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Abstract
We propose a scenario for studying vortices confined by nonrotating traps. For this purpose we
model a polynomial trapping potential that can sustain locally stable off-axis vortices. We also
describe a simple numerical method for generating vortices without relying on rotating frames
or centrifugal potential techniques. This method offers other advantages related to the control
in the number of vortices to be generated and in their location. Finally, we compute the vortex
energy as a function of its position using three approaches and discuss their validity. We show
that a well-defined energy barrier between the vortex and the ground state is obtained.

1. Introduction

Quantized vortices arise as striking topological defects
yielding one of the most important signatures of superfluidity
[1]. In the last decade, in trapped Bose–Einstein condensates
(BECs), an enormous amount of work, both theoretical and
experimental, has been devoted to studying the structure,
stability and dynamics of vortices (for a review of these issues,
see, for example [2–4]).

Since vortices in BECs were first experimentally produced
by Matthews et al [5], many techniques were developed for
their generation. Among the most ingenious ones, we can
quote that vortex rings have been obtained as a result of the
decay of solitons [6]. Vortex lines have been generated from
the application of topological phase imprinting methods [7].
And finally, a large variety of configurations, from single
vortex to vortex lattices, are being generated using rotating
traps [8–10]. In connection to vortex instabilities, the decay of
a doubly quantized vortex into two singly quantized vortices
has been observed [11]. In recent experiments, alternative
trapping potentials, quadratic plus quartic polynomial, have
been constructed in order to obtain vortex lattices in fast
rotating condensates [9, 10]. The quartic term in the potential
has been introduced to stabilize the system when the angular
velocity exceeds the radial angular frequency of the quadratic
term [12, 13].

From a theoretical point of view the numerical generation
of stationary vortices has not been an easy task. In rotating

condensates, energetically stable vortices have been obtained
by minimizing their energy as described in the rotating frame
(see [2–4] and references therein). This method usually
requires a large number of iterations because the vortices are
dragged from the border of the condensate making difficult
to control the number and location of the vortices to be
generated. On the other hand, in nonrotating condensates,
structural and dynamically stable, yet energetically unstable
vortices, have been created by several techniques [14–16].
These vortices cannot be found with the usual methods based
on energy minimization and thus, for example in [16] the
solutions were obtained by minimizing a specially constructed
error functional. The standard nonrotating Bose–Einstein
condensate has a parabolic profile, which is obtained with
an harmonic oscillator confinement. A characteristic of the
parabolic profile is that in the presence of dissipation an off-
axis vortex spirals away from the condensate. As far as we
know, the problem of finding a family of nonrotating lowest-
order polynomial trapping potential that can sustain metastable
off-axis vortices within a BEC has not been addressed. Note
that only local stability may be achieved because the ground
state has a lower energy. Depending on the form of the energy
barrier between the vortex and the ground state a persistent
current may survive even in the presence of a thermal cloud
and therefore we believe this problem may be interesting from
a fundamental perspective. Hereafter, when we refer to stable
vortices we mean locally stable ones.
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Finally, we want to mention that exploratory and
stimulating analytical work has been devoted to the study
of the dynamics of vortices in spatially inhomogeneous two-
dimensional superfluids [17–22]. We believe it would be
interesting to extend these studies and perform numerical
calculations with more general types of density profiles than
the parabolic one.

Therefore, in this work we present a fourth-order
polynomial trapping potential that can sustain off-axis vortices,
and describe a simple numerical phase imprinting (NPI)
method for obtaining such states. With this trap the system
exhibits a vortex energy barrier near the border of the
condensate. As the stability of the vortex in presence of
dissipative processes is related to the shape of this energy
barrier, we find convenient to compute it using different
approaches. Also it is important for describing, for example,
quantum tunnelling processes.

The work is organized as follows. In section 2 we
describe the system and the proposed trapping potential.
In section 3, we explain the NPI method for numerically
producing vortices in the absence of rotating frames. In
section 4, we introduce an approximate expression with a
single-fitting parameter for the vortex energy, and in section 5
we present numerical calculations of the vortex energy
employing different approaches. Finally, the summary and
concluding remarks are offered in section 6.

2. The trapping potential

We consider a Bose–Einstein condensate of atoms confined
by an external trap Vtrap. The Gross–Pitaevskii (GP) energy
density functional for the system at zero temperature has the
standard form

E[ψ] =
∫ (

h̄2

2m
|∇ψ |2 + Vtrap|ψ |2 +

1

2
g|ψ |4

)
d3r, (1)

where ψ is the condensate wave function and m is the atom
mass. The coupling constant g is written in terms of the s-wave
scattering length a as g = 4πah̄2/m.

Variation of E with respect to ψ keeping the number of
particles, N , fixed yields the GP equation(

−h̄2∇2

2m
+ Vtrap + g|ψ |2

)
ψ = µψ, (2)

where µ is the chemical potential.
We mathematically model a polynomial trapping

potential, which written in cylindrical coordinates reads

Vtrap(r, z) = 1

2
m

[
ω2

r

r2(r − r1)(r − r2)

r1r2
+ ω2

zz
2

]
, (3)

where ωr and ωz are the radial and axial angular frequencies,
respectively. As a function of r this trapping potential has two
zeroes at r1 and r2, a local maximum at R− < r1 and two
local minima at r = 0 and R+ with r1 < R+ < r2. The local
extrema at R∓ are given by

R∓ = 3(r1 + r2) ∓
√

9(r1 − r2)2 + 4r1r2

8
. (4)

Figure 1. Trapping potential Vtrap (in units of h̄ωr ) as a function of r

at z = 0 (in units of aho = √
h̄/(mωr)).

Figure 2. Ground-state density profile ρ for y = 0 and z = 0 as a
function of x for (r1, r2) = (10, 18).

The minimum of the potential at R+ gives rise to a maximum
in the ground-state density that, as we shall see, generates
a vortex-energy barrier, which prevents the vortex to spiral
away from the condensate. On the other hand, the local
potential maximum generates a local minimum in the density
of particles, which in turn should yield a local minimum of the
vortex energy.

In figure 1, we show the trapping potential for (r1, r2) =
(10, 18), in units of aho = √

h̄/(mωr). Hereafter we shall
always use aho as the unit of length. For this set of parameters
the extrema are located at R− = 6 and R+ = 15.

We consider a system formed by N = 106 atoms of
87Rb whose scattering length is a = 98.98a0, where a0 is
the Bohr radius. We have chosen ωr/(2π) = 100 Hz and
ωz/(2π) = 520 Hz, in order to obtain a pancake-shaped
condensate. In figure 2, we show the ground-state density
ρ = |ψ0|2 as a function of x at y = 0 and z = 0, which was
obtained by solving the GP equation.
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Figure 3. Three-dimensional views of the condensate containing different vortex states. In the left and right panels we depict surfaces of
constant density ρa3

ho � 150 and 3, respectively. Left: a vortex with a bent vorticity line that crosses the z = 0 plane through the point
(14, 0, 0). Right: the stable straight vorticity line that crosses the z = 0 plane at the point (6, 0, 0).

The number of particles is large enough to assume that the
condensate in the (x, y) plane is in the Thomas–Fermi (TF)
regime. In this situation, one can obtain the density of the
ground state using (2) neglecting the kinetic term as

|ψ0(r, 0)|2 = 1

g
[µ − Vtrap(r, 0)]�[µ − Vtrap], (5)

where � is the Heaviside function. It may be observed that the
shape of the density profile depicted in figure 2 corresponds to
the inverted potential as predicted by the TF approximation.

Depending on the values of r1 and r2, one can model
different shapes of densities, and thereby change the position
of the critical points, R− and R+, and the height of the vortex
energy barrier. We want to mention that, in a recent work,
Cozzini et al [23] have considered an harmonic-plus-quartic
trapping potential that also exhibits local extremes with the
relative maximum located at R− = 0.

3. The numerical phase imprinting method

In this section, we describe a numerical method to generate a
stationary vortex state that is a local minimum of the energy
functional. The method consists in the choice of an initial
guess for the wavefunction and the subsequent minimization
of the energy (1). Due to their simplicity we have adopted two
standard methods that directly minimize the energy, namely,
an evolution of the wavefunction in imaginary time [24] and
a conjugate gradient technique [25]. For the singly quantized
vortex we have found that both methods work satisfactorily and
produce the same results; however, as the conjugate gradient
method usually requires less time to converge to a desired
accuracy we present the results obtained with that method
only.

As the starting point of the minimization, we choose
a smooth real function ψ0(r), preferably the ground-state
wavefunction, and construct the initial state as

ψ ′(r) = (x − xk) + i(y − yk)√
(x − xk)2 + (y − yk)2

ψ0(r), (6)

with
√

x2
k + y2

k < R+. Note that this state can be written
as ψ ′ = eiϕkψ0, where ϕk is the azimuthal angle around the
axis (xk, yk, z), and hence, the operation we have performed
on ψ0(r) represents a phase imprint to the original state.
Therefore, while the density profiles of ψ0 and ψ ′ are the same,
the state ψ ′ has an imprinted velocity field v = (h̄/m)∇ϕk .
This field is irrotational everywhere except at the vorticity line
(xk, yk, z). In general the vorticity line is defined as the set of
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Figure 4. Density profiles of the ground state (solid line) and the
stable vortex (dashed line) at y = 0 and z = 0.

points where

ω(r) = ∇ × v(r) (7)

is nonzero. The important feature of this method is that the
process of minimization may bend and move this curve, but
does not destroy it. More general distributions of vorticity lines
can be generated with an extended version of this method, but
in this paper we restrict ourselves to the generation of a singly
quantized vortex.

Using ψ ′ as the initial guess of the minimization, the
program in a few iterations generates a density hole around
the vorticity line, maintaining the original circulation.

In figure 3, we show surfaces of constant density for two
vortex states which were obtained using this method. In the
calculations of this particular figure, we have changed the ωz

frequency to ωz = ωr , in order to better illustrate the shape of
the vortices. In the left panel, we show a vortex which was
obtained after a few iterations from a vorticity line generated
near (14, 0, z). It may be seen that the method allows the
vortex to bend in order to minimize the energy.

As the minimization proceeds, the vortex moves towards
an energy minimum and the state finally converges to the
stable vortex, whose vorticity line is at (6, 0, z). This final
configuration is displayed in the right panel of figure 3.

In figure 4, we show the density profile of the stable
vortex compared to that of the ground state. It may be seen
that the vortex is located around the minimum of the ground-
state density. Note that this method provides a vortex density
shaped as if having used an effective centrifugal potential, that
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is, for instance, it vanishes at the core and its size is of the
order of the healing length.

Note that the method of minimization we have adopted is
subject to the constraint of wavefunction normalization only.
In nonrotating condensates, a variety of numerical techniques,
specially in two-dimensional systems, have been applied to
find distinct types of stationary vortices obtained from the GP
functional with different constraints (see, e.g., [14–16, 26]).
A single vortex may also be obtained by using the standard
centrifugal potential (CP) term in the energy [24]. This method
has a rapid convergence but the position of the stable vortex
has to be specified in advance. An additional drawback of this
method is that, in three-dimensional systems the vortex line
cannot bend.

4. Parametrization of the vortex kinetic energy

In this section, we shall derive an approximate analytical
expression for the kinetic energy EK

v of a vortex shifted a
distance r0 from the z-axis.

As we have restricted our analysis to nearly pancake-
shaped condensates, we can assume that the vortex is not bent.
In other words we shall consider a straight vortex, parallel to
the z-axis, and thus its velocity field does not depend on the
z-coordinate.

The kinetic energy due to the vortex velocity field is

EK
v = 1

2
m

∫ ∫ ∫
dx dy dz ρv(r)v2

r0
(x, y), (8)

where ρv(r) is the density of the condensate with a vortex.
In the limit of large N we may assume that the shape of ρv

is almost the same as the ground state, except for the presence
of the core. In addition we consider that the most important
contribution to the integral in (8) should stem from a narrow
region around the core, still large compared to the healing
length, and that the ground-state density varies smoothly in
this region. Defining r⊥ as the radial coordinate measured
from the vortex position r0, the energy may be written as

EK
v = 1

2
m

∫ ∫
dr2

⊥ dz ρ0(r0, z)fr0(r⊥, z)v2(r⊥). (9)

Note that at r⊥ = 0 the velocity diverges as v(r⊥) = h̄/(mr⊥).
In (9) we have introduced the form factor fr0(r⊥, z) =
ρv(r⊥, z)/ρ0(r0, z) for describing the shape of the core. As we
are considering a pancake-shaped condensate, we can evaluate
the integral at z = 0. Then the energy reduces to

EK
v = 1

2
m�ρ0(r0, 0)

∫
dr2

⊥ fr0(r⊥, 0)v2(r⊥), (10)

where � is the width of the condensate in the z-direction.
Finally, we shall assume that the structure of the vortex
core does not change appreciably along the condensate i.e.,
fr0(r⊥, 0) = f (r⊥, 0). In conclusion, under all the above
assumptions we may approximate

EK
v ∼ ρ0(r0, 0)F. (11)

This formula is similar to, e.g, equation (51) of [18]
derived for a strictly 2D system, with the difference that in
that work the factor F takes an analytical form as a result of
additional assumptions made on the condensate profile. In this
work we will use the factor F as a single-fitting parameter for
reasons that will become clear in the following section.

×

Figure 5. Vortex energy Ev as a function of the position of the core
at the plane z = 0. The squares (circles) indicate NPI (CP)
calculations and the curve obtained from expression (11), with a
factor F = 30, is depicted with a solid line.

5. Vortex energy: numerical calculations

We have computed the energy of a state with a single off-axis
vortex Es

v , using the formula (1) by means of both the CP and
the NPI methods. In each case we have employed the conjugate
gradient technique with a spatial grid of 256×256×128 points
in the x, y, z directions, respectively. The minimizations were
performed until a precision of 10−8 in the chemical potentials
was achieved. In figure 5, we show the vortex energy defined
as Ev = Es

v − E0, where E0 is the ground-state energy.
The points along the NPI curve were obtained from three

different runs starting from imprinted vorticities next to r = 0,
and on the left and right of R+. Once the vortex core was
generated, we evaluated the energy as a function of its position
in the plane z = 0. Note that the run that starts on the right-
hand side of the top of the energy barrier, i.e. on the right of
R+, moves towards outside the condensate. When the vortex
is outside the condensate, its energy vanishes and the state
coincides with the ground state.

The CP curve has been obtained by specializing the
GP energy functional with a straight singly quantized vortex
state fixed at (x0, y0, z), i.e., by setting the full complex
wavefunction to ψ = eiϕ0f (r⊥) and minimizing the energy
respect to the real function f (r⊥), as described in [24]. The
phase factor gives rise to the effective centrifugal potential

VC(r) = h̄2

2m
((x − x0)

2 + (y − y0)
2)−1 (12)

in the simplified GP equation for f (r⊥).
We have also plotted the curve obtained from expression

(11) with the factor F = 30 fitted to the energy minimum at
r0 = 6. Note that in the present numerical calculation there
exist other, not fully negligible, contributions to the energy
Ev besides EK

v . Nevertheless the curve is well reproduced by
estimate (11) using an appropriate value of F.
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Near the maximum R+ the NPI method provides a lower
energy than the other approaches due to the possibility this
method offers in bending vortices.

6. Summary and concluding remarks

We have introduced a static fourth-order polynomial trapping
potential that can sustain locally stable off-axis vortices. We
have also developed a numerical method for the generation
of vortices without resorting to the addition of a centrifugal
potential or the application of a rotating frame. On the other
hand, we have computed the vortex energy as a function of
its position using both the CP and the NPI methods, and find
that a well-defined energy barrier is obtained. We have also
shown that this energy Ev can be approximated by a single-
fitting parameter times the ground-state density. This fitting
parameter has been adjusted to the local energy minimum.
Note that the profile of the barrier constitutes an essential
ingredient when studying mechanisms of decay of metastable
states. Therefore, it is important to have efficient methods for
its computation.

The scenario we have introduced may be useful, e.g., for
numerically studying the dynamics of vortices in a spatially
inhomogeneous superfluid [17–22]. In presence of many
vortices, the dynamics of a particular vortex is dominated
by the velocity fields of the others, while in their absence
its velocity is proportional to the gradient of the ground-state
density. With this trapping potential, a single vortex may
precess in two different directions depending on which side
of the stationary positions it is located. Finally, this trapping
potential may also be suitable for sustaining arrays of stable
vortices, as for example, a ring of vortices with an arbitrary
radius which can be modelled by changing the parameters r1

and r2.
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