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Rep. Prog. Phys., Vol. 41, 1978. Printed in Great Britain 

Non-linear properties of thermal convection 

F H BUSSE 
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 
California 90024, USA 

Abstract 

Thermal convection in a layer heated from below is an exemplary case for the study 
of non-linear fluid dynamics and the transition to turbulence. In  this review an 
outline is given of the present knowledge of the simplest realisation of convection in a 
layer of fluid satisfying the Oberbeck-Boussinesq approximation. Non-linear 
properties such as the dependence of the heat transport on Rayleigh and Prandtl 
numbers and the stability properties of convection rolls are emphasised in the dis- 
cussion. Whenever possible, theoretical results are compared with experimental 
observations. A section on convection in rotating systems has been included, but the 
influence of other additional physical effects such as magnetic fields, side wall 
geometry, etc, has not been considered. 

This review was received in May 1978. 
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1. Introduction 

Thermal convection occurs in so many forms in nature and over such a wide range 
of scales that it could be claimed with some justification that convection represents 
the most common fluid flow in the Universe. Convection accomplishes the heat 
transport in stars wherever the radiative transfer is not efficient enough. It warms the 
Earth's atmosphere by the upward transfer of heat absorbed at the ground. Convec- 
tive motions are responsible for much of the mixing of water masses occurring in the 
oceans, and it is widely believed that thermal convection is the basic cause of most 
tectonic processes in the Earth's crust, including the phenomenon of continental 
drift. It is also likely that the geomagnetic field is produced by the dynamo action of 
convection flow in the liquid core of the Earth. Part of the fascination of the subject 
of convection stems from the fact that the motions in an evaporating puddle of water 
are described by essentially the same equations as the huge turbulent eddies visible 
on the surface of the Sun. 

But convection is not confined to the natural environment. Wherever heat transfer 
must be considered in industrial applications thermal convection enters in various 
forms. I n  nuclear reactors, in crystallisation processes and in solar heating devices 
convection plays a crucial role and the rapidly expanding literature on applications 
of convection indicates a continuing demand for an improved understanding of its 
properties. 

On a more fundamental level thermal convection has received attention as a 
particularly simple system in which the transition to turbulence can be studied. 
Experiments on turbulent convection have yielded remarkable and unexpected results 
which have led to new insights into the nature of turbulent fluid flow. These will be 
pointed out in various sections of this review. The relative simplicity of convection 
patterns even in the case of turbulent motion is also one of the reasons for the esthetic 
attraction of convection. The delightful experience of the visualisation of the spon- 
taneously occurring cellular patterns of convection and their changes in time has 
always provided a strong and not often recognised motivation for the scientific 
research. 

The field of thermal convection and related flow phenomena has expanded rapidly 
in the past two decades and even a sizeable monograph could hardly do justice to the 
large body of scientific results. In  this review our attention will be focused on those 
non-linear properties of convection in a horizontal layer heated from below which 
seem to have a general importance. No attempt is being made to give a complete 
review of particular topics. Because the literature on convection probably includes 
more than a thousand titles even if the numerous papers on applications are not 
counted, the references listed at the end of the review represent only a tiny and some- 
times arbitrarily selected fraction of the published work. For detailed descriptions of 
linear problems of convection we refer to the books of Chandrasekhar (1961) and 
Gershuni and Zhukovitskii (1976). Chapters on thermal convection are included in 
the books by Turner (1973) and Joseph (1976). Reviews of recent research on con- 
vection have been given by Spiegel (1971, 1972), Koschmieder (1974), Palm (1975) 
and Normand et a1 (1977). 
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2. Basic equations 

2.1. Rayleigh number and Prandtl number 

Since both hydrodynamic and thermal properties of fluids enter into the descrip- 
tion of convection, it may be expected that a large number of parameters must be 
introduced in formulating the basic equations of the problems. Fortunately only two 
non-dimensional parameters are needed for most applications. T o  get a feeling for the 
meaning of the Rayleigh and Prandtl numbers we consider a horizontal fluid layer 
heated from below and determine the energy requirements for the onset of convection. 
The energy LD lost per unit time by viscous dissipation must be supplied by the 
release Lp of potential energy which is available in systems with a density gradient in 
the direction opposite to gravity. Using the thickness d of the layer as the typical 
length scale and V as the typical velocity we obtain: 

LD = ClpovVZ/d2 (2.1) 

when v is kinematic viscosity and c1 is a numerical constant depending on the boundary 
conditions. Assuming a linear dependence of the density on temperature: 

p=po[l -y(T- To)] (2.2) 

the maximum available potential energy that can be released is given by pay( Tz - Tl)g, 
where Tz and T I  are the temperatures of the lower and the upper boundaries, res- 
pectively, andg is the acceleration due to gravity. But as a fluid particle moves upward 
or downward its density changes because of thermal conduction. How much a fluid 
particle is capable of retaining its original density depends on the ratio Vd/K where K 

is the thermal diffusivity. K / d  can be regarded as the typical velocity with which 
isotherms distorted on a scale d return to their equilibrium position. For small values 
of V for which expression (2.1) is valid only the fraction Vd/K of the maximum 
available potential energy can be released and we obtain for the release per unit time: 

LP = cz vpoy( TZ - T1)g Vd/K (2.3) 

where c~ is another numerical constant depending on the boundary conditions. The  
onset of convection requires LPILD 2 1. Since both LD and Lp are proportional to Vz, 
the velocity cancels from the ratio and the condition for the instability of the static 
layer can be written in the form: 

R is called the Rayleigh number in honour of Lord Rayleigh who did the first theoreti- 
cal analysis of the problem in 1916. The numerical value R,=cz/c~ is called the 
critical Rayleigh number. It is typically of the order of 103. 

The advantage of the choice of the Rayleigh number as basic parameter is that the 
onset of convection occurs at the same value, R,, independent of the individual 
material properties of the convecting fluid. The  other basic parameter, the Prandtl 
number P=v/K,  enters into the theoretical considerations only insofar as the non- 
linear properties of convection are concerned. The  understanding and determination 
of the properties of convection as a function of Rayleigh and Prandtl numbers is the 
main objective of theoretical and experimental research on finite amplitude convection. 
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2.2. Oberbeck-Boussinesq equations 

The fact that the density variations which provide the driving forces of convection 
are usually relatively small is the basis for the Boussinesq approximation which was 
first introduced by Oberbeck (1879) in a problem of flow driven by horizontal tem- 
perature gradients. In  this approximation it is assumed that all material properties 
are constant with the exception of the temperature dependence of the density (2.2) 
which is taken into account in the gravity term only. The Oberbeck-Boussinesq 
approximation implies that the variation of mechanical energy which a fluid particle 
experiences is small compared to the variation of thermal energy, i.e.: 

where c is the specific heat at constant pressure. In  laboratory experiments the 
inequality (2.5) is very well satisfied since the left-hand side is of the order of 10-4. 
For geophysical and astrophysical applications the left-hand side becomes of the order 
of unity when the convection layer extends over a scale height. Even in this case the 
Oberbeck-Boussinesq equations provide a good approximation if the temperature is 
interpreted as the ‘potential temperature’, i.e. if T2 - T I  is replaced by the excess over 
the adiabatic temperature difference across the layer. For further details on the 
Oberbeck-Boussinesq approximation we refer to the papers of Spiegel and Veronis 
(1960), Mihaljan (1962) and Gray and Giorgini (1976). 

Using d, d 2 / K  and (T2-  T1)/R as scales for length, time and temperature, res- 
pectively, the Oberbeck-Boussinesq approximation for the equations of motion and 
the energy equation can be written in the non-dimensional form: 

( f + U. V )  9 = Ru. A + V20 

where A is the unit vector opposite to the direction of gravity. All terms in the 
equation of motion (2 .6(a))  that can be written in the form of a gradient have been 
combined in the ‘pressure’ term, V T ,  since only the curl of the equation enters into 
the analysis of the problem. The energy equation (2 .6(c))  has been written in terms 
of the deviation 9 of the temperature from the static distribution. We note that in the 
limit (2.5) the work done by compression as well as the heat generated by viscous 
dissipation can be neglected in equation (2 ,6(c)) .  

2.3. The linear problem 
When the amplitude of convection is small such that the terms u.Vu and u.VB can 

be neglected, equations ( 2 . 6 )  become linear homogeneous. Since it has been shown 
(Chandrasekhar 1961) that the instability of the static layer occurs in the form of 
monotonically growing disturbances the analysis of convection near the point of 
marginal stability can be restricted to the time-independent problem. I n  the older 
literature this case is described by the expression ‘principle of exchange of stabilities’. 
Assuming a Cartesian system of coordinates with the x coordinate in the vertical 
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direction, the analysis of the stationary linear problem yields solutions for the x com- 
ponent of the convection velocity of the form: 

r 7 

where Y denotes the position vector. Because the physical conditions of the convection 
layer are isotropic with respect to the horizontal directions, the vectors klz are arbitrary 
apart from the requirement that they have the same absolute value a :  

lknl = a  kn.A=O for all n. (2.8) 
The function f ( z ,  a )  is determined by an ordinary differential equation depending on 
01 as parameter. Two different kinds of boundary conditions are usually considered. 
The assumption of stress-free boundaries is very popular because it leads to a simple 
solution for f ( x ,  a)  : 

The vanishing of the second derivative of uz is a consequence of the continuity 
equation (2,6(b)) and the fact that au,/ax and au,jax vanish at the boundary. For 
stress-free boundaries f ( x ,  a)  becomes actually independent of 01 : 

f ( x ,  a)  = d2 cos 7rZ qO1) = ("2 + 4 3 1 ~ 2 .  (2 9 lo) 

The  minimum value R, of the function R(a) represents the critical value of the Ray- 
leigh number at which convection first sets in when the temperature difference across 
the layer is slowly increased: 

Rc = 27 d / 4  ac = " / 4 2 .  (2.11) 

The  property that convection with 01 > 0 1 ~  requires a higher Rayleigh number is mainly 
a consequence of the increased heat conduction between up- and down-going fluid 
parcels which diminishes the release of potential energy. On the other hand, convec- 
tion with a large wavelength is not favoured because the work done by the vertical 
motion becomes too small in comparison to the energy consumed by the viscous 
dissipation of the horizontal motion. 

In  the case of the more realistic rigid boundary conditions: 

(2.12) 

numerical computations (Pellew and Southwell 1940, Reid and Harris 1958) have 
yielded : 

The increase of the Rayleigh number Rc in comparison with the result (2.11) indi- 
cates the constraining effect of the rigid boundaries on the horizontal motions. 

Rc = 1707.76 ac = 3.1 17. 

3. Weakly non-linear convection 

3.1. The perturbation approach 

The manifold of eigensolutions of the form (2.7) exhibits a two-fold degeneracy. 
First, there is the orientational degeneracy associated with the unrestrained choice 
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of the directions of the vectors kn. The second degeneracy corresponds to the infinite 
variety of circulation patterns that are realised for different values of the coefficients en. 
These coefficients are arbitrary complex numbers, subject only to the normalisation 
condition : 

N 

n = - N  
ICnl2=1 

and the conditions: 
e-n = en+ n=1, .  . . , N 

where Cn+ denotes the complex conjugate of cn, and where the assumption has been 
made that N different IC vectors contribute in expression (2.7) with k-n = - kn. 

The orientational degeneracy cannot be removed since the fact that no horizontal 
direction is distinguished is an intrinsic property of the problem, but the pattern 
degeneracy can be removed to a large extent by considering the non-linear problem. 
As a result, only a small fraction of the manifold (2.7) of the solutions of the linear 
problem corresponds to possible solutions of the non-linear problem in the limit of 
vanishing amplitude of convection. 

The perturbation approach to the non-linear problem posed by equations (2.6) 
is based on an expansion in powers of the amplitude E of convection: 

Uz = €(U,(O) + €U#) + €2Uz(Z) + . . .) 
R=RIZ,+€R(1)+€2R(2)+. , , . 

(3 * W )  

(3 4 4 )  
Power series analogous to (3.2(a)) are assumed for the other dependent variables. 

Obviously, the expansion ( 3 . 2 )  is not a suitable approach to derive quantitative 
information about convection beyond the immediate neighbourhood of the critical 
Rayleigh number. But it still represents the only way to analyse the variety of three- 
dimensional solutions of equations (2 .6 ) .  The perturbation approach (3 ,2) was 
introduced independently by Gorkov (1957) and Malkus and Veronis (1958). A 
systematic analysis of the manifold of solutions (2.7) and an investigation of the 
stability properties has been given by Schluter et a1 (1965). Kuo (1961) used a 
slightly different perturbation parameter instead of E and was able to obtain a good 
approximation for the two-dimensional solution for Rayleigh numbers up to 10Rc. 
The perturbation method has been applied to a variety of other convection problems, 
for example to the case of a rotating layer discussed in $7.2. 

I n  the case of equations (2.6) the solvability conditions require R(n)=O for odd 
integers n when the boundary conditions are symmetric. This is a consequence of the 
symmetry of the non-linear advection terms in the equations. Even when different 
conditions are applied at the lower and the upper boundaries R(1) = 0 still holds in 
general. To  obtain a non-trivial result, equations (2.6) must be considered in the 
order €3. Since the operator described by the linear part of equations (2.6) and 
boundary conditions (2 .9 )  or (2 .12)  is self-adjoint, the solvability conditions require 
that the inhomogeneities are orthogonal to arbitrary solutions of the homogeneous 
problem. I n  the order €3 a set of 2 N  equations of the form: 

(3.3) 
is obtained. Together with condition (3.1) the system of 2N+ 1 non-linear equations 
determines the 2 N +  1 unknowns C-N, . . . , C N ,  I?@). Because the function A depends 
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only on the angle between the vectors ke and kn, it is readily seen that the solution: 

satisfies equations (3 -3) if a regular distribution of vectors kn is prescribed, i.e. if the 
angle between neighbouring vectors kn and ke is always the same (see, for example, 
figure l (a)) .  Since only the cosine of the angle enters into equations (3.3), solution 
(3.4) remains valid in the case of semiregular distributions, i.e. those corresponding 
to the superposition of two equal regular distributions (figure l(b)).  The solutions of 
physical interest, as for example the two-dimensional solution corresponding to N =  1 
and the hexagonal solution corresponding to N =  3, are generally represented by regular 
distributions of k vectors. 

The full content of equations (3.3) has not yet been explored, but by imposing 
additional periodicity requirements the implications of the degenerate bifurcation 
problem can be analysed in a mathematically rigorous way. For a more detailed 

i o )  I b  1 

Figure 1. (a) Example of a regular distribution of k vectors (hexagon case). (b)  Example of a 
semiregular distribution. 

discussion of the interesting mathematical aspects of the problem we refer to the 
chapter on cellular convection in Joseph's (1976) book and to the recent article by 
Kirchgassner (1977). 

3.2. Stability theory 

Although the manifold of possible steady solutions of the form (2.7) is strongly 
restricted by conditions (3.3), the number of solutions of equations (2.6) is still 
infinite and an additional selection principle is required to distinguish the physically 
preferred form of convection. The stability with respect to arbitrary disturbances of 
infinitesi,mal amplitude provides the suitable selection principle even though it does 
not guarantee a unique solution. Because of the assumption of infinitesimal amplitude 
the disturbances satisfy linear homogeneous equations. Without losing generality, an 
exponential dependence on time, exp (ut), can be assumed. Thus the equations for the 
disturbances fi, ii, of the steady solution U, T, 8 can be written in the form: 
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P-l( U#+ u.V#+ #.Vu) = - vi? + BA+ v2li (3 * 5(aN 

V.#=O (3 5(b))  
(3 - 5 ( 4 )  -I- .v B + r?.ve = RE. A + v2B. 

When the series representation (3.2) for the steady solution is introduced in the 
equations, the appearance of terms proportional to different powers of E suggests a 
solution of the form: 

222 = C p )  + € C p  + , 2 2 2 p  + . . , 
U = U@) + 

(3 * 6(a)) 

(3 * W)) + € 2 0 ( 2 )  + . . , 
and analogous expansions for the other disturbance variables. The analysis of the 
problem proceeds in close correspondence to the steady problem. In  zeroth order the 
solution for C2@) can be written in the form (2.7) with En in place of  cn. Even the 
function f ( z ,  a) remains the same as in the steady case if the attention is restricted to 
disturbances with a0 = 0 which are the most critical ones in the case 01 = aC. In  first 
order it is found that ~ ( 1 )  vanishes just as R(1) did. The solvability condition in second 
order yields : 

N 

n=-1V 
- a(z)MEe= .A(keakn)(cnc-nEe + Enc-nce + cnf-nce) - R(2)Ee 

for e = - N , .  . . , -1, +1,.  . . N (3.7) 

where M is a positive constant. In  addition to these 2N equations there are an infinite 
number of equations arising in the case where a vector ke of the disturbance solution 
does not appear among the N k vectors describing the steady solution. But the latter 
do not yield positive values of &), in general, and thus do not require special con- 
sideration. 

The main question about the system of equations (3 -7) is whether eigenvalues U@) 

with positive real parts exist, implying instability of the steady solution. This question 
can be answered in the affirmative for N 2 2 without specific knowledge about the steady 
solution. Using some general properties of the function A(ke.kn) Schliiter et a1 (1965) 
have shown that all eigenvalues U@) are real and that at least one of them is positive 
if N 2 2. In  the case N = 1, corresponding to convection in the form of two-dimensional 
rolls, the highest eigenvalue is d2) = 0 corresponding to the disturbance given by: 

22Z(O) E kl, Vu,@). (3 * 8) 
It is not surprising that a neutral disturbance of this form exists which describes an 
infinitesimal translation of the steady solution. Since the influence of lateral boun- 
daries is neglected in the limit of an infinitely extended convection layer an arbitrary 
horizontal translation of a solution yields another solution. While the neutral dis- 
turbance (3.8) does not lead to instability, slightly modified disturbances can some- 
times induce instability as discussed in 96. 

3.3. Non-symmetric convection layers 

The case N = l  distinguished by its stability property corresponds to a single 
solution describing convection in the form of rolls. Although only the absolute value 
I c1 I is determined by condition (3.4), the multiplication of c1 by an arbitrary phase 
factor exp (i4) describes a horizontal translation of the convection pattern (figure 2(a)). 
I t  can be shown that this property persists in the case N =  2. All solutions in this case 



1938 F H Busse 

Rolls 
( a  I 

ii-f> I-hexagons 

U 
g-hexagons 

l b l  

Figure 2. (a) Two-dimensional convection in the form of rolls. (b)  1- and g-type hexagonal 
convection cells. 

represent translations of a single form of convection. But in the case N =  3 conditions 
(3.4) do not preclude the existence of several physically different forms of convection 
which cannot be transformed into each other by a translation. 

Since the change of sign of c1 is equivalent to the change of sign of E in the case 
N=l,  it can be concluded that the coefficients R(n) vanish for all odd integers n, 
even when the symmetry of equations (2.6) is destroyed as, for instance, in the case 
of temperature-dependent material properties. In  the case N = 3 ,  a change of sign 
of the coefficients cn leads to a physically different solution and finite values of R(n) 
must, in general, be expected for odd integers n when the properties of the convection 
layer are not symmetric about its midplane. This is the origin of the phenomenon that 
experiments sometimes exhibit convection rolls and at other times convection in the 
form of hexagonal cells. 

The simplest way to examine the influence of an asymmetric property is to con- 
sider the temperature dependence : 

p = p o [ l -  y( T -  To) + B( T -  Toy1 (3.9) 
in place of expression (2.2) for the density, but leave the Oberbeck-Boussinesq 
approximation intact in all other respects. As a result, non-vanishing values of R(1) 
and o(1) become possible whenever the condition : 

ke + kn + km= 0 (3.10) 

can be satisfied. The simplest solution for which relationship (3.10) holds is the 
hexagon solution corresponding to N =  3 in equations (3.4). The two possibilities 
ct = 6-1/2 and ci = - 6112, I il = 1, 2, 3, must be distinguished. We shall refer to the 
former as the I-hexagon solution, since it is often realised in liquids. The latter 
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solution is mostly realised in gases and is called the g-hexagon solution for that reason 
(figure 2(b)). Besides those two solutions, there exist two other choices, C.I = k i6-1i2, 
which cannot be generated by translations of the hexagon solutions. But those choices 
are eliminated by the solvability conditions in which the effect of asymmetries has 
been included. 

The  general stability analysis outlined in the preceding section can be extended to 
include the effects of a finite value p as well as the analogous effects of the temperature 
dependence of other material properties (Busse 1962, 1967a). Restricting the attention 
to /3 as the representative parameter, it is found that the roll solution may be displaced 
by either one of the hexagon solutions as the physically realisable form of convection 
as shown in figures 3 and 4. It is noteworthy that there is always a region where both 
solutions are stable. The preference for the hexagon solution in a non-symmetric 
layer is physically understandable because of the adjustment property. Depending on 
the sign of the asymmetry, either the 1-hexagons or the g-hexagons are optimally 

I P 

Figure 3. Stability range of convection in the form of rolls and hexagons as a function of the 
amplitude E and the asymmetry parameter /3. 

adjusted. The hexagon solution is the simplest solution with this property and the 
conclusion to be drawn from the stability analysis is that the simplest realisation 
among solutions with certain properties appears to be preferred. 

The  temperature dependence of the viscosity is usually the dominant cause of 
asymmetry in convection layers and its importance for the preference of the hexagon 
solutions was recognised by Graham (1933) and theoretically supported by Palm 
(1960) and Segel and Stuart (1962) before the systematic stability analysis was under- 
taken. The  adjustment is such that the viscosity is minimised in the highly strained 
region in the centre of the convection cell. Thus in liquids, where the viscosity is 
lower at the bottom, hexagons with upward motion in the centre occur while in gases, 
for which the viscosity increases with temperature, convection cells show downward 
motion in the centre. A striking demonstration of this effect has been given by 
Tippelskirch (1956), who did experiments with liquid sulphur which exhibits both an 
increasing and a decreasing dependence of the viscosity on temperature. 

It is of interest to note that hexagonal cells with rising motion in the centre tend 
127 
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Figure 4. The dependence of the amplitude E of convection on the Rayleigh number for 
different forms of convection. The respective flows are unstable along the broken 
parts of the curves. The Rayleigh numbers RA, RB, RD indicate the boundaries 
of the stability regions. 

to be preferred when the layer is contained between a rigid lower boundary and a 
stress-free upper surface (Busse 1962). This kind of asymmetry does not enter into 
the expression for but into the expression for R(3) instead. Thus a quantitative 
assessment of this case is difficult since contributions of higher order are not negligible, 
If, on the other hand, the effects of surface tension are taken into account, a non- 
vanishing contribution to R(1) arises (Davis and Segel 1968), leading again to a 
preference for hexagonal convection cells which can be evaluated accurately in the 
limit of small E .  

The fact that, for amplitudes less than ED (see figure 4) all steady solutions are 
unstable, has the consequence that there exists a regime where no steady state is 
realisable when the heat flux is the prescribed parameter of the problem instead of the 
Rayleigh number. It can be shown (Busse 1967c) that the amplitude of hexagonal 
convection executes non-linear relaxation oscillations in this case. 

3.4. An extremum principle 

the conditions that the function: 
The  solvability equations (3 .3)  and the stability problem (3 .7 )  are equivalent to 

F ( c - N , .  . . , ~lv)ei  (R-Rc) ICn12+tr CA(ke.kn)ICn12]Ce12 
n e, n 

+ 5 PemnceCmCn (3 11) 
e, m, n 
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assumes a maximum in the case of the stable solution. In  expression (3.11) the 
definitions: 

c, = €Cn 

for ke + km+k, 0 
otherwise 

Pemlz zz 1; 
have been used where B is a constant. The dependence of the function (3.11) on the 
coefficient ,l3 has been included in order to demonstrate the way in which small asym- 
metries of the convection layer enter into the stability analysis. All summations in 
expression (3.11) run from - N to + N ,  with the exception of 0. 

The  necessary conditions for a stationary value of F as a function of the variables 
C, is the vanishing of the first derivatives: 

for n = - N , .  . . , N .  (3.12) 

These equations represent the solvability equations for small-amplitude solutions of 
the form (2.7). Obviously equations (3.12) are identical to equations (3.3) in the 
limit P= 0 except for a factor of - €2. 

A sufficient condition for a maximum of F is that the matrix of the second deriva- 
tives of F is negative definite. This condition is equivalent to the condition that all 
eigenvalues a = co(1) + ~ 2 a ( 2 )  are negative definite. In  the case ,l3 = 0, this equivalence 
follows from the fact that the matrix of the coefficients of the unknown on the right- 
hand side of equations (3.7) is identical to the matrix of the second derivatives of F 
divided by - €2. For further details see Busse (1967a). 

A physical interpretation of the extremum principle can be obtained by using the 
property that the dimensionless convective heat transport H i s  given byge2=gCn 1 C, 12 

where g is a constant. Expression (3.11) can be written in the form: 

F=A(R-RO)/Zg- Jf (R(H’) -Rc)  dH’/2g (3.13) 
where 

R(A) Rc - c2 A(ke. k,) I clt 1 I ce I + E C PemnCeCmCr, 
e,  n e,  n 

is a general definition of the Rayleigh number for all solutions of the form (2.7) 
including those which do not satisfy the solvability conditions. A consequence of the 
property that expression (3.13) assumes a maximum for the stable solution is that the 
upper branch of the two solutions existing for RD < R < Rc (see figure 4) is stable 
while the lower branch is unstable because it corresponds to a lower value of F at a 
given value of R. I n  the special case P = 0 : 

F = A ( R -  Rc)/4g (3.14) 

and thus a maximum of F corresponds to a maximum of the heat transport at a given 
value of R. The  hypothesis that the realised form of convection tends to maximise 
the heat transport has been used by Malkus (1954a) and Malkus and Veronis (1958). 
In  general, this hypothesis is not true, but in the particular limit R -f R,, /3 = 0, it turns 
out to be a special case of the extremum principle. The  fact that the hypothesis does 
not hold for /3 $0 is evident from figure 4. The  roll solution remains unstable even 
where it exceeds the heat transport of the stable hexagon solution. Since the maximum 
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principle describes a local property, it does not exclude the possibility that both rolls 
and hexagons are stable solutions. Indeed, the Rayleigh number for which expression 
(3.13) becomes equal for rolls and hexagons lies between RA and RB. 

Because it is valid only for terms of second order in E ,  the extremum principle has 
limited value. It can be applied to other stability problems exhibiting isotropy with 
respect to two dimensions as long as the matrix of the coefficients of the disturbance 
amplitudes Ze remains symmetric. In  the case of a convection layer rotating about a 
vertical axis, this property is lost because the function A depends on (ke x &).A as 
well as on ke.k,. For a somewhat different interpretation of the extremum principle 
restricted to the case p = 0, see Palm (1972). 

4. Observational evidence 

4.1. The onset of convection 

The results of the weakly non-linear theory of convection are basically confirmed 
by laboratory observations. Within the experimental accuracy the onset of convection 
occurs at the critical value of the Rayleigh number predicted by linear theory. When 
the deviations from the Oberbeck-Boussinesq approximation are small, the convec- 
tion flow assumes the form of nearly two-dimensional rolls, but in the intermediate 
neighbourhood of the critical Rayleigh number hexagonal cells are often observed. 
The transition from hexagonal convection to roll convection is well exhibited in the 
photographs of Silveston (1958) and Somerscales and Dougherty (1970). A detailed 
quantitative comparison between theory and experimental data is difficult because the 
theoretical assumption of an infinite layer is not well approximated in most experimental 
apparatus. The side walls influence the formation of the convection pattern signifi- 
cantly if the aspect ratio between the width L and the depth d of the layer is of the 
order of 30 or less. Thus convection rolls assume the form of ring cells in Kosch- 
mieder’s (1966) experiments with a circular layer. In  Krishnamurti’s (1968) experi- 
ments, the rolls tend to align themselves with the side walls of the rectangular layer. 

Even in the case of much larger aspect ratios than those commonly used in labora- 
tory experiments, it is conceivable that the side walls ultimately play a role in deter- 
mining the convection pattern. As convective motions grow from random initial condi- 
tions, patches of rolls tend to form with varying orientation of the rolls. At the 
boundaries between the patches, adjustment processes take place in which some patches 
grow at the expense of others. The  typical time scale for these time-dependent 
processes is P/K where I is a typical diameter of the patches. Thus an asymptotic 
steady state is approached on a relatively large time scale which ultimately becomes 
L 2 / K ,  at which point the influence of the side walls will be noticeable. The interesting 
statistical problem associated with the double limit L -+ CO, t -+ CO has not yet been 
investigated. Some experimental data on the time dependence as a function of the 
aspect ratio have recently been obtained by Ahlers and Behringer (1978). 

The development of laser Doppler shift velocity meters has allowed measurement 
of the convective motion in detail. Berge (1975) reports experimental results of this 
kind and finds good agreement with the predictions of the weakly non-linear theory, 
Convection in a layer heated from below is one of the few cases of hydrodynamic 
instability for which detailed quantitative agreement between experiment and theory 
has been obtained. The comparison shows little influence of imperfections, which play 
a dominant role in the occurrence of shear flow instabilities, and in the case of the 
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buckling instability of elastic shells and rods (Reiss 1977, Stuart 1977). More recently, 
the measurements of the spatial structures of the convection flow have been extended 
to higher Rayleigh number (Dubois and Berge 1975) in order to compare the Fourier 
analysis of the data with the theoretically computed amplitudes of the higher harmonics 
of the velocity field. Again, good agreement is found. 

4.2. The convective heat transport 

The determination of the heat transport as a function of the Rayleigh number is 
traditionally regarded as the most important problem of research on convection, and 
many of the early experiments have been devoted exclusively to this task. I n  the non- 
dimensional formulation of equations (2 .6)  the average heat transport H is given by: 

H =  R+ ( U .  he) 

where the brackets (. . .) denote the average over the convection layer. To obtain a 
measure of the efficiency of convection, the Nusselt number Nu has been introduced, 
which is defined as the ratio between the heat transport both with and without 
convection: 

It is convenient to represent the data obtained at high Rayleigh numbers in the form 
of a power law. Even though power laws seem to fit the measurements over an 
extensive range of Rayleigh numbers, it is doubtful whether asymptotic relationships 
can be obtained from laboratory experiments which rarely exceed a Rayleigh number 
of the order of 1010. Mixing length theory (Kraichnan 1962) suggests that the power 
law relationship for the Nusselt number may change a.t Rayleigh numbers as high as 
1024. The experimental measurements exhibit a relatively small but significant 
dependence on the Prandtl number. The  power law relationships: 

NU = H /  R = 1 + (U. AB)/R. (4.1) 

NU = 0.184 RO.281 for P= 200 (4  0 2(a)) 
NU = 0,183 R0.278 for P z 7  (4  
NU = 0.123 R0.294 for P= 0.7 (4 * 2(c)) 
NU = 0.147 R0.247 for P= 0.025 (4  2 ( 4 )  

represent the measurements of Rossby (1969), Chu and Goldstein (1973), Goldstein 
and Chu (1971) and Rossby (1969), respectively. The  results (4.2(a)) and (4,2(b)) are 
identical within the experimental accuracy, but the relationship (4 ,2(c))  obtained for 
air shows a distinctly steeper increase of the heat transport with Rayleigh number. 
This result agrees with the relationship Nu= 0.13 RO.30 of Fitzjarrald (1976), whose 
experiment on convection in air included data for R = 1010, 

When accurately measured and closely spaced values of the heat transport are 
plotted as a function of R, the onset of convection is clearly noticeable by the change 
in the slope of the curve. More surprising is the property that additional kinks appear 
at higher Rayleigh numbers. Schmidt and Saunders (1938)  reported a kink at 
R- 5 x 104. When Malkus (1954a) did experiments with a slowly decaying Rayleigh 
number he counted a total of six supercritical kinks, the highest occurring at a value of 
R of the order of 107. Because convection is highly turbulent at those high Rayleigh 
numbers, the evidence for discrete transitions contradicts the idea that turbulent fluid 
systems are governed by smoothly varying statistical properties. Indeed, the dis- 
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covery of the transitions has stimulated some new theoretical approaches to the prob- 
lem of turbulence which suggest that the existence of discrete structure in turbulent 
fluid systems is the rule rather than the exception. The  Malkus transitions have been 
confirmed by numerous investigators (Willis and Deardore 1967, Carroll 1971, 
Chu and Goldstein 1973, Threlfall 1975). While there seems to be general agreement 
about the transitions at R = 2 x l o 4  and R= 6 x lo4, some others appear at different 
values of R in different experiments. Those shifts may be due to variations of the 
Prandtl number or even the aspect ratio of the convection layer (Threlfall 1975). The  
identification of the kinks with changes in the pattern of convection has been only 
partially successful. The  transition at R N 2 x l o 4  clearly corresponds to the onset of 
bimodal convection (Krishnamurti 1970a, Busse and Whitehead 1971) and the 
transition at R N 6 x 104 seems to be related to the onset of time dependence in the 
case of fluids with moderately high Prandtl number. More detailed observations on 
the Prandtl number dependence of the transitions are desirable. 

4.3. Observations of transitions 

While the exact location and the reproducibility of the higher kinks of the heat 
transport curve have remained a somewhat controversial subject, a more definitive 
picture has emerged for those transitions of convection which can be observed directly. 
Detailed visual observations and simultaneous heat transport measurements have been 
carried out by Krishnamurti (1970a, b, 1973). Figure 5 shows a slightly modified 
version of the transition diagram which Krishnamurti used in order to present her 
data and those of other investigators in a comprehensive fashion. 

In  moderate and high Prandtl number fluids, steady two-dimensional rolls 
represent the physically realised form of convection up to R N 2 x 104. At that point 
a transition to steady three-dimensional convection is observed. Since this form of 
convection seems to consist of two roll patterns superimposed at a right angle, it has 
been called bimodal convection. The  third transition leading to time-dependent 
three-dimensional convection flow is less clearly defined because it appears to depend 
on inhomogeneities of the convection pattern. Krishnamurti (1970b) reports on onset 
of oscillations at a Rayleigh number of about 6 x 104, independent of P if P is suffi- 
ciently large. Busse and Whitehead (1974) found that the onset of oscillations 
occurred at a Rayleigh number increasing linearly with P if a homogeneous pattern 
of bimodal convection had been established. But they also found isolated spots of 
oscillating convection at much lower Rayleigh numbers when the pattern of convec- 
tion was inhomogeneous. Whitehead and Parsons (1978) investigated high Prandtl 
number convection in considerable detail and found that oscillations did not occur 
below a Rayleigh number which increases slightly with P. On the basis of these 
results, the high Prandtl number regime of figure 5 has been drawn. 

At low Prandtl number the onset of oscillations precedes the transition from rolls 
to steady three-dimensional convection. The instability assumes the form of a wavy 
transverse shift of the convection roll which propagates along the axis of the roll pat- 
tern as indicated schematically in figure 6. Observations of the oscillations in air by 
Willis and Deardorff (1970) show clearly the sinusoidal nature of the waves as long as 
their amplitude remains sufficiently small. As the amplitude of the oscillations in- 
creases the time dependence appears to become aperiodic and a broad spectrum 
replaces the discrete peaks corresponding to the frequency of oscillation and its higher 
harmonics. The exact way in which the transition to aperiodic time dependence 
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Figure 5. Transitions in convection as a function of Rayleigh and Prandtl numbers after 
Krishnamurti (1973) and others. The curves indicate the onset of steady rolls (I), 
three-dimensional convection pattern (11), time-dependent convection (111) in 
isolated spots (III(a)) and uniformly throughout the layer (III(b)), and turbulent 
convection (IV). 

occurs is obviously important to the problem of the onset of turbulence and thus has 
become a subject of intense research (Gollup et a1 1977). 

At moderate Prandtl numbers, turbulent convection at Rayleigh numbers of the 
order of 105-107 exhibits the typical structure of relatively steady large-scale cells in 
which highly fluctuating (both in space and in time) small-scale convection elements 
are imbedded. Because these elements seem to be oriented predominantly towards 
the centre of the cells, they resemble spokes and this form of convection has been 
called spoke pattern convection (Busse and Whitehead 1974). Little is known about 
this form of convection which seems to combine random processes with the perman- 
ence of a large-scale organising structure. Because of the complexity of spoke pattern 
convection it is not surprising that no visual observations of further transitions do 
exist. New experimental techniques are required to clarify the role of discrete transi- 
tions in turbulent convection. The optical correlation method of Somerscales and 
Parsapour (1976) may provide a useful instrument for research in this direction. 
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Figure 6.  Qualitative sketch of oscillatory convection (from Clever and Russe 1974). The  
waves propagate along the convection rolls. 

5. The strongly non-linear problem 

5.1. Numerical computations 

The property that convection rolls are physically preferred according to the small- 
amplitude stability theory, combined with the well-behaved nature of the mathemati- 
cal problem, has made the problem of two-dimensional convection a favoured subject 
of numerical analysis ever since the first sufficiently fast computers became available 
in the early sixties. New numerical methods have been developed in the context of 
the convection problem (see, for example, Chorin 1967) and the efficiency of older 
methods has been improved by a large number of investigators. Both finite difference 
methods and Galerkin procedures have yielded good results with the larger flexibility 
of the former balanced by the fact that the latter can be easily combined with a 
stability analysis, as will be discussed in 96. 

Finite difference solutions were first obtained by Deardorff (1964) and Fromm 
(1965) for stress-free as well as rigid boundaries, while Galerkin solutions were 
produced by Veronis (1966), in the case of free boundaries, and by Busse (1967b), 
in the case of rigid boundaries. Since then, the parameter range of the computations 
has been vastly extended by the work of Schneck and Veronis (1967), Plows (1971), 
Moore and Weiss (1973) and others. The most interesting result of the computations 
is the dependence of the Nusselt number on the Rayleigh number. For stress-free 
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boundaries, Moore and Weiss (1973) find: 

NU = 1.8 (R/Rc)0*365 

and the corresponding relationship for rigid boundaries is : 

NU = 1.56 (R/Rc)0*’96 ( 5  *2) 
according to Fromm (1965) and Clever and Busse (1974). In  both cases, a Prandtl 
number of the order of unity and the critical value aC of the wavenumber has been 
assumed. It is likely that more accurate calculations will slightly increase the exponent 
in expression (5 .2), since the numerical approximations tend to underestimate the 
heat transport at high Rayleigh numbers. 

The  theoretical expression (5.2) appears to be in close agreement with experi- 
mental relationship (4.2(c)). But this apparent agreement is misleading. At Rayleigh 
numbers of the order of lO5-lO*, for which calculated as well as measured Nusselt 
numbers have been obtained, the physically realised convection is turbulent and the 
two-dimensional structure has completely disappeared. In  addition, the characteristic 
wavelength exceeds the critical value by nearly an order of magnitude. The  decrease 
of the heat transport caused by the increasing wavelength is compensated by the small- 
scale motions in the boundary layers such that the observed heat transport approaches 
the theoretical value based on steady two-dimensional motion. 

A direct comparison between computed values of the heat transport and measured 
ones has been done only at low Rayleigh numbers. By taking into account the observed 
variation of the wavelength of convection rolls, Willis et aZ(1972) were able to obtain 
good agreement between experimental data and theoretical predictions. 

Although two-dimensional steady convection shows little relationship to observed 
convection at Rayleigh numbers in excess of 22 600 (see $6.1), the qualitative aspects 
of the numerical results are of considerable interest. The  dependence of the heat 
transport on the Prandtl number is the most interesting property. I n  figure 7 the 
Nusselt number Nu is plotted as a function of P for different values of R. While the 
small-amplitude theory for rigid boundaries predicts that Nu - 1 increases quadratic- 
ally with P for small values of P and approaches its maximum value for P -+ CO, the 
computations at higher Rayleigh numbers indicate a maximum of Nu at a Prandtl 
number of the order of unity. In  the case of the free boundaries, the value Nu- 1 
given by the first term of the series expansion (3.2) is independent of P, a feature 
which appears to be nearly preserved at high Rayleigh numbers, as indicated by 
figure 7. The  slight decrease of Nu at the transition from the low Prandtl number 
regime to the high Prandtl number regime is caused by the disappearance of the 
momentum advection effect at high Prandtl numbers. The  Prandtl number separating 
the two regimes increases proportional to R2/3 according to Ik1oore and Weiss (1973). 

Even with the most advanced computers the computation of three-dimensional 
convection flows is only barely feasible. Computation costs are usually too high to 
permit systematic investigations of the problem and the research has thus been 
restricted to specific examples. The  study by Lipps (1976) on time-dependent con- 
vection in air at Rayleigh numbers of the order of l o 4  represents the most detailed 
computation of three-dimensional convection to date. 

5.2. Inertial convection 

The dependence of the heat transport on the Prandtl number for low values of P 
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Figure 7. The Nusselt number of convection rolls as a function of the Prandtl number for 
different Rayleigh numbers indicated in the figure. Full lines corresponding to 
rigid boundaries (cc=ccc) are plotted from numerical data by Plows (1971) and 
Clever and Busse (1974), broken lines corresponding to stress-free boundaries 
(a=l )  represent data of Moore and Weiss (1973). 

has long been a subject of strongly divergent opinions. The weakly non-linear theory 
predicts a P2 dependence for rigid boundaries as well as for free boundaries, with the 
sole exception of the two-dimensional solution for which the heat transport becomes 
independent of P (Schluter et aZl965). This unsatisfactory result of the weakly non- 
linear theory is due to the decreasing radius of convergence in the limit P+O. Indeed, 
the convective heat transport given by Nu - 1 in figure 7 increases much faster at low 
Prandtl numbers than at high ones, once the Rayleigh number exceeds the critical 
value by a finite amount. In  an interesting numerical analysis of axisymmetric convec- 
tion in a cylindrical box with stress-free boundaries, Jones et aZ(l976) actually found 
a distinct change from a solution with dNu/dRocP2 to a solution with dNuldRxP0 
at a Rayleigh number exceeding the critical value by 33%. This new Rayleigh 
number, called the effective critical Rayleigh number, assumes the role of the critical 
Rayleigh number at low Prandtl numbers, at least as far as the heat transport is 
concerned. 

The  physical origin for the sudden change in the effectiveness of the convective 
heat transport lies in the role of the inertial terms. The preferred solution becomes 
capable of balancing the term u.Vu entirely by the pressure gradient in place of a par- 
tial balance with viscous friction. Physically this means that the convective motion 
assumes a 'flywheel' character, i.e. only a small fraction of the kinetic energy is lost 
by viscous dissipation in each period of circulation and the demand on the release of 
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potential energy is correspondingly small. Proctor (1977) has analysed this process 
analytically in the case of a horizontal cylinder heated from below. With stress-free 
boundaries, a convective motion in the form of rigid rotation could assume infinite 
speed because of the absence of viscous dissipation. With rigid boundaries, however, 
convection occurs first in the form of slow viscously dominated motions until, 7% 
above the critical Rayleigh number, the effective critical Rayleigh number is reached 
where the ‘flywheel’-type motions can be realised. Interesting problems are posed by 
the questions whether the effective critical Rayleigh number represents a general 
phenomenon of low Prandtl number convection and whether similar effects do occur 
in the case of time-dependent three-dimensional convection. The  relative high heat 
transport observed by Rossby (1969) for convection in mercury, which becomes time- 
dependent at low Rayleigh numbers (see figure 5)) indicates an affirmative answer for 
the second question. 

5.3. Boundary layer analysis 

The difficulty of obtaining asymptotic expressions for the dependence of the heat 
transport on the Rayleigh number from mathematical analysis has led to the proposals 
of relationships based on heuristic arguments. Priestley (1954) has argued that the 
heat transport in high Rayleigh number convection should be independent of the 
depth of the layer because the heat transport is controlled by the thermal boundary 
layers adjacent to the upper and lower plates, while in the interior the convective heat 
transport is so eficient that it is not affected by the separation of the plates. Since the 
dimensional heat transport H* is given by: 

HX becomes independent of d if Nu is proportional to W 3 .  Other dimensional 
arguments are used in the astrophysical context (Spiegel 1971) where it is assumed 
that HX is independent of the molecular diffusivities v and K with the consequence that 
Nu becomes proportional to (RP)l/Z. Stellar convection may indeed obey a different 
law for the heat transport, since the constraining effect of boundaries is much reduced 
in stars. But at the same time the discrepancy between different heuristic arguments 
emphasises their arbitrariness. The shortcomings of the arguments become evident 
when they are applied to the theoretical problems discussed in gg5.4 and 5.5 for which 
actual asymptotic solutions are available. 

More satisfactory are arguments based on the instability of the thermal boundary 
layers. Since the mean temperature develops steep gradients near the boundaries 
where the heat is transported by conduction alonc, and since the vertical velocity 
vanishes in those regions, it seems appropriate to apply the criterion (2.4) for the 
instability of a static state to the boundary layers. Using 6 as the ratio between the 
boundary layer thickness and the depth of the convection layer (see figure 8)) and 
taking into account that the mean temperature drops by about 4 (T2 - T I )  across the 
boundary layer, the criterion for instability becomes : 

4 R 8 3 2  R,. (5.3) 
We note that this criterion is, to a first approximation, independent of the horizontal 
velocity at the boundary since it is well known (Deardorff 1965) that a mean horizontal 
shear does not affect criterion (2.4). Because heat is transported by conduction in the 
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Figure 8. The profile of the horizontally averaged temperature. 8 is the dimensionless thick- 
ness of the thermal boundary layers. 

boundary layer, 6 can be expressed in terms of the dimensionless heat transport H :  
H =  R/26. 

Thus the criterion for instability becomes : 

H 6 g R(R/2RC)1J3 (5.4) 
suggesting that the boundary layer is unstable unless the heat transport grows propor- 
tional to R413. The fact that the heat transport by convection rolls in the presence of 
rigid boundaries grows at a slower rate is the basic reason for the instabilities of con- 
vection rolls for R 2 2 - 3  x 104 (see $6). On the other hand, no instability has been 
found in the presence of stress-free boundaries (Straw 1972) where the heat transport 
grows at least proportional to 11413. 

More detailed time-dependent models for the disruption of the thermal boundary 
layers by periodic instabilities have been developed by Chang (1957) and Howard 
(1966). These models yield a Nusselt number dependence proportional to RI13 and 
suggest the occurrence of oscillations with a frequency proportional to R2/3 which 
appears to match frequencies observed in convection layers with moderately high 
Prandtl numbers. 

The  success of numerical computations of two-dimensional convection at high 
Rayleigh numbers has stimulated attempts to derive asymptotic solutions of equations 
(2 .6)  by boundary layer methods. As part of the analysis, asymptotic expressions for 
the heat transport can be obtained. In  the case of stress-free boundaries the analysis 
is relatively easy and differeh investigators agree on a RI13 power law for the Nusselt 
number. But in the case of rigid boundaries the proposed power laws range from 
RI15 to R1/3. For detailed discussions of the subject we refer to the papers by Roberts 
( 1 9 7 9  Robinson (1969) and Wesseling (1969). Like the numerically obtained two- 
dimensional solutions, the boundary layer solution does not give a physically realistic 
description of thermal convection at high Rayleigh numbers and the derived power 
laws for the heat transport are primarily of mathematical interest. But the dynamic 
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balances derived for the horizontal and vertical boundary layers provide the elements 
for the understanding of turbulent convection. I n  particular, the role of the Prandtl 
number and the wavelength of convection in non-linear thermal convection can be 
illuminated by boundary layer analysis and more refined solutions of the problem 
would be of considerable interest. 

5.4.  Mean field theories 

The Rayleigh numbers of thermal convection in the atmosphere and in the hydro- 
gen convection zones of stars are huge by comparison with those achievable in labora- 
tory experiments. The importance of convection in many problems of astrophysics 
and meteorology has motivated the search for methods capable of giving good esti- 
mates for average properties of convection at very high Rayleigh numbers. Mixing 
length theories are commonly used for this purpose, but since they are based on 
heuristic statistical arguments they will not be considered here. A detailed discussion 
of turbulent convection based on the mixing length theory has been given by Kraich- 
nan (1962) and for a recent review of the theory in the astrophysical context, we refer 
to Gough (1977). 

An alternative approach to avoid the mathematical complexities of the complete 
set of equations (2.6) is to use a simplified version of those equations. The  small- 
amplitude theory of convection indicates that the strongest non-linear effect arises 
from the modiiication of the horizontally averaged temperature distribution by the 
convective heat transport. It thus seems reasonable to neglect all other non-linear 
interactions in a first approximation and to consider the system of equations: 

V ~ u + t & - v T = 0  (5  * 5 ( 4 )  
V . u = Q  (5 * 5 W )  

(5  5(4) 
(5  * 5 ( 4 )  

V26- U. Ah. 00 = 0 
-- 

A. VO = U eh8 - (tl.Ae> - R 
where the bar indicates the horizontal average and the brackets (. . .) denote the 
average over the entire fluid layer. 0 is the mean temperature field which depends 
only on the x coordinate in the direction of A. In  addition to the neglect of non-linear 
terms in the equations of the fluctuating variables, the time derivatives have been 
omitted since it can be shown (Spiegel 1962) that the system (5.5) does not admit 
oscillatory solutions. If the horizontal average is formally identified with an ensemble 
average, the mean-field approximation is equivalent to the third-order cumulant 
discard assumption for the closure of the statistical moment equations, as Herring 
(1963) has emphasised. 

Herring (1963, 1964) solved equation ( 5 . 5 )  numerically in the case when the 
horizontal dependence is described by a single horizontal wavenumber. This numeri- 
cal result for the dependence of the Nusselt number on the Rayleigh number agrees 
reasonably well with the subsequent boundary layer treatment of equations ( 5 . 5 )  by 
Howard (1965), in the case of free boundaries, and by Roberts (1966) and Stewartson 
(1966), in the case of rigid boundaries. When the wavenumber 01 is chosen such that 
the Nusselt number is maximised, the asymptotic relationships become : 

NU = 0.325 RI13 for stress-free boundaries (5.6) 
and 

N u  = 0.24 (R312 In R3/2)1/5 for rigid boundaries. (5.7) 
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By investigating the stability of his single-a solution, Herring found indications 
that a solution of equation (5.5) with two horizontal wavenumbers is preferred for 
Rayleigh numbers above 106. Chan (1971) could indeed show, by applying the 
multiple boundary layer technique (see $5.5), that the maximum Nusselt number is 
reached asymptotically by a solution involving an infinite number of horizontal wave- 
numbers leading to a RI13 law in the case of rigid boundaries. 

Since equation (5 .5(a)) becomes identical to equation (2.6(a)) in the limit of 
infinite Prandtl number, it must be expected that the mean-field theory is most 
realistic in the case of large Prandtl numbers. Since it neglects the momentum 
advection terms which tend to enhance the heat transport at high Rayleigh numbers, 
it is not surprising that the exponent in relationship (5.6) is less than that of the 
numerically derived expression (5.1). 

The  mean-field equation (5.5) can be regarded as the most severe truncation in a 
hierarchy of truncations of the horizontal interactions between different modes. The  
next level of truncation is obtained when three horizontal wavevectors are included 
and interactions of the type (3.10) considered in the case of the hexagon solution are 
taken into account. This truncation has the advantage that it restores the Prandtl 
number as a parameter of the problem. Roberts (1966) was the first to analyse the 
resulting equations and a boundary layer analysis has been given by Gough et aZ(l975) 
which has been supplemented more recently by extensive numerical computations 
(Toomre et aZ1977), ranging up to Rayleigh numbers of the order of 1020.  The results 
show that the Nusselt number depends only on the product PR in the limit P+O, 
which is a desirable feature from the astrophysical point of view, since the viscosity 
in stellar atmospheres is so small that it is widely believed among astrophysicists that 
it does not affect the Nusselt number. But as the discussion of inertial convection 
indicates, the limit of vanishing Prandtl number is not a simple one and the strong 
divergence in this limit between the result based on equations (5.5) and the next 
higher level of truncation suggests that quite different dependencies for the Nusselt 
number may be obtained when the interaction between different horizontal modes is 
taken into account more accurately. 

5.5. The optimuin theory of convection 

The disadvantage of the results derived by mean-field theories is that the degree 
of approximation is not known unless experimental measurements or exact theoretical 
values are available for comparison. For many applications rigorous bounds on the 
convective heat transport are more useful than approximate results, especially if the 
bounds happen to be reasonably close approximations at the same time. Motivated 
by the earlier work of Malkus (1954b), Howard (1963) introduced the upper bound 
approach based on equations (2.6). Instead of calculating the heat transport for 
solutions of these equations, the maximum of the heat transport is determined among 
a manifold of fields U, 8, which include all possible solutions of equations (2.6), which 
are statistically stationary in time. This maximum provides an upper bound for the 
heat transport of any physically realised convection flow under stationary conditions. 

The  maximum is obtained as the solution of a variational problem. The trial 
fields U, 8 share with the actual solutions of equations (2.6) the kinematic constraints 
expressed by conditions (2.6(b)) and (2.12) and the energetic constraints which are 
obtained by multiplying (2.6(a)) and (2.6(c)) by U and $ respectively, and averaging 
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the result over the fluid layer: 
(B;c. A) - ( I Vu I 2) = 0 

(U. AB( A .  VO)) + ( I VB I 2) = 0. 
( 5  *8) 

(5  -9) 
-4s before, 0 denotes the horizontally averaged temperature and B is the fluctuating 
component, 8= 0 - 0 - Rz. The boundary conditions (2.12) and the property that 
B and u are bounded at infinity have been used to accomplish the partial integrations 
and to justify the neglect of terms which can be written in the form of surface integrals. 
I n  addition, it has been assumed that the time dependence of averaged quantities 
vanishes for statistically stationary turbulent convection. 

By introducing expression ( 5 . 5 ( d ) )  for the mean temperature O and using the 
equality ($(+ - (9))) = ((4 - (9))2) relationship (5.9) can be rewritten: - 

( ( u . A B - ( u . A B ) ) ~ ) + (  IVB12)- R(u.AB)=O. (5.10) 

The variational problem is to find, at a given value of R, the maximum p of (u.A~) 
among all fields U, 6i that satisfy conditions (2.6(b)), (2.12), (5 .8) and (5.10). 
Howard (1963) solved this problem in the case when the fields U, & are characterised 
by a single horizontal wavenumber and obtained an upper bound for the Nusselt 
number Nu which increased proportional to R318 asymptotically. He also solved the 
variational problem without the constraint of the continuity equation (2.6(b)) in 
which case the upper bound increased proportional to R112. Using a hierarchy of 
boundary layers, Busse (1969) solved the full variational problem by allowing for a 
countable number of horizontal wavenumbers and found that Howard’s 11318 result 
is the first in the sequence of power laws describing the upper bound over finite 
ranges of the Rayleigh number and merging asymptotically into an RI12 law. The 
interesting feature of the upper bound curve is its similarity with the observed Nusselt 
number-Rayleigh number relationship. The upper bound exhibits kinks like those 
which have been observed by Malkus (1954a) (see $4.2) and even the locations of the 
kinks show approximate agreement, as the numerical confirmation of the analytical 
boundary results by Straus (1976) indicates. The transition in the upper bound from 
the 1 - a solution of Howard (1963) to the 2 - a solution of Busse (1969) is not unlike 
the transition to bimodal convection in that the second wavenumber characterises the 
horizontal dependence of a convection mode in the thermal boundary layers, But 
the physical basis for similarities at higher transitions is obscure since the time depend- 
ence of convection does not enter into the variational problem. 

The mathematical methods of the optimum theory, as the upper bound approach 
has been called in the context of general turbulent transport problems, are discussed in 
detail in a recent review article (Busse 1978). The Euler-Lagrange equations of the 
variational problem are closely related to the mean-field equations (5 . 5 ) .  This 
similarity becomes even more pronounced if the limit of infinite Prandtl number is 
considered, in which case the constraint (5.9) can be replaced by the equation of 
motion (2.6(a)) itself. Chan (1971) has considered this problem and derived an 
asymptotic upper bound for the Nusselt number which increases proportional to RI13 
and appears to be surprisingly close to the measured values. But the momentum 
advection terms neglected in the P= CO limit tend to enhance the heat transport as is 
evident from figure 6 and Kraichnan (1962) gives arguments suggesting an asymptotic 
RW dependence for the Nusselt number at moderate Prandtl numbers. Thus there 
seems to be not much room for a significant improvement of the general Prandtl 
number independent RI12 bound predicted by the optimum theory. 
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6. Instabilities of convection rolls 

6.1. High Prandtl number $tiids 

The mathematical analysis of the instabilities of convection rolls was originally 
motivated by the observations of transitions in the patterns of convection and by the 
fact that the range of wavelengths realised in experiments is small compared to that 
predicted by linear theory. The  comparison between theoretical predictions and 
experimental observations has shown that the analysis of instabilities can play a role 
beyond the original expectations. Since the transitions from two- to three-dimensional 
forms of convections often amount to relative!y small modifications of the convection 
rolls, the linear analysis of the strongest growing disturbances is capable of describing 
most of the three-dimensional features of convection beyond the transition. Thus the 
combination of the numerical solution of steady two-dimensional convection and the 
analysis of its instabilities goes a considerable way towards a full description of three- 
dimensional convection. 

The  question of the realisable range of wavelengths of convection rolls can be 
addressed already on the basis of the weakly non-linear theory discussed in $3 
(Schliiter et al 1965, Busse 1971). There are two main instability processes which 
prevent the realisation of rolls with wavenumbers (y. beyond a certain range in the 
neighbourhood of 0 1 ~ .  When the wavenumber of the roll is small, the zip-zag instability 
occurs, which induces wavy distortions of the rolls, as shown in figure 9(a) (plate). By 
lengthening the boundary between the rolls, it efiectively decreases the wavelength 
of the rolls. Experiments by Busse and Whitehead (1971) show that rolls with an 
angle of about 45 O to the original roll pattern tend to be established as final state, with 
wavenumbers close to the critical value ac. The instability mechanism which prevents 
the realisation of rolls with a short wavelength is not quite as elegant, but no less 
effective. The  cross-roll instability occurs in the form of rolls at a right angle to the 
original pattern as shown in figure 9(b) (plate). The theoretical predictions shown in 
figure 10 are in good agreement with the experimental observations in high Prandtl 
number fluids. At Prandtl numbers of the order of unity or less, the cross-roll insta- 
bility is replaced by the two-dimensional Eckhaus instability (see the discussion by 
Busse (1971)), but no experimental observations of this instability have yet been made. 

At higher Rayleigh numbers the wavelength of the growing cross-roll disturbances 
becomes smaller than that of the original roll pattern and instead of a final state of two- 
dimensional rolls the three-dimensional state of bimodal convection is established 
(figure 11 (plate)). Beyond R11=22 600 convection in the form of two-dimensional 
rolls cannot be realised in large Prandtl number fluids. The origin of the transition to 
bimodal convection lies in the instability of the thermal boundary layer as was pointed 
out in $5.3 and the predominance of the secondary roll in the boundary layers (Busse 
196713) confirms this interpretation. 

Figures 9, 11 and 15 (plates) show shadowgraph visualisation of convection in a 
layer heated from below. A schematic sketch of this experimental technique which was 
first used by Chen and Whitehead (1968) is given in figure 12. The  temperature 
dependence of the refractive index causes slight deflections when a nearly parallel 
beam of light traverses the convection layer. Accordingly, the pictures indicate 
the horizontal pattern of the vertically averaged temperature in the layer. A second 
feature of these experiments (see Busse and Whitehead (1971) for a more detailed 
description) is the use of controlled initial conditions. By generating small two- 
dimensional temperature perturbations before the Rayleigh number of the convection 
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Figure 9. Instabilities of convection rolls in a fluid layer with P -  100: (a) zig-zag instability, 
(h )  cross-roll instability. For further details sce I3usse and \Vliitehead (1971). 
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Figure 11. Pattern of bimodal convection \\.it17 an imperfection for P -  100, R - 5  x lo4. 
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Figure 10. Region of stable convection rolls (shaded) near the critical Rayleigh number for 

large Prandtl number, The lower curve gives R(oc) from linear theory. 

layer is raised above the critical value, rolls with a prescribed wavelength can be 
induced. Thus the predictions of theory can be tested with a much higher degree of 
accuracy than in experiments with uncontrolled initial conditions. The laboratory 
observations have been found in good agreement with the theoretical predictions for 
Prandtl numbers of the order of 5 and higher which are accessible by the experimental 
method. 

6.2. Low Prandtl number jluids 

While the stability properties of large Prandtl number convection depend on the 
non-linear term in the heat equation (2 .6(c) ) ,  the non-linear momentum advection 
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Figure 12. Schematic sketch of the shadowgraph visualisation method and the technique of 
producing controlled initial condition in the convection layer. 
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terms of the equation of motion (2 ,6(a))  play a dominant role in low Prandtl number 
instabilities of convection. By considering convection rolls in the case of stress-free 
boundaries it is possible to develop an analytical stability theory in the limit of vanish- 
ing Prandtl number (Busse 1972). In  this limit the instability of convection rolls 
occurs in the form of oscillations which propagate along the rolls as shown in figure 5 .  
Since the critical Rayleigh number RIII for the onset of oscillations is given by RIII= 
R, + AP2 for small P the stability range of stationary rolls vanishes for P-tO. In  the 
case of rigid boundaries, numerical methods must be applied to determine the stability 
region of convection rolls. The  results of Clever and Busse (1974) indicate that a small 
but finite region where stationary rolls are stable remains in the limit of vanishing 
Prandtl number. 

Because of their particular symmetry, two-dimensional convection rolls do not 
have a vertical component of vorticity. From the equation of motion it can also be 
seen that arbitrary three-dimensional convection cannot acquire a vertical component 
of vorticity in the limit of infinite Prandtl number. The oscillatory instability is 
characterised by a strong component of vertical vorticity and thus represents the main 
mechanism in which this degree of freedom of motion is occupied in the development 
of turbulent convection. The  influence of the vertical component of vorticity on the 
non-linear properties of convection is not well understood. The  numerical computa- 
tions of time-dependent convection in air by Lipps (1976) indicate a decrease of 
dNu/dR at the onset of the oscillatory instability at R N  5 x 103, but experimental 
evidence suggests that an increase occurs at somewhat higher values of R of the order 
of 8 x 103. 

Another feature of oscillatory convection that is of interest, from the point of view 
of the general theory of turbulence, is the transition to an aperiodic time dependence. 
In  extending the linear stability analysis, McLaughlin and Martin (1975) analysed the 
non-linear interaction of several modes of oscillation and found an aperiodic time 
dependence for four interacting modes. They interpret this result as an example of 
the sudden transition to turbulence which occurs according to Ruelle and Takens 
(1971) after no more than three bifurcations to periodic or quasi-periodic states have 
taken place. This hypothesis contradicts the traditional view that the transition to 
turbulence occurs gradually in cases such as convection, by a series of bifurcations to 
increasingly complex states of fluid flow. More detailed computations will be required 
to clarify the onset of aperiodic time dependence in convection and to demonstrate 
that the results do not depend on the particular choice of truncation in the modal 
expansion. 

6.3. Intermediate Prandtl number jluids 

The problem of determining the boundaries of the region of stable convection 
rolls in the R-a plane becomes more complex at intermediate Prandtl numbers 
because, in addition to the mechanisms of instability mentioned above, two additional 
mechanisms must be considered, both of which disappear in the limits of small as well 
as large Prandtl numbers. The  numerical computations by Clever and Busse (1974, 
1978) and Busse and Clever (1978) have been carried out only for selected values of P. 
But by combining the stability diagrams into the three-dimensional graph shown in 
figure 13, a fairly complete picture of the stability region of convection rolls evolves. 

The  predominant instability at Prandtl numbers of the order of unity is the skewed 
varicose instability which tends to distort the roll pattern in the way shown in figure 14. 
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I t  does not lead to a new form of convection, but instead transforms the rolls into rolls 
of larger wavelength, as is indicated by the experimental observations (Busse and 
Clever 1978). The  fact that the characteristic wavelength of convection increases 
with increasing Rayleigh number has long been a puzzling experimental result, 
especially in fluids with moderate Prandtl numbers, such as air. The  hypothesis that 
wavelengths corresponding to a maximum heat transport are preferred suggests that 
the wavelength should decrease rather than increase with increasing Rayleigh number 
in contrast to the experimental evidence. Contrary to this idea, the skewed varicose 

i 
2oi 

1 0 - 3 ~  1 

Figure 13. Region of stable convection rolls in the three-dimensional R-P-a space. The thick 
curves represent computed stability boundaries for the oscillatory (OS), the 
skewed varicose (SV), the cross-roll (CR), the knot (KN), and the zig-zag (22) 
instabilities. The other curves represent approximate interpolations from results 
of Busse and Clever (1978). The stability boundary for P= 300 actually represents 
the computations of Busse (1967b) for P =  M) which are expected to give a good 
approximation for P= 300. 
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Figure 14. Qualitative sketch of the distortion of a horizontal pattern of convection rolls by 
the skewed varicose instability. Full and broken lines indicate approximately the 
maxima of up- and down-going motion. 

instability which originates from an interaction of the non-linear terms in the equation 
of motion and the heat equation causes a shift towards larger wavelength in good 
agreement with the experimental data (Clever and Busse 1978). 

The other new instability at intermediate Prandtl numbers is the knot instability, 
which may be regarded as a modification of the cross-roll instability. In  contrast to 
the latter, the wavelength of the knot instability is much larger than 2n-TT/cyc and instead 
of a new roll pattern at right angles to the original one, a spoke pattern form of con- 
vection is introduced, as shown in figure 13. This kind of convection is organised in 
large-scale cells which are nearly steady and small-scale spoke-like sheets of hot and 
cold fluid which erupt from the lower and upper thermal boundary layer, respectively. 
The  'spokes' exhibit a highly fluctuating time dependence on the time scale of convec- 
tive circulation time. In  general, the spokes tend to move towards the spoke centre. 

The spoke pattern cells have some similarity with the hexagonal cells discussed in 
93.3 and 4..1. In  contrast to the latter, spoke pattern cells occur under symmetric 
conditions and cells with rising and descending motion at the centre are both realised 
at the same time. At Rayleigh numbers of the order of 105-107, spoke pattern convec- 
tion represents the dominant form of convection over a wide range of Prandtl numbers 
as has been discussed in $4.3. 

The transition from rolls to spoke pattern convection occurs through the inter- 
mediate stages of bimodal convection and oscillatory bimodal convection for Prandtl 
numbers larger than about 10, depending on the wavelength. Indications for the 
competition between the knot instability and the small-scale cross-roll instability 
leading to bimodal convection can be seen at a Prandtl number of 7 ,  as shown in 
figure 15 (plate). The  oscillatory instability of bimodal cells occurs in a similar way as 
the oscillatory instability of rolls, except that only standing waves are permitted by the 
three-dimensional nature of the basic pattern. The  theoretical dispersion relation can 
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Figure 15. Onset of knot and cross-roll instabilities. 'I'hc latter is characterised by a small 
wavelength and disappears soon. The convection fluid is methyl alcohol, with a 
Prandtl number of 7, and the Rayleigh number is approximately 2-1 x lo4. 
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be applied with good success and even the critical Rayleigh number for the onset of 
oscillations (given by the upper boundary of the shaded region in figure 5 )  represents 
a continuation of the theoretical curve of Clever and Busse (1974) into the domain of 
bimodal convection. The instability leading from oscillatory bimodal convection to 
spoke pattern convection has been called collective instability in an earlier paper 
(Busse and Whitehead 1974), but it appears to represent essentially the same mech- 
anism as the knot instability. Thus the results of the stability analysis in the case of 
rolls turns out to be useful for the interpretation of transitions occurring in the more 
complex forms of three-dimensional convection. 

7. Convection in rotating systems 
7.1. General discussion 

Convection processes of geophysical and astrophysical interest usually occur in 
rotating systems. The Earth’s rotation has relatively little effect on atmospheric 
convection because the circulation time of the latter, measured in terms of hours, at 
most, is small compared to the period of rotation. But in the Earth’s core the influ- 
ence of rotation is much more significant because of the larger length scales. Similarly 
convection in the solar atmosphere shows no measurable effect of rotation on the 
granulation scale, but noticeable influence on the scale of the supergranulation, and the 
dynamics of the giant cells, representing the largest scale of convection in the Sun, 
appears to be dominated by the Coriolis force. 

Convection in a rotating system is of special interest because it exhibits some non- 
linear phenomena which do not occur in a non-rotating system. The most important 
is the generation of mean flows in the form of a differential rotation by the action of the 
Reynolds stresses of the convective motion. The appearance of unusual forms of 
instability also seems to be a peculiarity of rotating systems. Because of the larger 
experimental effort required for laboratory investigations, convection in a rotating 
system has not yet received the attention it deserves. Perhaps the interesting phen- 
omena mentioned in the following will stimulate some further research. 

Any discussion of nearly steady motions in a rotating system must start with the 
fundamental dynamic constraint known as the Proudman-Taylor theorem. Since 
only the pressure gradient can balance the Coriolis force in the limit when the viscosity 
and the amplitude of motions are small, the curl of the Coriolis force must vanish. 
This requires the Proudman-Taylor condition : 

Q . V U = Q  (7.1) 
i.e. the velocity field U must not depend on the coordinate in the direction of the 
angular velocity vector 51. 

Two different cases of convection can be distinguished in a rotating system 
depending on the inclination of the convection layer with respect to the vector Q. 
When the layer is parallel to Q, convection rolls aligned with the axis of rotation can 
satisfy condition (7.1) and the Coriolis force can be balanced by the pressure gradient. 
In  these ideal circumstances, convection occurs in the same way as in a non-rotating 
system, except for the alignment and the associated loss of horizontal isotropy (see 
figure 16(a)). Deviations from the perfect validity of condition (7.1) are of great 
practical importance and are discussed in 97.3. 

When the vector Q is inclined with respect to the convection layer, motions which 
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Figure 16. (a) Convection rolls in a layer rotating about a parallel axis are aligned with the 
axis. (b) Convection rolls in a layer rotating about a perpendicular axis. 

satisfy both condition (7.1) and the condition that the normal velocity vanishes at the 
boundaries must be parallel to the boundaries of the layer and thus parallel to the 
isotherms of the basic state. Convective motions releasing potential energy must 
therefore violate condition (7.1). By decreasing the horizontal length scale of convec- 
tion, viscous friction can become comparable to the Coriolis force and the constraint 
(7.1) can be avoided at the expense of a large increase of the critical Rayleigh number 
for the onset of convection. The principle example for this kind of balance is the 
problem of convection in a horizontal layer rotating about a vertical axis (see figure 
W)). 

7.2. Convection with a vertical axis of rotation 

Convection in a layer heated from below and rotating about a vertical axis shares 
with the case of a non-rotating layer discussed in $3 the property of the degeneracy 
of the linear problem caused by the horizontal isotropy of the layer. In  contrast to the 
non-rotating case, the onset of convection occurs in the form of an oscillatory mode 
when the Prandtl number is sufficiently small and the Taylor number is not too low. 
The latter is defined by: 

and represents the square of the ratio between Coriolis and frictional force. 
The degeneracy of the linear problem can be attacked in analogy to the non- 

rotating case by first considering the constraints imposed by the solvability conditions 
of the perturbation expansion for the non-linear problem and a subsequent stability 
analysis. Kuppers and Lortz (1969) found that two-dimensional convection rolls 

T = 4 ~ v 4 p  (7.2) 
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represent the only stable steady solution as in the non-rotating case. But for T >  T,, 
even the rolls are unstable according to Kuppers and Lortz. For stress-free bound- 
aries, Tc has the value 2285 at infinite Prandtl number and decreases slightly with 
decreasing P. Since oscillatory modes of convection are not possible for Prandtl 
numbers larger than unity, no steady or time periodic solution appears to be realisable 
in the neighbourhood of the critical Rayleigh number where the perturbation analysis 
is valid. 

A more detailed inspection of the time-dependent problem reveals that an initially 
established pattern of rolls does indeed become unstable to disturbances in the form 
of rolls inclined with an angle of about 60" in the prograde direction with respect to the 
given rolls. As the disturbance rolls grow, the original rolls decay and the new roll 
pattern reaches the equilibrium amplitude of convection. At that point the instability 
process repeats itself with the new disturbance rolls appearing at an angle of about 
120". The  time scale of this cyclic process of instability is certainly governed by the 
initial amplitudes of the disturbances. If it is assumed that the experimental noise 
can be described by a constant amplitude for all disturbances of a given wavenumber, 
the process of cyclic instability leads to solutions which are quasi-periodic in time 
(Busse and Clever 1979). For a more realistic description of the problem, statistical 
assumptions about the experimental noise must be introduced and accordingly the 
time dependence of the convection will acquire statistical properties. Thus the 
problem of convection in a rotating layer exhibits a basic property of turbulent 
systems in that at any one time a solution is realised among a manifold of possible 
solutions, all of which are unstable with respect to some other solution of the manifold, 

The subcritical onset of finite amplitude convection is another non-linear phen- 
omenon occurring in a rotating layer. Like the onset of oscillatory convection, and 
typically in close competition with it, subcritical steady finite amplitude convection 
takes place if the Prandtl number is sufficiently small. Although both phenomena are 
favoured by small Prandtl numbers, oscillatory convection and subcritical steady 
convection do not seem to have a direct physical connection. In  contrast to the case 
of a negative contribution EN) in expression (3 ,2 (b) )  which is responsible for the 
subcritical hexagon solution displayed in figure 4, a negative value of R(2) is the cause 
of subcritical convection rolls in a rotating layer (Veronis 1959, Kuppers 1970). The  
non-linear terms in the equation of motion are capable of partially releasing the 
constraint of the Coriolis force. In  his measurements of the convective heat transport, 
Rossby (1969) finds that the release of the rotational constraint is so efficient at higher 
Rayleigh numbers that the heat transport is larger than in the non-rotating case in a 
certain range of Taylor numbers. Numerical computations (Veronis 1968) do not 
confirm this effect unless significant changes in the wavelength of convection are 
assumed (Somerville 1971). Thus it appears that the increase of the heat transport 
is mainly caused by the absence of instabilities, in a rotating layer, which tend to 
lengthen the wavelength of convection in a non-rotating layer. 

7.3. Convection with a horizontal axis of rotation 

Convection with a 'horizontal' axis of rotation can be easily realised in a laboratory 
experiment if the centrifugal force is used in the place of gravity. By rotating a 
cylindrical fluid annulus, cooled from within and heated from the outside, the con- 
figuration of figure 14(a) can be achieved. Even if the Earth's gravity is not small in 
comparison with the centrifugal force, it does not influence the convection when the 
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rotation axis is vertical. Since in this case the convection flow is perpendicular to 
the Earth's gravity, the latter does not contribute to the energy balance. 

The top and bottom surface of the annulus cause some deviations from the 
Proudman-Taylor condition (7.1). When the two boundaries are parallel, the 
deviation is minimal because the velocity field adjusts to the boundary condition for 
the tangential component within a thin boundary layer of thickness (v / i2 )1 /2 .  More 
interesting is the case of non-parallel conical surfaces, as shown in figure 17. Assuming 
that 71 =tan I$ is a small number and that the cylindrical boundaries of the annulus 
are stress-free, the Rayleigh number for the onset of convection rolls with the azi- 
muthal wavenumber 01 becomes : 

R ( 0 1 ) = ( ~ 2 + 0 1 2 ) 3 / 0 1 2 +  [27Pd/L(1 +P)]2T(~2+012)-1 (7 3) 

Figure 17. Convection in a rotating annulus with conical top and bottom boundaries. 

in place of expression (2. lo), where L is the height of annulus. When (7.3) is mini- 
mised with respect to 01 in the limit of large, values of the Taylor number T, the 
minimising wavenumber grows proportional to and the critical Rayleigh number 
approaches the dependence : 

Rc = 3[27Pd/L (1 + P)]4/3( T/2)2/3. (7 * 4) 
The more detailed analysis (Busse 1970a, Busse and Carrigan 1974) shows that the 
deviation from the Proudman-Taylor condition (7.1) causes a time dependence in 
addition to the increase of the azimuthal wavenumber. The convection columns 
propagate with a phase velocity proportional to $2 in the prograde (retrograde) 
direction when the height of the annulus decreases (increases) with the distance 
from the axis. 

Of particular interest for geophysical and astrophysical applications is the genera- 
tion of a mean flow by the fluctuating convection velocity field. This process does 
occur when the angle 4 of inclination becomes a function of the distance from the axis. 
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Using perturbation theory, it can be shown that the mean azimuthal component of the 
Reynolds stress does not vanish in this case, and a differential rotation proportional to 
the radial curvature of top and bottom boundaries is produced, as shown in figure 18. 
This effect, as well as the above-mentioned properties of the convection columns, can 
be measured in laboratory experiments (Busse and Carrigan 1974, Busse and Hood 
1978) and good agreement with the theoretical predictions is generally found. 

The annulus shown in figure 16 may be regarded as a cylindrical section of a 
sphere and, indeed, the theory developed for the annulus can be applied as a first 
approximation to the problem of convection in a rotating self-gravitating sphere 
heated from within (Busse 1970a). This application is possible because the criterion 
R > R, for convective instability given by expression (7.4) becomes independent of 
the thickness d of the annulus for a given temperature gradient, since the factor d4 can 
be cancelled from both sides of the inequality R > R,. The fact that gravity is directed 
inward instead of the outward pointing vector of figure 16 does not cause any difference 
as long as the temperature gradient is reversed at the same time. The  property that 
only the product of temperature gradient and gravity vector enters the dynamics of 
the problem is the basis for the laboratory simulation of convection in rotating self- 
gravitating spheres using the centrifugal force (Busse and Carrigan 1976). Even 
though the angle of the inclination of the boundaries is of the order of unity in the 
case of the sphere, the laboratory observations are in reasonable agreement with the 
prediction of the perturbation theory. A more exact theoretical treatment of the prob- 
lem of convection in a rotating sphere indicates that the perturbation approximation 
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Figure 18. Differential rotation generated by convection in an annulus, with curved top and 
bottom boundaries. 
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corresponds to a non-linear solution which ceases to exist in the linear limit (Soward 
1977). 

Because of the latitudinal inhomogeneity of the heat transport, the non-linear 
properties of convection in a rotating sphere or in rotating spherical shells are compli- 
cated and require numerical computations (Gilman 1977). Only in the limit of thin 
spherical shells can relatively simple results be obtained for Taylor numbers T less 
than about 102ro/d, where T is based on the thickness d of the shell and where YO is 
its radius. The experimental photograph (figure 19) (plate) gives a good picture of 
the convection realised in this case, which is described by the spherical harmonic 
P" (cos 0) exp (im+). As in the case of the annulus with curved top and bottom 
surfaces (figure 18), the non-linear terms in the equation of motion lead to a non- 
vanishing mean Reynolds stress in the azimuthal direction which causes the fluid to 
rotate faster at the equator than at the poles. 

When this effect was discovered, it presented itself as a natural explanation for the 
differential rotation of the Sun (Busse 1970b, 1973). The  simple mathematical model 
describes the observed features of the solar differential rotation qualitatively correctly 
and fits the data even quantitatively if an appropriate eddy viscosity is introduced to 
take into account the effect of the small-scale turbulence of the solar convection zone. 
While confirming the analytical perturbation theory in the low Rayleigh number 
regime, the numerical computations by Gilman (1977) show the opposite phenomenon 
of a differential rotation increasing with latitude at higher Rayleigh numbers where the 
perturbation theory is no longer applicable. I t  thus seems that low Rayleigh number 
convection provides a better approximation for the highly turbulent convection systems 
encountered in the astrophysical and geophysical contexts. But before such a general 
statement can be made, a better understanding of the relationship between convection 
in stars and convection on laboratory scales is needed. 

8. Concluding remarks 

In  selecting the examples of non-linear properties of thermal convection described 
in this review, the attention has been focused on those cases which correspond to the 
simplest physical conditions and which have been investigated in the greatest detail. 
The interesting non-linear effects exhibited by doubly diffusive convection processes, 
by penetrative convection and by convection in the presence of magnetic fields have 
not been mentioned, and for information the reader is referred to literature mentioned 
in the introduction, in particular the article of Spiegel (1972). Although a number of 
new phenomena occur when additional physical effects enter the problem of thermal 
convection, most of them can be understood by methods of analysis similar to those 
outlined in the preceding sections. Whenever non-linear processes dominate, as in 
most geophysical and astrophysical applications of convection theory, the simple case 
of a Boussinesq fluid layer heated from below provides the foundation on which more 
detailed models can be built. 

The desire to understand convection processes observed in the Earth's atmosphere 
and on the surface of the Sun has long been a major motivation for the investigation 
of non-linear properties of convection. The  discrete scales on which convection 
appears to occur in the Earth's as well as the solar atmosphere is perhaps the most 
puzzling phenomenon waiting for an explanation. On the Sun, three distinct modes 
of convection can be distinguished corresponding to granulation, supergranulation, 
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Figure 19. Convection in a rotating spherical shell of radius ro=5 cm, with a gap width 
d=0.32 cm. The motion is made visible by a suspension of flaky particles which 
tend to align with the shear. 
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and giant cells separated by a factor of 10 in their horizontal scales. In  the Earth’s 
atmosphere convection cells become visible in the form of patterns of cumulus clouds 
and the horizontal scale varies from 100 m to nearly 100 km. The  latter value is 
approached in the case of mesoscale convection whose surprisingly regular structure 
was discovered by satellite photography. Although observed cloud patterns exhibit 
rather well-defined wavelengths, it is not clear whether a similar hierarchy of scales 
exists as in the solar convection zone. The  answer to this question is complicated by 
the fact that other atmospheric processes besides convection produce regular patterns 
of clouds. 

The  discrete scales exhibited by terrestrial and solar atmospheric convection are 
puzzling because they contradict the notion that the dynamics of turbulent fluids are 
governed by random processes in the limit of asymptotically high Rayleigh and 
Reynolds numbers. On the other hand, the custom of interpreting the similarity 
between atmospheric convection and laminar convection in laboratory experiments in 
terms of eddy diffusivities does not have a sound physical basis and does not do justice 
to the observed hierarchy of scales. If anything, the investigation of the instabilities 
of laminar convection and the transition to more complex forms of motion has made 
it more difficult to draw simple analogies between patterns observed in the laboratory 
and on an atmospheric scale. Thus there remains a broad gap between the non-linear 
processes that we have learned to understand at low Rayleigh numbers and the order 
that seems to emerge at very high values of this parameter. 

That discrete structures in highly turbulent systems are most evident in the case 
of convection in the form of the kinks in the heat transport curve mentioned in $4.2 
and in the form of discrete wavelengths is no accident. Other turbulent fluid systems 
usually do not offer the kind of information provided by the view of a two-dimensional 
pattern of convection as a function of time. Regular structures become apparent in 
this case which may remain unrecognised if properties are measured only at a few 
points as a function of time. Other advantages of thermal convection as a particularly 
simple realisation of turbulent fluid flow are the horizontal isotropy and the relatively 
simple energy source, which makes the problem more accessible to theoretical investi- 
gation. For these reasons it seems likely that thermal convection will become an 
even more important model for research on non-linear processes in fluid mechanics 
than it has been in the past. 

Acknowledgments 

The author gratefully acknowledges the support of his research on thermal convec- 
tion by the Atmospheric Sciences Section of US National Science Foundation. 

References 

Ahlers G and Behringer R P  1978 Phys. Rev. Lett. 40 712-6 
Berge P 1975 Fluctuations, Instabilities, and Phase Transitions ed T Riste (New York: Plenum) 
Busse F H 1962 Das Stabilitatsverhalten der Zellular Konvektion bei endlicher Amplitude (Disser- 

tation, University of Munich) (Engl. trans. by S H Davis Rand Rep. LT-66-19 (Rand Corp, 
Santa Monica, California, USA)) 
- 1967aJ. Fluid Mech. 30 62549 
- 1967b J. Math. Phys. 46 140-50 
- 1967c J. Fluid Mech. 28 223-39 
- 1969 J. Fluid Mech. 37 457-77 



1966 F H Busse 

- 1970a J .  Fluid Mech. 44 441-60 

- 1971 Instability of Continuous Systems ed H Leipholz (Berlin : Springer-Verlag) pp41-7 
- 1972 J .  Fluid Mech. 52 97-1 12 
- 1973 Astron. Astrophys. 28 27-37 
- 1978 Adv. Appl. Mech. 18 77-121 
Busse F H and Carrigan C R 1974 J ,  Fluid Mech. 62 579-92 
- 1976 Science 191 81-3 
Busse FH and Clever R M  1978 J. Fluid Mech. in press 
- 1979 Springer Lecture Notes in Physics in press 
Busse FH and Hood L 1978 in preparation 
Busse F H and Whitehead J A 1971 J .  Fluid Mech. 47 305-20 
- 1974J. Fluid Mech. 66 67-79 
Carroll J J 1971 The Structure of Turbulent Convection (PhD Dissevtation Department of 

Chan S-K 1971 Studies Appl. Math. 50 13-49 
Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford : Clarendon) 
Chang Y P  1957 Trans. Am. Soc. Mech. Engrs 79 1501-13 
Chen M M  and Whitehead J A  1968J. Fluid Mech. 31 1-15 
Chorin A J 1967 J .  Comp. Phys. 2 12-26 
Chu T Y  and Goldstein R J 1973 J .  Fluid Mech. 60 141-50 
Clever R M  and Busse FE1 1974J. Fluid Mech. 65 625-45 
- 1978J. Appl. Math. Phys. 29 
Davis S 14 and Segel L A  1968 Phys. Fluids 11 470-6 
Deardo& J W 1964J. Atmos. Sci. 21 419-38 
- 1965 Phys. Fluids 8 1027-30 
Dubois M and Berge P 1978 J .  Fluid Mech. 85 641-53 
Fitzjarrald D E  1976 J .  Fluid Mech. 73 693-719 
Fromm J E  1965 Phys. Fluids 8 1757-69 
Gershuni G Z  and Zhukovitskii E M  1976 Convective Stability of Incompressible Fluids (Engl. 

trans. by D Louvish (Jerusalem: Keter Publications)) 
Gilman P A  1977 Geophys. Astrophys. Fluid Dyn. 8 93-136 
Goldstein R J and Chu T Y  1971 Prog. Heat Mass Transjev 2 55-75 
Gollup J P, Hulbert S L, Dolny G M and Swinney H L 1977 Photon Corvelution Spectroscopy 

Gorkov LP  1957 Sov. Phys.-JETP 6 311-5 
Gough D 1977 Problems of Stellar Convection ed E A Spiegel and J P Fahn Springer Lectuee 

Gough D D, Spiegel E A  and Toomre J 1975 J .  Fluid Mech. 68 695-719 
Graham A 1933 Phil. Trans. R. Soc. A 232 285-96 
Gray D D and Giorgini A 1976 Int. J .  Heat Mass Transfer 19 545-51 
Herring J R 1963 J .  Atmos. Sci. 20 325-38 
- 1964 J. Atmos. Sci. 21 277-90 
Howard L N 1963 J .  Fluid Mech. 17 405-32 
- 1965 Woods Hole Oceanographic Inst. GFO Notes No 65-51, I, pp124-6 
- 1966 Proc. 11th Int. Congr. of Applied Mechanics, Munich, 1964, ed E1 Gortler (Berlin: 

Jones CA, Moore D R  and Weiss N O  1976 J .  Fluid iMech. 73 353 
Joseph D D 1976 Stability of Fluid Motions 2 (Berlin: Springer-Verlag) 
Kirchgassner K 1977 Application of Bifurcation Theory ed P HRabinowitz (New York: 

Koschmieder E L 1966 Beitr. Phys. Atmos. 39 1-1 1 
__ 1974 Adv. Chem. Phys. 26 177-212 
Kraichnan R H  1962 Phys. Fluids 5 1374-89 
Krishnamurti R 1968 J .  Fluid Mech. 33 457-63 
- 1970a J. Fluid Mech. 42 295-307 
- 1970b J.  Fluid Mech. 42 309-20 
- 1973 J. Fluid Mech. 60 285-303 
Kuo H L  1961 J. Fluid Mech. 10 611-34 

- 1970b Astrophys. J.  159 629-39 

Meteorology, University of California, Los Angeles) 

and Velocimetry ed I1 F Cummins and ERPike (New York: Plenum) pp425-39 

Notes in Physics 71 15-56 

Springer-Verlag) ppl109-15 

Academic) pp149-74 



Non-linear properties of thermal convection 1967 

Kuppers G 1970 Phys. Lett. 32A 7-8 
Kuppers G and Lortz D 1969 J. Fluid Mech. 35 609-20 
Lipps F B 1976 J. Fluid Mech. 75 113-48 
McLaughlin J B and Martin P C 1975 Phys. Rev. A 12 186-203 
Malkus W V R  1954a Proc. R. Soc. A 225 185-95 

Malkus W V R  and Veronis G 1958 J .  Fluid Mech. 4 225-60 
Mihaljan J M 1962 Astrophys. J. 136 1126-33 
Moore D R  and Weiss N 0 1973 J. Fluid Mech. 58 289-312 
Normand C, Pomeau Y and Velarde M G 1977 Rev. Mod. Phys. 49 581-624 
Oberbeck A 1879 Annalen der Physik und Chemie 7 271 
Palm E 1960 J .  Fluid Mech. 8 183-92 
- 1972 Int. J .  Heat Mass Transfer 15 2409-17 
- 1975 Ann. Rev. Fluid Mech. 7 39-61 
Pellew A and Southwell R V  1940 Proc. R. Soc. A 176 312-43 
Plows W H 1971 Numerical Studies of Laminar, Free Convection in a Horizontal Fluid Layer 

Priestley C H B 1954 Rust. J .  Phys. 7 176 
Proctor M R E  1977 J .  Fluid Mech. 82 97-1 14 
Rayleigh (Lord) 1916 Phil. Mag. 32 529-46 
Reid W H  and Harris D L  1958 Phys. Fluids 1 102-10 
Reiss E L  1977 Application of Bifurcation Theory ed P H Rabinowitz (New York: Academic) 

Roberts G 0 1978 Geophys. Astrophys. Fluid Dyn. in press 
Roberts P H 1966 Non-Equilibrium Thermodynamics, Variational Techniques, and Stability 

Robinson J L 1969 Int. J .  Heat Mass Transfer 12 1257-65 
Rossby si T 1969 3’. Fluid Mech. 36 309-35 
Ruelle D and Takens F 1971 Commun. Math. Phys. 20 167 
Schluter A, Lortz D and Busse F H 1965 J .  Fluid Mech. 23 129-44 
Schmidt R J  and Saunders O A  1938 Proc. R. Soc. A 165 216-28 
Schneck P and Veronis G 1967 Phys. Fluids 10 927-30 
Segel L A  and Stuart J T 1962 J .  Fluid Mech. 13 289-306 
Silveston P L 1958 Forsch. Ing. Wes. 24 29-32, 59-69 
Somerscales E F C and Dougherty T S 1970 J .  Fluid Mech. 42 755-68 
Sonierscales E F C  and Parsapour €I 1976 Bull. Am. Phys. Soc. 21 1236 
Somerville R C J 1971 Geophys. Fluid Dyn. 2 247-62 
Soward A M  1977 Geophys. Astrophys. Fluid Dyn. 9 19-74 
Spiegel E A  1962 Mecaniqzie de la Turbulence (Paris: CNRS) pp181-201 
- 1971 Ann. Rea. Astron. Astrophys. 9 323-92 
- 1972 Ann. Rev. Astron. Astrophys. 10 261-304 
Spiegel E A  and Veronis G 1960 Astrophys. J. 131 442-7 
Stewartson K 1965 Non-Equilibriuna Thermodynamics, Variational Techniques and Stability 

Straus J M 1972 J .  Fluid Mech. 56 353-74 
__ 1976 Dyn. Rtmos. Oceans 177-90 
Stuart J T 1979 Application of BiJurcation Theory ed PH Rabinowitz (New York: Academic) 
Threlfall D C 1975 J. Fluid ivech. 67 17-28 
Tippelskirch E1 1956 Beitr. Phys. Atmos. 29 37-54 
Toomre J, Gough D 0 and Spiegel E A  1977 J .  Fluid Mech. 79 1-31 
Turner J S 1973 Buoyancy Effects in Fluids (Cambridge : Cambridge University Press) 
Veronis G 1959 J .  Fluid iwech. 5 401-35 
- 1966 J .  Fluid Mech. 26 49 
- 1968 J .  Fluid Mech. 31 113-39 
Wesseling P 1969 J. Fluid Mech. 36 625-37 
Whitehead J A and Parsons B 1978 Geophys. Astrophys. Fluid Dyn. 9 201-17 
Willis G E and Deardorff J W 1967 Phys. Fluids 10 1861-6 
- 1970 J .  Fluid Mech. 44 661-72 
Willis G E, Deardorff J W and Somerville R C 1972 J .  Fluid Mech. 54 351-67 

- 1954b PYOC. R. SOC. A 225 196-212 

Heated from Below (PhD Thesis University of California, Berkeley) 

pp37-71 

ed R Donnelly et a1 (Chicago : University of Chicago Press) pp125-62 

ed RDonnelly et a1 (Chicago: University of Chicago Press) pp158-62 


