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A non-Markovian treatment of the relaxation of a spin j is developed. The corresponding
reduced collision operator admits a discrete spectral representation whose eigenvalues are
extracted in a high temperature limit. Then, assuming a phonon reservoir with a Debye-like
density of phonon states, the time evolution of the collision operator is explicitly given.
showing that the corresponding time decay arises from the branch points of its Laplace
transform. The extraction of the analytic continuation of the transform allows the memory
@ffects on the relaxation frequencies (resolvent poles) to be analyzed and the validity of the
rotating-wave approximation to be tested.

1. Introduction

One of the central problems that generally make the non-Markovian treat-
© of irreversible dynamics difficult is that of the calculation of analytic
inuations for the collision and the resolvent operators. This matter has
neen treated mainly by the Brussels school in connection with the theory of
vnamics [1.2] and several methods of analytic continuation suitable for
ors having a continuous spectrum in the thermodynamic limit were
proposed [3-3]. On the other hand, the case of discrete spectrum operators
wzs formally treated in ref. [6] and in the present paper we will focus upon a
ical situation within a similar formalism. We are interested in studying the
cifects on the dynamics of a ““small quantum system™ with a discrete
pectrum that is coupled to a “large reservoir” with a continuous energy
m (the so-called quantal Brownian motion problem”'). Then the

1 operator of the whole system should possess a continuous spectrum

#
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We will consider the simplest case of a system having a discrete and,
furthermore, a finite energy spectrum, namely a spin of arbitrary angular
momentum in an externally imposed magnetic field. Thus the starting point is a
Hamiltonian for the whole system given by

H=H +Hg+ Hgy , (1.1)

with H, and Hgy representing the Hamiltonians of the reservoir and the
interaction respectively and

Hy=-BIJ, (1.2)

representing the Hamiltonian of the spin, B being a nonnegative parameter
related to the field and J, the operator for the z component of the spin angular
momentum J. Therefore the unperturbed Hamiltonian Hg has 2j +1 eigen-
values corresponding to the different orientations of the spin j with respect to
the magnetic field. The interaction Hg, can induce transitions between the
above eigenstates of Hg that could eventually (see below) lead the spin to a
final steady state.

Starting from the Liouville—von Neumann equation of motion, using stan-
dard projection operator techniques, and under rather general assumptions
regarding the interaction and the reservoir, a generalized master equation for
the diagonal component of the density operator of the spin, p(f), can be
extracted [9-12],

p()=— de &(7) pt = 7). (1.3)

where ¢(7) symbolizes a reduced collision operator which is obtained from the
whole one [1,2] by averaging it over the reservoir degrees of freedom.
Assuming the first Born approximation, which is valid in a wecak-coupling
scheme [9, 11, 13], the following explicit form correct to second order in Hgy
arises:

&(7) = (1) = Trg(Lgg ¢ " ™ Loy ) (1.4)

where Tr, denotes tracing over the reservoir variables, L =% '[H, | are
Liouville operators and p, represents the density operator of the (steady)
==ervoir. If. in addition, we consider an interaction Hamiltonian linear in J,
e action of the weak-coupling collision operator (1.4) can be written as
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1
(1) p= 277 WD T ptpl dJ —2] pl,)

-I-%W}(T)(J'__.L_p+p.)'_f+_2]_p.]_), (1.5)
where J_ (J_) is the usual raising (lowering) operator of the spin. The explicit
form of the time functions W_ (7), which we shall call instantaneous transition
rates (ITRs), can be obtained after the reservoir and the interaction are
specified.

We must also recall the usual assumption in the derivation of eq. (1.3),
namely that the initial correlations between the spin and the heat bath are
negligible. In other words, one is making the hypothesis that the initial density
operator of the total system can be factorized as a product of a spin operator
and a reservoir operator. In addition, the latter operator should correspond to
a canonical distribution at a temperature T and the former to a diagonal
density matrix in the basis of eigenstates of J.. Such conditions are suitable for
studying the relaxation of a spin with an initially well defined component of the
angular momentum.

The Laplace transformation theory yields immediately a formal solution for
the generalized master equation (1.3),

ki
1 = J
p0=5m | dse(d(0)+sI7p(0), k>0, (1.6)
k—im
where
b(s) = J' e P(r)dr (1.7)

4]

is the Laplace transform of the collision operator.

According to the Brussels school [1,2], we may distinguish a number of
general properties regarding the solution (1.6):

1) The behaviour of the collision operator 5(5} in the limit s— 07 is crucial
in the determination of the existence of an irreversible subdynamics. Briefly
speaking. the systems exhibiting the normal thermodynamic irreversibility are
characterized by the existence of an operator $(0") which does not vanish
identically [1,2]. In fact, the existence of S(07) is closely related to the finite
lifetime of the collision operator ¢(7), as can be seen from eq. (1.7), and this
decaving behavior ensures the finite lifetime of correlations, which is the source
of irreversibility. Particularly, a usually assumed limiting case arises if the
above lifetime is microscopical compared to the relaxation time. Then the
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Markovian approximation for the gencralized master equation (1.3) leads to
the well-known differential master equation

=

b= [ ar 6(r) p0)=~5(0") (1), (1.3)

0

where we can identify (,;(OJ') as the gencrator of the dynamics in the Mar-
kovian limit.

2) The collision operator &(s). defined through eq. (1.7) for Re(s) >0, is
assumed to admit analytic continuation in the left half plane. Then the poles of
the resolvent [¢(s) +s] ' (eq. (1.6)) which must be located on Re(s) <0 give
the asymptotic irreversible evolution of p(1) [3, 6].

3) Finally, it is well known (and was remarked almost in the beginning of
the formulation of quantum theory [14, 15]) that a necessary condition for an
irreversible microscopic evolution is the occurrence of a continuous energy
spectrum, which in our case must correspond to the reservoir.

Having summarized the general features of the formal solution (1.6). from
now on we shall focus upon the collisional kernel (1.5). Firstly, from egs. (1.5)
and (1.7) we realize that the s-dependence of the collision operator 5“(3} must
come through the Laplace transforms of the ITRs,

W,_(s)=fe‘“wz(»r) dr. (1.8)
(]
Then a sufficient condition for the existence of a non vanishing 5(0" ) is "*
0< [W,(07)] + [W_(07)] <o (1.9)

and the analytic continuation of &(s) can be explored through the analytic
continuations of the functions (1.8). The Markovian limit will be valid if the
ITRs W, (1) have sufficiently short lifetimes and in such a case the equation of
motion will be (1.3"). The main features of the Markovian relaxation of a spin
are well known, specially for the simplest case of a spin 2 [9, 10, 16, 17] and it is
not the aim of the present paper to focus upon this regime. However, as we
shall see in section 3, the study of the non-Markovian dynamics requires the
knowledge of the spectrum of Markovian eigenfrequencies. In addition, there
exist some questions on the Markovian regime of a spin j that remain
unexplored (e.g., the explicit general solution). This is the case for the linked

** Eq. (1.9) expresses the necessary and sufficient condition for the existence of a nonvanishing
weak-coupling collision operator ¢,(07).
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hierarchy of moment equations [17]. Therefore we devote section 2 to display-
ing those results of the Markovian dynamics. In section 3 we study the spectral
representation of the collision and resolvent operators. The non-Markovian
dynamics is focused upon in section 4 assuming a phonon reservoir and a
general linear interaction in a thermodynamic limit given by a Debye-like
density of phonon states. Finally, in section 5 we study in a high temperature
regime the time evolution of the collision operator and the analytic continua-
tion of its Laplace transform, which permits us to investigate various features
of the relaxation frequencies.

2. Markovian regime

From eqs. (1.3’) and (1.5) it is easy to extract the following Markovian
master equation:
b = WAL+ 1)j = (m+ 1)mlp,,., = [(j+ D)= (m = 1)m]p,,}
+ WAL +1)j = (m=1mlp,_, — [(j+ 1)j = (m+1)mlp,,}
m=j), (2.1)

"

(=Jj

where we have denoted W, = W._(07) (eq. (1.8)) while the p, s represent the
diagonal elements of the spin density matrix, i.e.,

F

= 2 palim)(im|. (2.2)

From egs. (2.1), (2.2) and (1.3") it is clear that the operator $(O+) is
represented by a (2j +1) % (2j +1) non-Hermitian matrix. The “upwards”
transition rate W, is responsible for the spin transitions toward the alignment
with the magnetic field whereas W_ is related to the opposite motion (“down-
wards” transition rate). It is easy to verify that the canonical distribution

o= (%) , 23)

with Z—"'" (W,/W_)", is a fixed point of eq. (2.1). The parameter

m=—j

W_ W will usually coincide with the Boltzmann factor (see section 4):

W_/W_ =exp(hB/kgT), (2.4)
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where k, is the Boltzmann constant, T is the temperature of the heat bath and
B is proportional to the magnetic field (eq. (1.2)). The general solution of eq.
(2.1) arises from the diagonalization of the matrix $D(O+) and its adjoint [18],
and this task seems to be rather involved. However, we shall see that it is easy
to extract the set of eigenfrequencies in the high temperature limit. Before
displaying these results, we want to focus upon the equations for the moments,

I
M,={JI) 0" = 2 m’p, . (2.5)

m=—j

A straightforward calculation leads from eq. (2.1) to the following linked
hierarchy in which the equation for each moment of order p involves the
moment of order p + 1 (cf. ref. [17]):

w1, = W_{ -1+ VM, +E oG+ (2)-(211)]

- % (P+ 1)Mp +pMp+1}

p—1

e +1°
s w i+ oM 3 G+ (2)- (211
~ 2 (p+ )M, —pM,..}. (2:6)
In particular, the first two equations read
M,=0  (My=1), (2.6a)

M, =j(j+ 1) (W, = W)~ (W, + WM, +(W_— W,)M,

=(1i7+—W_)((JQ)—MZ—coth(ﬁ—BBf)MI]. (2.6b)

Eq. (2.6a) obviously reflects the trace conservation of the density matrix. Eq.
(2.6b) was first reported in ref. [17] in a classical limit (k; 7 > #AB). In addition,
it was also shown that a suitable truncation of the hierarchy at eq. (2.6b) leads
to the well-known [19] linear Bloch equation.

It is interesting to make the comparison between hierarchy (2.6) and that of
the moments of the phonon distribution of a harmonic oscillator in Brownian
motion 8], which turns out to be unlinked, i.e., the equation for the p-moment
does not involve the moment of order p + 1. This property is verified by our
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hierarchy (2.6) in the high-temperature limit W =W =W (eq. (2.4)) when
(2.6) becomes

M, = WL+ 171G+ D,

5 {(pé[’lqlep-ek [f(f"' 1) (.P —p2k) B (p fp;'{lf 1 )J
- plp+ l)Mp}- e

This system of differential equations is of the form
M-WM , (2.8)

where M represents a vector of components M, and W symbolizes an infinite
triangular matrix which, as is well known, displays its eigenvalues in the
diagonal; hence, the spectrum of eigenfrequencies of the general hierarchy
(2.7) must be

—p(p+1)W, p=0,1,2,... (2.9)

This spectrum corresponds to all possible values of j and therefore the
eigenfrequencies of a given spin j must be included in the set (2.9), In order to
determine the latter spectrum, it suffices to diagonalize the matrices of the
collision operator for the first values of j (see the appendix); thus we can find
the general rule: The Markovian eigenfrequencies of a spin j in the high
temperature limit are

—plp+1)W, =05 Lo w2 (2.10)

The vanishing frequency (p =0) corresponds to the equilibrium distribution
2.3) which turns out to be scalar, i.e., the high-temperature—weak-field limit
kyT > 1B leads to isotropy as expected.

It is interesting to notice that in the classical limit j > 1, the spectrum (2.10)
is isomorphic to the spectrum of eigenfrequencies of a rigid rotor performing
Brownian motion in the high-friction limit, since the time evolution of its
coordinate distribution function is governed by the spherical diffusion equation
[20.21]. A similar analogy between the quantum Markovian regime and the
classical high-friction limit has also been observed for a harmonic oscillator

["r'\
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3. Spectral representation of the collision and resolvent operators

The full diagonalization of the non-self-adjoint operator (;E(,(OJ') for arbitrary
values of the transition rates W.(0") provides a useful spectral representation
for the collision operator (b(,(s) In fact, as we have discussed in section 1, &,(s)
is simply related to dru((} ) by means of the replacement W. (07— W._(5).
Then, the diagonalization of ¢,(0") leads to the following spectral decomposi-
tion™ (cf. ref. [6]):

$o(s) = 2 ()| U, )}V, )] . (3.1)

in terms of a complete biorthogonal set of right {|U,(s))} and left {{V.(s)|}
eigenvectors with eigenvalues u, (s), i.e.,

Go(|U(5)) = 1, (5)|U,(s5))
B (3.2)
(V)| do(s) = (V.(9)| w1, (5)

and

(V,0)IU,(s)) =8, ,

(3.3)
S UV =1.

The expansion (3.1) is simply found (see the appendix) for j=1/2 and j=1;
however, in a general case it is not easily available since the extraction of the
eigenvalues cannot be analytically performed. There is an exception to this rule
that we have discussed in section 2: if Ifﬁ (s) =W (s) = W(s) then

(g, ()= p(p+1)W(s), p=0,1,...,2j. (3.4)

Expression (3.1) immediately yields the spectral representation of the resolv-
ent [¢(s) +s] ' of eq. (1.6),

[by(s) + 5]~ E [1,(s) + 5] " |U())(V,(s)] . (3.5)

Then the set of relaxation frequencies of the non-Markovian dynamics arise
from the solutions of the *‘dispersion relations™ [6]

** This kind of spectral representation was fully extracted for a Brownian harmonic oscillator in

ref. [8].
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s=—pu(s); (3.6)

in particular, there must be a solution in s = 0 which, of course, corresponds to
the equilibrium distribution.

The Markovian limit corresponds to a weak dependence of u (s) on s, i.e.,
i,(s)= u (07) and thus (cf. section 2)

su=—1,(0"). (3.7)

Notice that the nonvanishing solutions of (3.6) are expected to belong to the
region of analytic continuation of qg(,(s), Re(s) < 0. Let us finally mention that
the above solutions need not be the only singularities of the resolvent
[b,(s) + 5] " (see section 5).

4. Explicit expressions for the instantaneous transition rates

Hitherto we have not specified the form of the ITRs W_(7) (eq. (1.5)); in
order to analyze their properties we shall consider a particular model for the
heat bath and the interaction. Then let us suppose a usual phonon heat bath,
i.e. (obvious notation),

Hy=2 ho,a'a, (4.1)
which is coupled to the spin through the Hamiltonian

How = 2 [(Agay +Aza)], + (A *a, + A7 *a})] ]. (4.2)
The selected interaction is most general since it includes as particular cases:
a) a rotating-wave approximation for A, =0 (cf. refs. [7, 23, 24]):
b) the proper full coupling for A, = A (refs. [7, 12]).
Then inserting in eq. (1.4) the Hamiltonians (4.1), (4.2) and (1.2) as well as
the canonical distribution, pg =exp(—Hy/k,T)/Trlexp(—Hg/k,T)], a
straightforward although lengthy calculation leads to the form (1.5) with

W.(1) =22 (A7 "5, cos[(B = w,)r] + [A]’(A, + 1) cos|(B = w,)7])

+
aujt finf:

(4.3)
where
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n, = [exp(hw, lkyT)—1]7" (4.4)

is the Bose distribution for the number of phonons in mode a.

Each term of the upwards W, (7) and the downwards W_(7) ITRs may be
identificd with a corresponding collision vertex of the interaction Hamiltonian,
as we indicate below expression (4.3). Note also that the field inversion
B — — B should cause the inversion of the I'TRs, i.e., W, — W_ and this is only
achieved for the full coupling A, = A, .

The Laplace transtorm of (4.3) is easily obtained yielding

W.(=23 (A A,

) P s
L R +1 1—'—-.)
s+ (B*rw,) Al )S‘+(B$wn)'

(4.5)

Observing eq. (4.3), we easily realize that in its present form the ITRs are
quasiperiodic time functions that will not show any decay for 7—, This
behavior is reflecting an infinite lifetime of correlations which excludes an
irreversible time evolution. Such a conclusion arises as well from the irrever-
sibility criterion (1.9). In fact, in the limit s— 07, eq. (4.5) becomes

.0 =25 2 S (7, +{ o }) 58 0, +6)

where we have considered B >0 and w, > 0. Then, the existence of resonant
modes w, = B or their nonexistence both lead to the same conclusion: condi-
tion (1.9) is not fulfilled. In section 1 we have remarked that a necessary
condition for irreversibility is the existence of a continuous energy spectrum for
the reservoir. In fact, let us suppose a thermodynamic limit in which

o

Z\,\jf—mﬁtj 0 dw . 4.7

0

Such a limit could arise from a Debye-like density of phonon states,
“D
W) ) f R (4.8)
“ 0

and from an interaction of the form

AZ)P—A%e?. (4.9)
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Then inserting (4.7) in (4.6), we find

W.(0")=2aDA° j dww**z(ﬁ(ww{é})aw—w}. (4.10)
where
n(w) = [exp(fiw/k,T)—1] . (4.11)

First of all we realize that eq. (4.10) vanishes if B > w,; thus the parameter B
(= magnetic field) must be lower than the “‘Debye frequency” wy, in order to
fulfill the dissipativity condition (1.9). In addition, if we admit that a vanishing
magnetic field cannot affect the dissipativity, the parameter y must be —1. In
fact, assuming AB < kT, eq. (4.10) becomes

A 2m

W0 ) =25 DAL Bk, T=

2m

ﬁ DA’ k,TB""' . (4.12)

Therefore it must be y=—1 in order to preserve (1.9) even if the field is
turned off. From eq. (4.12) we can also see that in a high-temperature—weak-
field limit, we have W, (0%) = ﬁ/_({)* ). The general case arises from eq. (4.10)
taking y = —1,

ﬁBka“T})/[exp(ﬁBkaT) -1], (4.13)

W_(0")=2nDA’B cxp({
and the above expression leads to the usual Boltzmann factor (2.4) for the
equilibrium distribution (2.3).

It is interesting to remark that only resonant phonons with @ = B contribute
to the functions W, (s) of the s =0" steady state [eq. (4.10)]. This fact can be
regarded as a consequence of the time—energy uncertainty principle. That is, in
a steady state (Ar— =) only processes which conserve energy (AE =10) are
possible. The same is valid in the Markovian regime (section 2) whose
asymptotic dynamics is “seen as a steady state” by the correlation dynamics.

Now let us write the ITRs (4.3) in the thermodynamic limit (4.7) taking
y=-1,

W_(r)=2DA% J- dw wn(w) cos[(B = w)7]

+2DA2 f dw w[n(w)+ 1] cos[(B F w)7] . (4.14)
1]
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In the following section we shall study the above functions in a high
temperature limit.
5. High temperature regime (hw, < k,T)

In this limit we can replace in eq. (4.14) the phonon number n(w) by

kyT/hw>1; thus

s

2D
W) === A’_kBTf dw cos[(B + w)7]
0

up
+ % AR T J dw cos[(B — w)7]
1]

2 L.
=2DA"k,T e {sin[(ew, + B)7] —sin(B7))}
1
+2DA’ Kk, T r {sin[(w, — B)7] + sin(Br)} . (5.1)
and therefore the corresponding Laplace transform reads
= = 2D ., 5 -1 -1
W(s) = W.(5) = 5= A2k T{1g " [(0p + B)/s] 18 (B/5))
2D ) -1 -1
+ 5= ALk T{tg” [(0p — B)/s] +1g™ (Bls)} . (3.2)

h

Firstly notice that

A o 2nD 5
0<B<a,> W0 )= 7 ALkyT (5.3a)
- 4 1TD B )
B=0=W(0')= == ks T(A3 +42). (5.3b)

The above expressions show once more that the proper interaction must be the
full coupling (FC) A% = A> (for which (5.3) equals (4.12)) and also that the
approximations A° # A? are expected to fail for low magnetic fields [12]. Later
in this section we shall analyze the validity of the usually assumed rotating-
wave approximation (RWA) A” =0 (cf. refs. [7,23, 24]).

Then the proper ITRs are

W. (1) = % AikBT{sin[(mD + B)7] +sin[(w, — B)7]} (5.1")
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and the Laplace transform reads
= 2D , -1 -1 '
W(s) = 3 A kyT{tg [(w,+ B)/s]+tg [(wp,— B)/s]}. (5.2")

From expression (5.1") we can appreciate that the ITRs have lost indeed their
quasiperiodicity in the continuum limit, and they became decaying time
functions with characteristic decay times given by (wp, = B) . If these times
are microscopic compared to the relaxation times, the Markovian approxima-
tion is valid. In other words, the usual Markovian approximation W, (1) = 8(7)
is formally obtained by considering

lim % sinf(wp, * B)7] = % 8(7) (5.4)

wpE B>+
and thus

W (1) = % A2k T8(r) . (5.5)
Observe that the Laplace transform of (5.5) is a constant, i.e., ﬁ/(s) = W(OJr)
(cf. discussion regarding eq. (3.7)).

Comparing egs. (5.1) and (5.1') we see that a non-FC interaction introduces
the spurious decay time B~ '. Thus, an approximated coupling (e.g., RWA)
combined with the Markov assumption and a low magnetic field will yield poor
results since now the formal Markovian limit (cf. eq. (5.4)) arises for w, +
B— +w and B— += (cf. refs. [12, 24]).

The time evolution of the ITRs constitutes an interesting feature of the
dynamics since it displays the corresponding evolution of the weak-coupling
collision operator ¢,(7). Recall that such a motion is thoroughly hidden in the
Markovian approximation since ¢(7) = 8(7). In fig. 1 we have depicted the time
evolution of the ITRs W_(r) for three values of the relation B/w,. The
comparison between the FC (A” = A°) and the RWA (A® =0) ITRs shows
that the latter follow as an envelope the more rapid oscillations of the former.
The frequency of such oscillations appears to be an increasing function of the
parameter B/wy, i.e., of the magnetic field,

Now we shall focus upon the Laplace transformed ITRs (5.27). Firstly,
taking into account that tg '(z)=(2i) " log[(i— z)/(i + z)], we realize that
(5.2') possesses four branch points on the imaginary axis, namely

+i(w, + B), *i(w, — B) . (5.6)

That is, we find that the time decay of the collision operator ¢,(r) arises from
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W,(T)

B/w, = 005

Fig. 1. The time evolution of the ITRs W_(r) (in units of 2DA% k, Tw,/fi) is displayed for three
values of B/w, (see text for further explanation).

the singularities of its Laplace transform but such singularities are branch
points rather than poles. The question of the analytic continuation of ¢(s)
then reduces to the selection of the orientation of each cut issuing from the
corresponding branch point. In analyzing this matter, we shall firstly focus
upon the simplest case of a vanishing magnetic field B=0. In such a case,
(5.2") reduces to

W(s) = % A kT tg (wpls) . (5.7)
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The analytic continuation of tg~'(w,/s) for Re(s) <0 must be explored taking
into account the values of this function on the frontier Re(s) = 0", Firstly, from

o1 (i——wDst) -
2 \TF wp/s \:8)

11— wyls

_ 1
l —r—
g ) =5 loglr o T
we realize that the multivaluedness comes through the real part. In fig, 2 we
have drawn a “map” of Re[tg '(wp/s)]; along the real positive axis it reduces
to the well-known real function tg ™', i.e.,

0<s< +00;‘>'rr!2>tg_'(mofs)>0 (5.9)

and the values on the imaginary axis follows easily from (5.8). It is then
obvious that there are two straightforward procedures of analytic continuation
toward the left half-plane:

1) Drawing a cut between —iwy, and +iw, which implies that the values
adjacent to +«/2 in fig. 2 shall be —=/2.

2) Drawing two cuts i.e., from *iw, to *ie implying continuity for the
values +m/2 in fig. 2 across the imaginary axis between —iwy, and +iwg.

In discussing the selection of the proper cut, it is convenient to analyze the
singularities of the collision operator gn(s) in the limiting process leading to the
thermodynamic limit. In fact, from eq. (4.5) we can see that if the reservoir has
a discrete spectrum, the singularities of ag(s) are imaginary first order poles
given by the phonon frequencies +iw, (for B =0). In passing to the continuum
limit, such a dense sequence of poles formally becomes a cut. We thus realize

+lwp T/ G
e
w2
/2 19 (wy/S)
T2

w2

/2
SR B2
0
0

Fig. 2. The function Reftg '(wy/s)] in the half plane Re(s) >0 is displayed through its values on
the real and imaginary axis.
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that the existence of the branch points *iwp is a direct consequence of the
assumed sharp cutoff of the Debye-like density (4.8) and hence, if we were
considering a soft cutoff with a phonon density vanishing smoothly as w— 2,
the whole imaginary axis would become a cut through which the analytic
continuation should be performed. This analysis shows in general that the
proper analytic continuation must include the origin. In our case, this fact
arises as well, noticing that

Re(s) > 0=>0 < Re[tg '(wp/s)] <m/2, (5.10a)
(1) —w/2<Reftg (wp/s)] <0, (5.10b)
Re(s)<0=>qor
(2) w/i2<Reltg™(wy/s)]<m, (5.10¢)

and hence the dispersion relations (cf. egs. (3.4) and (3.6))
s=—p(p+1W(s), p=0,1,...,2, (5.11)

can only give solutions for (5.10c). In other words, the procedure 2) of analytic
continuation is the correct one that should yield the relaxation frequencies
through (5.11)*",

The above analysis applies immediately to the general case of a nonvanishing
magnetic field. In fact, the cuts then must be drawn issuing from each branch
point and directed to =i, but without affecting the origin s = 0. Then from eq.
(5.27) it is casy to see that the analytic continuation along the real axis follows
from an odd-parity rule:

W(—s)=2W(0*)-W(s), s=0. (5.12)

This formula deserves several remarks: first of all, it expresses the correspond-
ing analytic continuation for the weak-coupling collision operator 50(5). In this
respect, it can be shown that the same odd-parity rule is valid as well for a very
different configuration of quantal Brownian motion, namely, the relaxation
process of a harmonic oscillator linearly coupled to a highly degenerate Fermi
gas (this conclusion arises easily from eq. (3.10) of ref. [26]). Secondly, we
stress that our calculation of analytic continuations was made possible by
means of a knowledge of the corresponding analytic expressions in the right
half plane; however, it is easy to see that such kind of expressions are not
readily available in a general case of arbitrary temperature. Nevertheless, we
remark that such a general case will be treated in a separate paper [27] since it
can be shown that the theory of Cauchy integrals [28] provides a mathematical
background suitable for studying expressions like (4.5) in a continuum limit.

“‘ However we must remark that the existence of branch points should give rise to a
nonexponential decay for — = (cf. eq. (5.1)).
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The relaxation frequencies can be obtained as the roots of (5.11) with W(s)
given by (5.2"). Then the general conditions for the existence of Markovian
solutions are (cf. the discussion regarding eq. (5.5))

sw=—p(p + DWisy) = —p(p + HW(O"), (5.13a)
. -~ 2nD 2

[l = p(p + WO )=p(p+l}TkBTx\+4zwDiB. (5.13b)
Roughly speaking, the condition is a sufficiently weak coupling compared to
the Debye frequency. However, such a weak coupling condition is much more
restrictive than the one required by the Born approximation [11, 13, 25]. This
can be easily understood by calculating the unperturbed and the interaction
mean square energies. In fact, for fwy < k, T the former reads

(HR) = D*(ky TY w0}y > (Hg) = 5°B7j* | (5.14)
while the latter reads

(Hi) =2 (1AJ"(asa,) + A7 [ (a.al))(T. T )

+ 2 (10, (aba) + A (aua )T T,) (5.15)

and in the continuum limit

(Hig) = DhA’ kT, j” . (5.16)
Then the Bornian weak coupling requires

(HR) + (H3) > (Hig) » (5.17)
which is equivalent to

iALs?

— <1 5.18
DkyTw} (5.18)

This relation must be compared to the Markovian weak coupling (5.13b),
which we may write as

AL j’Dk,T

By, —B) (5.19)
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B/cn;,:l 0.5

B/w,=0.9

S/w,
2

Fig. 3. Graphic solution of eq. (5.11). The function ﬁ"(s) (eq. (5.2)) is plotted for different values
of the relation Blaw,,.

-5 0 5

Fig. 4. The RWA and the FC are compared through their respective functions "9;;"(3) (eq. (5.2)) for
three values of Blwy.
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Therefore, it becomes evident that (5.19) requires a much more weak inter-
action than (5.18). The Markovian relaxation frequencies are proportional to
temperature and coupling strength (A’ ) as can be seen through eq. (5.13b).

If (5.19) is not fulfilled, the relaxation process is non-Markovian and its real
frequencies can be graphically extracted through the intersections of the curve
W(s) (eq. (5.2")) and the straight lines —s/p(p + 1) (eq. (5.11)). In fig. 3 we
digplay this graphical method; thus the non-Markovian relaxation frequencies
conserve the Markovian feature of being increasing functions of temperature,
coupling strength and eigenvalue [ p(p + 1)]. However, the memory gives rise
to a new effect: the frequencies increase with the parameter B/wy. In other
words, the non-Markovian relaxation process is faster for a stronger magnetic
field. We believe that this effect is closely related to the more rapid oscillations
of the ITRs observed in fig. 1 for a higher B/w,. This fact is reflecting an
interesting feature of the non-Markovian regime: the interplay between the
correlation and the relaxation dynamics.

Let us finally test the validity of the RWA. In fig. 4 we have plotted W(s)
(eq. (5.2)) in the RWA (A2 =0) and also for the proper FC (A* = A%).
Focusing upon the weak non-Markovian region |s| < w,, we can appreciate
that the RWA is very acceptable for strong magnetic fields (B/w, =0.9) and
becomes poor for low ones (B/wy =0.05) as expected (cf. the discussion below

eq. (5.5)).
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Appendix
Diagonalization of the collision matrix for j=1%, 1, 3
a) j=31
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then the eigenvalues are 0, ﬁﬁ_ + W_. The respective eigenvectors (unnormal-

ized) are
(). ()

and those of [¢,(0")]" are
(). (=)

where B = W_/W,. Notice that 8 =1 corresponds to the high temperature
limit (eq. (2.4)).

b) j=1
} W,  -W_ 0
¢r1(0+):2 -W. (W,_t 0 _E’V.
0 -W W

Ea
Ez
|
=
|SI
3
+
|EI
+
%
g
=
3
P

Eigenvalues: 0, 2(
tive eigenvectors

B’ VB VB
dl (1_@), ()
1 -1 1

and for the adjoint matrix

1 1 1
(1), (\/E—ﬁ), (*\/ﬁ-ﬁ).
1 -BVB BVB

¢) j=3
W,  -3W 0 0
G0ty=| W BW_aW, W0
A —4W, AW +3W, -3W
0 -3W,  3W.

General expressions are not readily available for this case; however in the
high-temperature limit (W W_ W) it is easy to obtain eigenvalues 0, 2W,
6W, 12W, with respective eigenvectors
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1 3 1 -1
1 1 =] 3
14 -1 7 =1 =3
1 =3 1 1
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