z ) I - ~ ~ ( Z ) P ~ ~ )  (2.15) 
where we have defined 

Wz) = [(OW - (o(+iO)l/z 
= ~-p"+"(O)z'/(k + l)! 

k>O 
(2.16) 

having assumed in  the second line the holomorphy of p(z) at the origin to be discussed 
below. The result (2.15) deserves several comments; the operators appearing in 'it are just 
matrices of the Hilbert space of the system. The elements of q(z) are: 

] PR (2.17) 

where i(R) are system (reservoir) indices, h A s ~ r J R ,  are the matrix elements of HsR in the 
common basis of eigenstates of Hs,  HR and A, ho.< (ha,) denotes the energy levels of 
HS ( H R )  and PR are the (diagonal) elements of p ~ ( 0 ) .  For simplicity we have assumed an 
observable A which is a direct function of Hs, i.e. A = h f ( H s / h ) .  The matrix elements 
of the reduced collision operator @(z) are obtained from (2.17) by making the replacement 
f (  ) - f( ) + 1 [ill. It is important to bear in mind, however, that equation (2.17), 
as it stands, is only valid for Imz > 0. Therefore to achieve a complete solution useful 
for practical applications we should also provide the analytic contindation of the GS to the 
lower half-plane. In a recent article [ l l l ,  we have reported analytic continuation and Taylor 
expansion formulae for the collision operator @(z) which were obtained by taking. into 
account that in the thermodynamic limit (a reservoir with a continuous energy spectrum) 
the mahix elemenis of @(e) become Cauchy integrals of the form 

f(%, ) - f(%) + f(%) - f(%) 
o,~, - f WR' - W R  - - o.7, + O R  - WR' - Z 

(2.18) 

with an even kernel C(O) = c(--0). In view of the analogy between the matrix elements 
of #(z) and (o(z), it is easy to show that the latter are also Cauchy integrals, but this time 
with an odd kernel. The analytic continuation and Taylor.expansion formulae for the cases 
c(o) even and [odd] are [I31 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
n-1 d o  

n odd [even] (2.23) 
k=O 
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and P indicates the Cauchy principal part. In the above expressions it was assumed that 
the kernel c(z) is an analytic function along the whole real axis which, as we shall see later 
through various examples, is a commonly encountered situation. Note that equation (2.19) 
shows the important fact that the singularities of C(z) are those of the kernel c(z). 

As is obvious from (2.15), practical evaluations of the GS will generally require a 
numerical diagonalization of the matrix +(z) since only a few model systems such as a 
harmonic oscillator [I41 or a spin 1101 have been shown to admit an analytical solution 
for such a problem. However, (2.15) may be approximated by expressions that are easier 
to handle and to see this we anticipate a result to be discussed in the following section, 
namely that the Markovian limit of the GS corresponds to the approximation @(z) cs @(O) 
and n(z) ~ t :  n(0). This immediately suggests the possibility of working with simpler 
approximate expressions for the GS which take limited memory effects into account by the 
procedure of retaining a finite number of terms in the Taylor expansions of +(z) and n(z). 
A similar method has previously been employed for generating non-Markovian corrections 
to the quantum Langevin equation [I51 and also to quantum Fokker-Planck equations [16]. 
The simplest non-Markovian effect should then arise from retaining only linear or second- 
order terms and as an interesting application it is worthwhile mentioning the problem of 
an electron in the blackbody radiation field. In fact, it has been shown that the first- and 
second-order terms are the leading ones of such a problem since they respectively give rise 
to the renormalization of the eIectron mass and to the radiation reaction force in a quantum 
stochastic version of the Abraham-Lorentz equation of motion (see 1151 and for a more 
complete treatment [171). 

As a first example of the application of the present formalism we shall analyse the GS of 
a harmonic oscillator, focusing upon ik  phonon number since it is the simplest observable 
which commutes with the Hamiltonian. The linear response functions of coordinate and 
momentum are well known for this system, particularly in the case that the heat bath 
consists of a set of harmonic oscillators [IS, 191. The present master equation formalism is 
evidently unsuitable for such calculations, the quantum Langevin equation or path integrals 
being, for instance, the correct tools to be employed. However, if other kinds of heat bath, 
i.e. fermionic, are to be considered, such formalisms become rather cumbersome, allowing 
only an analysis which usually does not go beyond the formal level. In contrast to such 
drawbacks, now we shall see that the method we propose can readily be applied to both 
kinds of reservoir. To this aim let us consider the linear interaction, 

HSR = AOX (2.24) 
where x = a + a t  denotes the adimensionalized coordinate of the harmonic oscillator (a 
and ut are, respectively, the annihilation and creation operators), 0 denotes an unspecified 
observable of the heat bath and A is the parameter that measures the interaction strength. 
The Hamiltonian (2.24) leads to a collision operator +(z) represented by a tridiagonal matrix 
which has been fully diagonalized in [14]. This allows a direct calculation of the GS (2.15) 
which for A = uta is given by an expression of the form 

(2.25) 

where e--BR/k8T is the usual Boltzmann’s factor of the harmonic oscillator, i[V+(z) - V-(z)] 
denotes the first non-vanishing eigenvalue of @(z) and 

(2.26) 
where the functions Q*(z) define the matrix elements of (~(z) .  Next we shall specialize 
the above functions for both kinds of reservoir. For the boson heat bath we have, as usual, 

P d z )  = [Qdz)  - Qd+Wl/z 
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an observable of the form 0 = E, f& in equation (2.24), fm being a parameter that 
measures the relative contribution to the interaction of the harmonic oscillator of frequency 
w, and adimensionalized coordinate x, = a: + a,. On the other hand, for the fermion 
reservoir we assume a number-conserving operator 0 = C, E, btb,, where bL(b,) is the 
fermion creation (annihilation) operator of the single-particle state Ip)(Ici)) [14,161. Thus, 
denoting by Qf’(z) and Q$)(z) the corresponding boson and fermion functions Q*(z) of 
(2.26) we have 

( 2 . 2 7 ~ )  

where n, = (exp@w,/kBT) - 1)-’ in ( 2 . 2 7 ~ )  denotes the mean number of phonons of 
frequency U,, p y  = (1 + exp[(cy - c ~ ) / k ~ T ] ] - l  in (2.27b) denotes the Fermi occupation 
number for a state I y )  of energy c y ,  w,, is the difference (cu - cP)p and the factors in 
square brackets [&i/h] are to be replaced by unity in the corresponding expressions for 
V+(z). Now, turning to the continuum limit, the summations in (2.27) become integrals 
according to 

( 2 . 2 8 ~ )  

(2.286) 

where L3 denotes the volume of the fermion reservoir and the summation over OL in (2.27b) 
can be trivially performed taking into account momentum conservation, i.e. k, = k, + q. 
hq being the phonon momentum. Thus, the functions which define the z-dependence of the 
GS (2.25) turn in the upper half-plane into Cauchy integrals, namely 

~ ~ 

tm do 
V+(z) - V&) = - !J (0) 2ni ‘ S  -m - (0-2) 

with 

h 
U(O) = ~ [ R ( o I )  + R(-w)l 

n(w) =~ [exp(hw/ksT) - 11-’ 

where the function R(w) depends on the heat bath according to 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

R”’(w) = - .- f(n + w )  
2ni h h  r r  ( 2 . 3 4 ~ )  
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m being the fermion mass and Q* the shifted frequency Q(l f 3 f i Q / 4 ~ ~ ) .  For the boson 
reservoir we have assumed that f ( w ) ,  which characterizes its continuum limit, is an odd- 
parity function, analytic along the whole real axis, e.g. the Drude 1191 or Ullersma I181 
model, 

(2.35) 

On the other hand, we have assumed a highly degenerate Fermi gas so that the details of 
the calculation leading to (2.34b) are the same as those discussed in [16]. 

Finally, the singularity spectrum of the GS can easily be extracted by focusing upon 
(cf equation (2.19)) the singularities of the kernels (2.31) and (2.32). Thus one finds the 
following poles. 

(i) The infinite set of poles fQ - in27Ck~T/fi (n = ~ 1.2, . . .) arise from the factors 
n(Q zk w )  in (2.31), giving rise to time-decaying oscillations on the well known [18,19] 
thermal time scale RjkBT. 

(ii) The poles of R(w) should not be singular points of 6(z) since they appear equally 
in both the numerator and denominator of expression (2.25); this is the case for~the poles 
Q k i q  of (2.34+(2.35). On the other hand, the infinite set of branch-cuts issuing from the 
singularities of (2.34b), which has been studied in [16], form part of the singularity spectrum 
of the fermion GS which therefore is expected to exhibit a highly complex non-exponential 
time decay due to the low temperatures. 

(iii) Poles arise from the zeros of the denominator z + i[V+(z) - V-(z)] in (2.25). At 
this point it is interesting to consider a low-frequency expression &("(z) for the GS, valid 
for IzI much less than any characteristic frequency of the singularities discussed above in (i) 
and (ii). Within such a range, the functions V&) and P*(z) should be well approximated 
by the values at z = 0, then taking into account (2.22) it is easy  to^ obtain 

(2.36) 

From the above expression and (2.34) we see that for a small enough coupling parameter 
A, the imaginary Markovian [16] pole z = -hR(O) will be the most important singularity 
of the GS.  In the case of stronger couplings (but still within a weakcoupling approximation) 
the location of this pole can be corrected as in [I61 by considering several terms of the 
Taylor expansion of V+(z) - V-(z) (cf equations (2.21)-(2.23)) which therefore amounts to 
including limited memory effects. 

Now we shall briefly consider as a second example of the application of the theory the 
case of a particular multi-level system consisting of a spin j in a static magnetic field and 
weakly coupled to a phonon reservoir. The non-Markovian dynamics of this system has 
recently been studied [IO, 111 showing that the collision operator 4(z) is completely defined 
through a pair of complex functions W*(z) which were investigated both in frequency and 
time domains, but unfortunately an exact diagonalization of + ( z )  was only carried out for 
limited cases, namely j = 4.1 or in a high-temperature limit [lO]..Nevertheless, we shall 
see that important information can be obtained from this example. In fact, taking as the 
observable A the spin component along the static magnetic field, it is not difficult to show 
that q ( z )  follows simply from @(z)  through the replacement W*(z) --f ?B*(z), where the 
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functions &(z) are given in equation (3.8) of [Ill. The point we want to make here is that 
such functions have been shown to be intimately related to the system-reservoir correlations 
[I l l ,  a feature that will he better understood in the following sections. 

3. Time-dependent GS and comparison with the Kubo formula 

Now we shall display the non-Markovian character of our GS by focusing upon its time 
dependence. To this aim let us first consider the free system evolution (i.e. without a 
driving force) that is given by setting in equation (2.9) h(t’) = 0. Under such conditions 
the Laplace transformed mean value of A is 

(3.1) (&z)) = iTrs(A[z + @(z)l-’ps(t = 0)). 

On the other hand, from the Heisenberg picture one has 

(A(Z)) = Trs[(&Z))RPs(r = (3.2) 

Thus the above equations and the arbitrariness of ps(t = 0) imply 

Po(~(z ) )R  = iA[z +4(2)1-’ (3.3) 

where PO denotes projection onto the diagonal part. The replacement of this result in (2.15) 
finally yields the time representation of the GS: 

a(r)  = d t ’  Trs [(A@ - r’))~P(r‘)pz~] (3.4) l 
where P(r‘) denotes the operator with Laplace transform in(z). Note that since P(r‘)piq 
is a diagonal matrix, only the diagonal component of (A(r - r ’ ) ) ~  will take part in the 
calculation. Now it is easy to identify the Markovian limit; it arises when P(r’) has a very 
short lifetime in comparison with the characteristic times of (A(Z))R. In such a case it 
has been shown [lo, 111 that the collision operator is well approximated by its value at the 
origin and the same must occur for n(z), yielding 

w d r )  = iTrs[(A(t))!n(O)p?I (3.5) 

where the superscript ‘ M  indicates the Markovian approximation of ( A ( ~ ) ) R ,  i.e. obtained 
from replacing @(z) by @(O). From a more general point of view, a&) may be regarded 
as an asymptotic approximation valid for not too short (or large) times, whose frequency- 
dependent counterpart given by 

C?(’~(Z) = -Trs {A[z+@(O)I-’n(O)p~] (3.6) 
is a low-frequency approximation such as that of equation (2.36). The expression (3.5) may 
be written in a more convenient form via the following equality: 

(3.7) 

where the brackets on the right-hand side indicate that the matrix @(O) is acting upon the 
column vector corresponding to the product of the diagonal matrices A and p?. The prwf 
of the above equation requires an explicit calculation in the thermodynamic limit that is 
displayed with some detail in the appendix. In addition, from (3.3) one has 

Po ( A ( ~ ) ) R  = ~ ‘ d ~ ’ P o ( A ( ~  - r ’ ) ) R X ( t ’ )  (3.8) 
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where ~ ( z ' )  has as its Laplace transform i@(z). Finally from (3.3, (3.7) and (3.8) in the 
Markovian limit one gets 

1 

b T 
a,&) = --Trs [(A(r))yAp:]. (3.9) 

This expression makes room for a direct comparison with the Kubo exact formula for linear 
response, which can be written as [20] 

(3.10) 

where H is, in our problem, Hs + HR + HSR and ( ), indicates the average over 
the equilibrium disuibution of the whole system. Therefore from (3.9) and (3.10) it 
becomes clear that the Markovian approximation neglects system-reservoir correlations of 
equilibrium. The interesting point, however, is that our non-Markovian expression (2.15) 
does indeed take into account such correlations. To see this, let us consider the Laplace 
transform of Kubo formula (3.10) with vanishing correlations: 

(3.11) 

On the other hand, Laplace transforming (3.4) and (3.8) one gets 

C ( z )  =Tu  [(A(z))R@-'(z)~(z)P~] (3.12) 

which differs from (3.11) except in the Markovian limit (cf (3.7)); we postpone a further 
comparison to the final section 5. 

4. Comparison to the usual Markovian calculation 

In this section we shall prove that our Markovian GS leads to the same time correlation 
function that arises from the usual method. The Markovian master equation is, in our 
notation, 

b d f )  = i4(0)ps(t) (4.1) 
and its solution is given by (2.9) with A(t') = 0 and @ ( z )  = +(O). Then calling p,?,,+(t) the 
conditional probability of finding the system in the state s at time t provided it has been in 
the state s' at time zero, we have, 

where the subindices ss' on the right-hand side indicate the corresponding matrix element. 
Now, the joint probability of finding the system at equilibrium in the state s at time t and 
in the state s' at time zero, p,T,f,(t, 0), is 

p d r ,  0) = P.r/s,(OP.? (4.3) 
where denotes the s's' element of p?. At this point it is important to recall that the 
canonical distribution of the system becomes non-stationary outside the Markovian limit. 
So, if we were interested i n  calculating the two-time equilibrium distribution through the 
formula (4.3) in a general case, it would be necessary to construct a more elaborated non- 
Markovian theory which takes into account initial correlations (see for instance [19]) so that 
the canonical distribution of the system remains stationary. 
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Now let us consider the time correlation function C ( t )  of an observable A, which 
is defined as the average of [Ao(t)Ao(O) + Ao(O)Ao(f)l/2 in the equilibrium state, being 
A. = A - (A}eq. C(r) must be an even function so, taking into account (4.3) and (4.2), we 
can find its Fourier transform 

c ( w )  = 2iTrs {A[-o+$(O)I-'[w+$(0)1-'$(0) [Apiq]]. (4.4) 

On the other hand, a straightforwadapplication of the fluctuation-dissipation theorem [I, 61 
to our GS (2.15) yields 

where &(U) denotes the Fourier transform of the non-Markovian time correlation function. 
The Markovian limit of (4.5) is obtained from (3.5) and (3.7). namely 

Finally a comparison of (4.4) and (4.6) clearly shows that in the usual method the thermal 
decay time f i  f ksT is neglected. 

5. Concluding remarks 

The first point we wish to make in this section is the fundamental connection existing 
between memory and correlations. In fact, we have shown that the inclusion of the 
former is equivalent to considering the equilibrium correlations between the system and 
its environment to be non-negligible. In this respect it is worthwhile recalling that the 
Markovian approximation has been shown to be valid in extremely weak-coupling situations 
[11,16], which is therefore consistent with negligible correlations. Another insight into this 
matter follows from equations (3.11) and (3.12). which clearly exhibit the link between 
memory and correlations. In fact, we observe that the uncorrelated expression (3.11) does 
not show the additional z dependence of (3.12) which, in turn, implies additional memory. 
Finally it is worth mentioning previous studies on the dynamics of correlated initial states 
by means of functional integral techniques [I91 which, however, do not seem to reflect the 
connection with memory we are stressing here. 

On the other hand, regarding our result (2.15)-(2.16) which depends on the two matrices 
$(z) and ~ ( z ) ,  the former being a reduced version of the well known, collision operator, one 
could give the latter the name of 'correlation operator'. In fact, it has been shown that the 
uncorrelated Markovian GS does indeed depend only upon the collision operator (cf (3.7)) 
and also, for the special case of a spin j ,  the close connection existing between q(z) and 
the operator goveming spin-bath correlations has already been mentioned [ l l ] .  

Finally we remark that our present treatment which, for simplicity, has been restricted to 
the case of a single observable A can easily be generalized if several commuting observables 
Ai are considered simultaneously (e.g. the set of spins of an Ising model). In fact, a 
straightforward generalization of (2.15) yields 

iyjk(z) = -Trs ( A j [ z f $ ( z ) l - ' ~ ~ ( z ) ~ ~ ~ )  (5.1) 

where Orjk(z) denotes, briefly speaking, the susceptibility of Aj due to the force acting upon 
Ak and n,(z) is obtained by means of the replacement A + Ak in Q(z) (equation (2.6)). 
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Appendix A. Derivation of equation (3.7) 

First, from (2.16) and (2.17) a straightforward calculation yields the following ss element 
of the diagonal mafxix lT(O)p?: 

where ps denotes an ss element of p y .  The next step consists of writing the above 
expression in the thermodynamic limit and, to this aim, it is convenient to separate the 
total energy of the heat bath from the remaining quantum numbers, i.e. to replace R by 
wR,  R, in the summation over the reservoir labels R and R' in (A.l), then the passage to 
the thermodynamic limit can be done according to 

with such prescriptions (A.l) becoming (note that the contribution arising from derivatives 
of g and lAlz identically vanishes) 

x[ f (w . s )  - f ( 6 s , ) l  exP{[fiNR - k(u.7 O R ) ~ / ~ B T )  64.3) 

where ZS denotes the canonical partition function of the system and E R  the macrocanonical 
partition function of the heat bath. In (A.3) we have assumed a system with a fixed number 
of particles and a reservoir for which such a number, NE, is conserved, e.g. the Fermi gas 
of section 2. However, this is often not the case as, for example, in a phonon reservoir 
which, nevertheless, can be considered as a special case of (A.3) with a vanishing chemical 
potential p .  

On the other hand, we have seen that the matrix elements of the collision operator +(z) 
arise from (2.17) by means of the replacement f( ) - f( ) --f 1; using this it is easy to 
show that - [ k ~ T l - ] + ( O ) [ A p ~ ~ l  is a diagonal matrix whose ss element is 

Finally, taking the thermodynamic limit of the above expression one gets (A.3), which 
proves equation (3.7). 

For completeness we shall also provide a brief derivation that p? is indeed canonical. 
To this aim we first note that equation (2.12) is equivalent to 

+(O)P? = 0. (A.3 
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The ss component of the left-hand side of this matrix equation is obtained by means of the 
replacement A f ( ) /kBT + -1 in equation (A.4). Now seeking the solution to order zero 
in A we find the condition 

L?t!rPR = p.9PR' (A.6) 
to be fulfilled for all the states connected by a non-vanishing A s f i s , ~ , .  Finally, taking into 
account the equilibrium distribution of p~ and the 6 factor in (A.4), the canonical nature of 
p? is demonstrated. 
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