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Distant side-walls cause slow amplitude modulation 
of cellular convection 

By LEE A. SEGEL 
Rensselam Polytechnic Institute, Troy, N.Y 

(Received 4 December 1968 and in revised form 24 March 1969) 

The effect of vertical boundaries on convection in a shallow layer of fluid heated 
from below is considered. By means of a multiple-scale perturbation analysis, 
results for horizontally unbounded layers are modified so that they ‘fit in’ to 
a rectangular region. The critical Rayleigh number and critical wave-number are 
determined. Motion is predicted to have the form of finite ‘rolls’ whose axes are 
parallel to the shorter sides of the dish. Aspects of the non-linear development 
and stability of this motion are studied. The general question of convective 
pattern selection in a bounded layer is discussed in the light of available theo- 
retical and experimental results. 

1. Introduction 
This paper deals with an aspect of the theory of convection in a bounded hori- 

zontal layer of fluid heated from below. Almost all previous theoretical investiga- 
tions of this problem have assumed that the layer is unbounded. (When we 
speak of an unbounded or a bounded layer we shall be referring to whether or not 
the layer extends to infinity in horizontal directions.) A premise of such investiga- 
tions has been that the inevitable presence of side-walls has little or no effect in 
a sufficiently shallow layer. What follows is a first attempt to demonstrate that 
the concept of slow amplitude modulation can be employed to show how shallow 
the layer need be if the side-walls are to have ‘essentially ’ no effect and to estimate 
what their effect is if that effect is not too large. 

Readers unfamiliar with developments in convection theory for unbounded 
layers might find it useful to consult one or more of the surveys by Brindley 
(1967), Gortler & Velte (1967), or Segel (1966). Directly relevant is the recent 
paper by Davis (1967), who considered rectangular dishes with length to depth 
ratios which varied from to 6. His linear stability analysis, using the Galerkin 
method, showed that convection should commence in the form of finite rolls 
parallel to the shorter side-wall of the dish. If co-ordinates are chosen so that the 
side-walls are parallel to the 5- and y-axes then the two possible types of finite 
rolls are calledfinite y rolls andfinite x rolls. The latter is a motion which is periodic 
(or nearly so) in the 2-direction and has a zero velocity component in the y-direc- 
tion (v 3 0) .  Finite y rolls have a corresponding definition. As Davis did, we 
emphasize the three-dimensional nature of finite rolls, which have no velocity 
component in the axial direction but depend on all three spatial co-ordinates. 



204 L. A .  Xegel 

This is to be contrasted with (ordinary) rolls in unbounded layers whose velocity 
does not vary in the axial direction. 

This paper, like that of Davis, considers rectangular side-walls. It is based on 
the idea that only slow spatial changes need be introduced to ‘ fit ’ the solution for 
an unbounded layer into a shallow dish. The idea finds expression in a multiple- 
scale perturbation analysis which has close similarities to earlier work by Benney 
& Newell (1967) on slow spatial modulation of water waves (in an unbounded 
medium). 

We shall show that in a shallow bounded layer the amplitude A(T,X ,  Y )  
of z rolls satisfies 

(1.1) 

Here 7 ,  X and Y are stretched t (time), z and y variables and a,, a,, a12, /3, A and X 
are constants. By neglecting non-linear terms in (1.1) we shall ascertain how the 
presence of vertical boundaries alters the results of linear stability theory for 
an unbounded layer. When variation with Y is negligible we shall determine the 
steady solution of (1.1) which is almost certainly the limiting flow (as t -+ 00) 

when the motionless layer becomes unstable. We shall conclude with some com- 
parison with experiment and some remarks on the understanding which should 
emerge from a full exploitation of the ideas introduced here. 

I A ,  = A + 6,AXx - 2i4,  A,, - 6, A,,, y - PA”, 
A = O  at X = O , h ,  A = A , , = O  at Y = O , Z .  

2. Derivation of the amplitude equation 
In  formulating dimensionless governing equations we shall use horizontal 

co-ordinates x and y and vertical co-ordinate z, corresponding velocity com- 
ponents (u, v, w) ,  temperature 8, and time t .  These dimensionless length, velocity, 
temperature and time variables will be referred to the scales d,  K / d ,  ~ v / c t , g d ~  
and d 2 / K  respectively. Here d is the distance between two horizontal planes 
bounding a fluid with constant coefficients of thermal expansion, kinematic 
viscosity and thermal conductivity denoted by a,, v, and K.  g is the acceleration 
of gravity, which acts vertically downwards, in the direction of decreasing z. 
With this notation, the Boussinesq equations for finite x rolls (v = 0) can be 
manipulated in a familiar manner (Newel1 & Whitehead 1969) to give 

u, + w, = 0, 

( A  --at) T +WW = N(l), 

(a,-a) (at-gA) A W - P W A , ~  = ( a , - a ) ~ ( 2 ) - - g ~ p ) ,  (2.3) 

A = ~ , + a ; ,  A, = a;+a;, 9 = V / K ,  w = ~ , ( T , - T , ) ~ ~ ~ V - ~ K - ~ .  (2.4) 

where N(l) uT, + wT,, N(’) EZ (UU, + WU,),, - (UW, + WW,),. 

The temperature has been decomposed into an unperturbed conductive mean 
part -Wz and perturbation T .  The top surface is kept at  temperature T, and 
the bottom surface at T,, T2 < T,, and both of these surfaces are considered ‘free ’ 
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(normal velocity and tangential stress vanish), so that the boundary conditions 
on the horizontal planes are 

T = w,, = 0 on z =  0 , l .  ( 2 . 5 ~ )  

The vertical boundary conditions are 

u = w = T = O  on x = O ,  x = L ,  y=O,  y=S.  (2 .5b )  

When there are no vertical boundaries one can find the following solution to 
(2.1)-(2.4) and ( 2 . 5 ~ )  by one of the standard approaches to non-linear stability 
theory : 

w = 2D( t )  sin nz sin nax + O(D3),  (2 .6)  

T = T,Dsinnzsinnax+0(D2), T, = $~-~9?, (2 .7)  

(2 .8 )  

where dD/d t  = aD - yD3 + O(D5), (2 .9)  

u = 2a- lD cos nx cosnax+ 0(D3),  v = 0, 

This solution represents a non-linear ‘roll’. From linear theory 

Bc(a) = n4(a2+ l)3a-2, a: = 4, iZC 3 minW,(a) = 9?,(a,) = 27n4/4.  
a 

(2.11 a ,  b, c )  

D = ( ~ r / y ) 4 e ~ ~ [ C + e ~ ~ ] - * ,  C a constant, (2 .12)  

The solution to (2.9) 

shows that when 92 > @&) the amplitude D(t) approaches a final equilibrium 
value (u/y)* = 7r(2a2+2)*e, where e = [R-R,(a)]*/[R,(a)]*. ( 2 . 1 3 ~ )  b )  

The analysis is expected to be valid when D(t) is sufficiently small. A natural 
small parameter to introduce is e, so that D(t) is O(e).  

Further, since 0- = O(e2) it is apparent from (2 .12)  that the development of 
D(t)  is actually on a slow O(e2) time scale. It is thus useful to introduce properly 
scaled variables A($) and 7 by 

7 = 2(a2+  1)n2e2yt,  d ( i ) ( 7 )  = D ( 7 / 2 ( a 2 +  1 ) n 2 e v ) .  ( 2 . 1 4 a ) b )  

With this (2 .9 )  becomes 

2y(& + 1 )  n2e3[dA(i)/d, - A(i) +/?(A(’ %) ) ] - - 0 ( € 5 ) , )  
(2 .14c)  

where 
showing explicitly that 

p-1 Ez 2(a2+ 1 )  n2, 

&#i)/d7 = A(i) - P(&i’)3 

is the correct leading approximation to the amplitude equation satisfied by A@). 
The initial-value problem appropriate for the development of a roll requires 

terms varying on an O( 1 )  time scale in addition to the slowly varying terms con- 
sidered above, but these terms all decay (Eckhaus 1965) and do not affect the 
amplitude equation ( 2 . 1 4 ~ ) .  
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A slightly more general problem results if (2.6) is replaced by 

w = 28[A(")(7) cos nax - A(S(7) sin nax] sin nz + . . . , 
or, in complex notation with A E A(r)+iAci), 

w = € [ A  exp (inax) + 2 exp ( - inax)] sin nz + . . . . 
(Corresponding generalizations must be made in ( 2 . 7 )  and (2.8).) Writing 

w = 2~[IA(7)1~0s(naz+@(~))]sinnz+ ..., 0 = argA, 

explicitly brings out the fact that we are now allowing for the possibility of 
a phase shift. The amplitude equation, however, is 

or 

showing that no phase shift takes place (to lowest order). This is to be expected. 
In an unbounded layer phase is measured from an entirely arbitrary reference 
point. There can be no reason why rolls should begin at one undistinguished 
position and end up at another. 

We wish to satisfy boundary conditions appropriate to vertical walls located 
at x = 0,  x = L, y = 0, y = S by assuming that the amplitude A varies slowly 
with the horizontal co-ordinates x and y as well as with time. It would not be 
surprising if there occurred a change of the initial position of the roll with respect 
to the vertical walls, so a phase shift is now a priori reasonable. A posteriori, 
a phase shift generally does occur. We thus assume 

w = 2 ~ [ A ( ~ ) ( 7 ,  X ,  Y )  cos n w  - A(S(7, X, Y )  sin m x ]  sinm + e2w2 + e3w3 + . . . , 
(2.15) 

with corresponding assumptions for T and u. Here 

x = p ,  Y = W ,  

where p and 7 are small parameters. Substituting (2.15) into ( 2 . 3 )  we find 

28~2a'B~[( - A ,  + A )  c3 + &,(a) A,, €p2 - 2i6,,(0~) A,,, ~ ~ 1 1 2  

- 6,(a) A p ppp €1141 + . . . = 0, 
where . . . denotes higher-order terms and 

(2.16) i 
a2B,(a) 6,(01) = 37i2(5a4 + 6a2+ 1) -9h-', 

a29i$(a) &,(a) = 3(a2+ l), 

a2W,(a) S,,(O~) = 64a2 + 1) T .  

To retain the full effect of slow spatial variation we make all the above terms 
the same order of magnitude by choosing 

p = 8, 7 = €3. 

It turns out that no new O(e3) non-linear terms proportional to sin nz sin nax or 
sin 7iz cos m m  are introduced by the slow horizontal variation, so A satisfies 

A,  = A + 6, A x x  - 224 ,  A,, - 6, A ,  - /3A2B.. . . (2 .17)  
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Conditions (2.5b) on the vertical boundaries z = 0, x = L, y = 0, Y = 8 
obviously require that 

A = O  on X = O ,  X = A ,  Y = O ,  Y = X ,  (2.18) 

where A =  cL, C = s~S ' .  (2.19) 

It turns out also to be necessary that 

Details of the derivation of the amplitude equation (2.17) and the boundary 
conditions (2.18) and (2.20) will be found in the appendix. 

A P P = O  on Y = O  and Y = X .  (2.20) 

3. Infinitesimal perturbations 
To determine the initial behaviour of small disturbances we neglect the non- 

linear term in (2.17). It is convenient to re-introduce the unscaled time t by means 
of ( 2 . 1 4 ~ ) .  Normal mode solutions of the linearized version of (2.17) which satisfy 
the boundary conditions on Y = 0 and Y = 2 can then be written 

where a satisfies a second-order equation. We choose 

so that the coefficient of a, in this equation vanishes. The equation for a is then 

A = e%in (mnY/X) eikxa(X),  m an integer, (3.1) 

k: = - S12Si1mWX-2, 

u = ~ + ~ z [ & ' - ( ~ I T ~ Y ( ~ ~ +  I ) c ~ S ~ ) - ~ ~ - S ~ ~ F ~ ~ ~ ~ C " ' ]  = 0, 

where JYa) = d l ( 4  &,(a) - [S12@)J2. (3.2) 
Since a = O  a t  X = O  and X = A ,  
we must have a = sin (nnX/A), n an integer. 

For the 'most dangerous' mode (m = n = 1) we deduce, using (2.19), that 

g = 2n2y(a2 + 1) e2[ 1 - C-~(P'S;S-~ + S;L-')J, (3.3) 

where 8; = n2$, &i2 = n3S12, S;l = n4S2, F' = S;Si- [ S i 2 ] 2 .  (3.4) 

We shall use the letter b as a subscript when a quantity has a value appropriate 
to the bounded layer. Thus, at marginal stability (g = 0) we deduce from (3.3) 
and (2.13b) that the Rayleigh number has the value where 

When L and S are 'large', Wb(a) has a minimum value when a = ab, where 

[aJ2 = Q-3L-2--1.5-4+ 2 .... (3.6) 
ab is near a, = 2-4, the wave-number minimizing A?',(a). Thus, to determine the 
leading terms in g b ,  the minimum value of a&), we substitute a = a, into the 
right side of (3.5) and into .%,(a) on the left side. But 

S;(a,) = +, S;,(a,) = Q 11.2, S;(G,) = $, (3.7) 

so 8;2(%) = .J[W,) W,), P'(a,) = 0. (3.8) 
c@b = 9 b [ & b ]  = g c [ l  + &;(a,) L-2 + . . -1. (3.9) Thus 
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Further from formula (3.3) for the growth rate cr it follows that the maximum 
growth rate occurs at a wave-number E M b  given by 

ash = a : + $ ( g - g b ) / g c +  (3.10) 

Comparison with the corresponding wave-number aM for an unbounded layer is 
facilitated if we write 

2 
= a E + 2 ( 9 - g c ) / g c ;  a&b = a ; + & [ ( w - a b ) / a b ]  [ g b / g c ] ;  

so, for a given percentage increase of Rayleigh number above critical, the square 
of the wave-number giving maximum growth increases more in the bounded 
layer by the factor g b / g c .  [Our analysis requires a2 to be within O(E’) of a: 
(appendix). From (3.6), this means that L must be O(E-~) and S must be O(E-*) 
or, from (2.19), that A and C must be O(l).]  

We assert that we have considered the ‘most dangerous modes’, so that if 
L and S are the dimensionless lengths of the long and short sides of a shallow 
rectangular dish then (3.9) is the formula for the minimum critical Rayleigh 
number @b in terms of the minimum critical Rayleigh number for an unbounded 
layer gC. 

In support of this assertion we first point out that a lower critical Rayleigh 
number results from disturbances having the form of finite rolls parallel to the 
short side of the dish rather than from finite rolls parallel to the long side of the 
dish. Motion will ensue at  the lowest possible value of 9. A glance at (3.9) shows 
that the fluid will ‘prefer ’ to convect in the form of rolls parallel to the shorter 
side of the rectangular dish so that L, the length of the side perpendicular to the 
roll axes, is as large as possible. Although we have considered only modulated 
rolls parallel either to the short or to the long side of the rectangular box, we 
have dealt with the flows which intuition suggests are most likely to occur. 

Expression (3.9) for the critical Rayleigh number has been obtained for a 
rectangular dish whose long and short sides are O(E-1) and O ( E - ~ ) ,  respectively. 
If the dish has larger sides then 6, = S12 = 6, = 0 in (2.17) and, at  lowest order, 
the dependence of A on X and Y is arbitrary except that the boundary conditions 
must be satisfied. For such ‘very shallow’ dishes the effect of vertical walls on 
the critical Rayleigh number is vanishingly small according to our asymptotic 
analysis. 

To go to the other extreme, whatever the size of the dish there can be disturb- 
ances whose x and y variations are faster than O ( E - ~ )  and O(E-6). One’s intuition 
suggests that such more rapidly varying modes will be less dangerous thin the 
ones we have already considered. This is confirmed by our analysis. For example, 
if A = A(T,  e h ,  €By), to retain the time derivative term we must modify (2.14a), 
so that r is proportional to E ,  not e2. This yields 

A,  - 6, A,, = 0. (3.11) 

Eigenfunctions vanishing at X = 0 and X = A are proportional to 

exp (m) sin (nnX/A) with cr = - 6in2A-2, (3.12a, b )  
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The absence of the term proportional to A in (3.11) means that to a fist approxi- 
mation the modes of ( 3 . 1 2 ~ )  neither extract potential energy nor dissipate energy 
by viscosity; they are purely diffusive, so the decay shown in (3.12b) is to be 
expected. 

It must be remembered that our entire analysis requires that e be sufficiently 
small, i.e. that the Rayleigh number 9 be sufficiently close to gC, the minimum 
critical Rayleigh number for the unbounded layer. In particular, formula (3.9) 
for gb can only be expected to be valid when the critical Rayleigh number is not 
altered too much by the presence of horizontal boundaries. To get some idea of 
what this involves, let us consider the arbitrary ‘convergence criterion’ /el < +. 
From (3.9) this limit on Is1 requires that our analysis be restricted to dishes suffi- 
ciently shallow, so that s; L2 < f, (3.13) 

which means that 9b can a t  most be 25% above gc. Using (3.4), (3.13) is satisfied 
if L 2 3.3. Further, S must be O(B-4) and terms proportional to S-4 must be small. 
Taking S > 2 would seem to satisfy this requirement. These conditions are just 
rough estimates; they depend on the arbitrary requirement 181 < 8 and on the 
values of 8; and 8; appropriate for free horizontal boundaries. 

To summarize, we first define a shallow rectangular dish as one whose short 
side measures a little more than twice its depth and whose long side measures 
a little more than twice its short side. For shallow dishes, heated from below, 
convection should ensue in the form of spatially modulated finite rolls whose 
axes are parallel to the short side of the dish. The critical Rayleigh number for 
such a bounded domain should be well approximated by (3.9). 

4. Steady finite amplitude solutions 

satisfy 
If A = A(T,  X ,  Y )  where X = ex, Y = ey and 7 is given in (2.14) then A must 

A,=A+S,A,,-&43, A ( T , O , Y ) = A ( T , A , Y ) = O .  (4 . la ,b,c)  

The boundary conditions 
A = A,,  = 0 a t  Y = 0,C. 

must still be satisfied, but we have taken C to be O(e-l) rather than O(e-4) so that 
we obtain (4 . la )  rather than (2.17). Consideration of y variation can thus be 
deferred with a corresponding simplification which greatly facilitates analysis 
of non-linear effects. To be precise, we write 

47, x, Y )  = f( Y )  B(T, X). (4.3) 

From (4.2), the boundary conditions forf( Y )  aref(0) = f(Z) = f”(0) = f”(2) = 0. 
As is frequently the case in this type of calculation, the equation for f( Y )  only 
emerges when a ‘resonance removal ’ condition is imposed upon consideration of 
higher-order terms in the original governing set of partial differential equations. 
We shall assume, as is physically reasonable, that the resulting problem for 
f( Y )  has a non-trivial solution. 

14 Fluid Mech. 38 
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From (4.3) and (4,1), B satisfies 

B, s B + &BXx - pB3, B(r, 0) = B (7, A) = 0. (4 .4a ,  b ,  c )  

We look for steady solutions to (4 .4) .  Equation ( 4 . 4 ~ )  has a steady solution in 
which B2 has the constant value P-l. This is the solution appropriate to an 
unbounded layer. 

When boundary conditions (4 .4b , c )  are taken into account the only non- 
trivial steady solutions are 

B ( X )  ~ a s n b X  where u2= 2P-lk2(1+k2)-l, b-2= &,(1+k2).  (4 .5u ,b , c )  

Here k is the modulus of the Jacobian elliptic function sn and is determined 
from ( 4 . 4 ~ )  by 

bA = 2nK(k)  or $A13;4 = n(1 + k 2 ) i K ( k ) ,  (4 .6a,  b )  

where n is a positive integer. 

0 1 .o 
k'2 

FIGURE 1. Plot of n (1 + k 2 ) 4 K ( k ) ,  where 4 K ( k )  is the period 
of the elliptic function of modulus k, n = 1, 2. 

Recall that sn has period 4 K  and has zeros at 2nK.  As k traverses [0 ,  I), K(k)  
increases monotonically from its minimum value of &r, rising relatively slowly 
over most of the k range but rapidly approaching infinity as k nears 1. Hence 
(1 + k2)6 K(k)  has the appearance depicted in figure 1. 

Because the minimum distance between zeros of sn is 7~ (when k = 0 ) ,  (4.6) has 
no solution if AS;* < 7 ~ .  The minimum length A, permitting satisfaction of 
(4.4~) thus satisfies 

A: = 7 ~ ~ 8 ,  or A: = 8;. 
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From (3.3) with Z, = 0, infinitesimal disturbances governed by the linearized 
version of (4.4) will decay if A2 < 8;. We thus have the satisfactory situation that 
only A = 0 is a possible steady solution (of small amplitude) to the non-linear 
problem (4.4) when the layer is so narrow that all infinitesimal disturbances 
are damped. 

For 27r < A&,-* < 377 there are two solutions to (4.6)) corresponding to n = 1 
and n = 2 (figure 1). The general situation is best summed up by regarding (4.4) 
as a non-linear eigenvalue problem for A. In  figure 2 we give graphs allowing 
determination of the maximum amplitude a as a function of A, for each permitted 
value of n, by plotting &pu2 us. &AS,-*. The graphs are easily constructed by con- 
sidering them to be parameterized by k. For each n, given k, we can determine 
gA&i* by (4.6). Further, &pa2 = kz( 1 + k2)-l by (4.5). The complete elliptic integral 
K(k)  is tabulated by Milne-Thompson (1950, pp. 106-9) among others. 

Al2ISt 

FIGURE 2 .  Relation of maximum a.mplitude a to dimensionless box length A, as obtained 
from a non-linear eigenvalue problem. /3 and 8, are constants. More solutions become 
possible as A increases. Bifurcation occurs at the eigenvalues of the linearized problem. 
It is conjectured that the only stable solution is the one corresponding to  .n = 1. 

Note that a new solution appears (bifurcation) each time A exceeds an integral 
multiple of rat. As is familiar in non-linear eigenvalue problems, the bifurcation 
points occur at  eigenvalues of the linearized problem, which in this case is 

6,d2B/dXz+B = 0, B(0) = B(A) = 0. 

Amplitudes B ( X )  satisfying (4.6) for n > 1 vanish at one or more vertical 
planes in the interior of the dish as well as on its vertical bounding walls. We call 
the corresponding solutions imaginary wall solutions. That such solutions exist 
is evidently due to the fact that if the dish is wide enough then the amplitude 
B ( X )  can slowly change so that it vanishes on fictitious vertical walls which the 
fluid ‘imagines’ are equally spaced between the actual boundaries of the dish. 
It is natural to conjecture that the imaginary wall solutions are unstable to 
suitable disturbances. We shall speak of the solution associated with n = 1 as 
the primary solution. This solution should be stable. 

14-2 
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From figure 1 it is clear that as the dish size increases beyond its minimum 
value A, the corresponding value of k rapidly approaches unity: for example, 
when A > 2R,  then k2 > 0-95. But, when k2 M 1, 

B ( X )  z atanhbX for 0 6 X 6 &.A (4.7) 

(Milne-Thomson 1950, p. 21). Symmetry about the midpoint gives corresponding 
behaviour for +A < X 6 A. Using (4.7), it is found that B(X) increases from zero 
to within about 10 yo of its maximum value of a in a boundary layer of thickness 
6-1, where b-l M 4 2  84. Outside boundary layers of this thickness on each side of 
the dish, the amplitude is well approximated by the constant value a, where, from 
(4.5b) with k2 z 1, a2 M p-’. As expected this is the same value taken on by the 
constant solution appropriate to the unbounded domain. (Compare the second 
sentence under (4.4).) 

The boundary-layer thickness 4 2  S$ is nearly the same as half the minimum 
width (+A, = 4nS;). We deduce that, regardless of how wide the layer is, as long 
8s it is wide enough so that slow amplitude modulation is possible, wall 
effects are almost entirely confined to a layer of thickness approximately given 
by X = 4 2  S$ or x = 4 2  6te-l. For free-free boundary conditions, Si z fr and 
a: = &. so the dimensionless boundary-layer thickness becomes &.(ea,)-l. As an 
example, when .94? = 1-07.94?,, e M 9 and this dimensionless boundary-layer thick- 
ness becomes 2/a,., the critical wavelength. In  assessing these numbers we must 
keep in mind the inevitable arbitrariness in defining boundary-layer thickness 
and the fact that we have used values of a, and S, for free-free boundary con- 
ditions which differ somewhat from the values appropriate to more realistic 
boundary conditions. 

We thus conclude with the rough statement that a representative result of 
our calculations is that when the Rayleigh number is 5 or 10 yo above its critical 
value for an unbounded medium then the effects of lateral walls should be con- 
fined to a boundary layer whose thickness is about a wavelength. That is, the 
distortion should disappear within the width of two rolls (or one hexagon). 

5. Stability of finite amplitude solutions 

B(X) as T -+ 00 we write 

We substitute into ( 4 . 4 ~ )  and linearize. Writing 

we obtain 

To see whether solutions of (4.4) which are initially ‘near’ B ( X )  approach 

B(T, X) = B ( X )  + C ( X ,  T ) .  

C ( X ,  T )  = exp (VT)  D(C), where C = bX, (5.1) 

d 2 D / d ~ 2 + D [ H - m ( m + 1 ) k 2 s n 2 ~ ]  = 0, D(0)  = D(bA) = 0, (5.2a,b,c) 

where m = 2,  H = (1+k2) (1 -c ) .  ( 5 . 3 ~ )  b) 

Equation ( 5 . 2 ~ )  is the Lam6 equation. Most of the literature on the Lam6 
equation concerns ‘polynomial’ solutions which exist when m is an integer for 
suitable corresponding values of H (see Arscott 1964). In  examining the stability 
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of the solution B ( X )  = asnbX of ( 4 . 5 ~ )  we are faced with the different task of 
solving ( 5 . 2 ~ )  subject to the homogeneous boundary conditions (5.2b, c ) .  It is 
noteworthy that the stability problem depends on the modulus k associated with 
B ( X ) ,  not directly on the constants ,8 and 8, of the governing equation ( 4 . 4 ~ ) .  
The problem also depends on the integer n of (4.61, where n-  1 is the number of 
zeros which B ( X )  has in the interior of its domain of definition [O,A]. This is 
brought out more clearly if we use ( 4 . 6 ~ )  to write the boundary conditions 

(5 .4 )  
(5 .2b , c )  as 

D(0) = D(2nK) = 0. 

Prom (5 .3b )  CT = l -H(I+k2) -1 ,  (5 .5 )  

so we are assured of stability if u < 0 when H is the lowest eigenvalue of (5 .2) .  
This eigenvalue should be associated with an eigenfunction with no interior 
zeros. 

When n = 1 it happens (Arscott 1964, p. 205) that such an eigenfunction is the 
Lam6 polynomial sn 6 dn 6 with associated eigenvalue H = 1 + 4k2. The corre- 
sponding growth rate 

being negative, the primary solution [ (4 .5 )  with n = 11 represents a stable steady 
solution to (4 .4) .  

The further apart the vertical bounding walls, the closer k approaches unity 
and the closer the value of u in (5.6) approaches -8. By contrast, consider an 
infinitesimal perturbation to the equilibrium solution of the amplitude equation 

(5.6) CT = 1 - ( 1  + 4k2) (1 + k2)-l 

dA/dT = A-pA3 

appropriate to an unbounded layer. Here one finds u = - 2 .  In this instance, 
there is a quantitative difference between the behaviour of an unbounded layer 
and the behaviour of a layer whose boundaries are infinitely far apart. The 
qualitative behaviour is the same: both finite amplitude solutions are stable. 

When n = 2,3,  ... (imaginary wall solutions) the lowest eigenvalue will be 
associated with an eigenfunction whose zeros are 2 K n  apart. This increase in 
separation of the zeros should be accompanied by a decrease in the eigenvalue, 
which is the tendency required if the imaginary wall solutions are to be unstable. 
In contrast to the case n = 1 there seems nothing in the literature which will give 
us the answer at once, so we have left for future work confirmation of the 
conjecture that imaginary wall solutions are unstable. 

6. Summary and discussion 
We have shown that a multiple scale approach leads to a relatively simple 

analytic treatment of side-wall effects if the walls are not too close together. For 
finite x rolls the problem was reduced to an analysis of the amplitude equation 
and boundary conditions of ( 1 . 1 ) .  Neglecting non-linear terms we derived a 
formula relating the critical Rayleigh number in an unbounded layer (9,) with 
the corresponding quantity for a bounded layer (gb), 

9b/9c = 1 +8;L-2+ .... (3.9) 
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It is noteworthy that the (longer) walls perpendicular to the roll axes have much 
less effect than the (shorter) walls parallel to the roll axes. This is evidenced in 
two ways. First, the effect of the shorter walls can be ascertained by a perturba- 
tion analysis when they are separated by an 0(r1) amount while the effect of 
the longer walls is a perturbation of the same order when they are only O(E-6) 
apart. Secondly, (3.9) shows that to lowest order 9, is unaffected by the distance 
S separating the longer walls. The paper of Davis (1967) shows the same pre- 
dominance of ‘width effect’ over ‘length effect’ and discusses the physical 
reason for the differing response of a finite roll to having its length and width 
varied. We can sum up by saying that the rolls emerge parallel to the shorter 
side so that the former effect is minimized. 

The values of S;, Si2 and 13; at a = a, for ‘free’ horizontal boundaries are given 
in (3.7). An extension to the case of rigid horizontal boundaries will allow com- 
parison to be made with the graphs given by Davis (1967). For fixed S the graph 
of ~%?~/92,vs. L should at  first decrease rather rapidly as L increases and then 
should decrease more slowly to its asymptotic value of unity. Davis’ results 
give the first portion of this graph and the beginning of the second portion. The 
second portion, where g b  x 9,’ should correspond to (3.9). When modified for 
rigid horizontal boundaries our results should merge smoothly into those of 
Davis. As it is, our results have the same tendency as one would expect from 
Davis’ work. In the relevant special case, they have the qualitative behaviour 
predicted by Sani (1964). 

There do not seem to be any experimental estimates of the effect of vertical 
boundaries on the critical Rayleigh number for fluid in a shallow dish. Experi- 
ments are typically performed in dishes whose horizontal dimensions are about 
ten times their depth. For such dishes, the predicted effect of the vertical walls on 
the critical Rayleigh number should be about 1 yo. This is within usual experi- 
mental error and so is undetectable. To check predictions concerning the effects 
of vertical boundaries one would have to perform a series of experiments in 
dishes wherein L and S can vary and are not too large. 

Formula (3.9) assumes that motion ensues in the form of rolls parallel to the 
short side of the rectangular dish. We have shown that such a motion is preferred 
to rolls parallel to the long side of the dish. Koschmieder (1966) observed rolls 
parallel to the short side of the dish and Davis’ (1967) linear theory also predicts 
them. Graphs of radial velocity distribution given by Koschmieder (1967, 
figure 4) show the type of modulated sinusoidal behaviour on which our theory 
is based. 

We have found that for sufficiently shallow rectangular dishes the effect of 
the vertical wall is confined to a boundary layer. Photographs of layers with 
a free upper surface like those of Koschmieder (1967) and Cowley & Rosensweig 
( 1  967) show the presence of such a boundary layer by depicting the striking way 
hexagons fit into a circular dish; the vertical boundary seems to distort only 
t,he outer ring of hexagons. 

Many of bhe essentials of a theoretical explanation of Koschmieder’s (1967) 
experiments were given in the non-hear analysis of Scanlon & Segel (1967) 
which treated an unbounded semi-infinite fluid. The instability was assumed to 
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be driven by surface tension variation with temperature. Viewed broadly, the 
analysis is essentially the same as earlier ones for gravity-driven instabilities. 
Cowley & Rosensweig’s experiments concern destabilization by a normal mag- 
netic field of the flat interface between a magnetizable and a non-magnetic fluid. 
A theoretical analysis for a horizontally unbounded layer along the lines of 
that by Scanlon & Segel should be applicable, so for the experiments of both 
Koschmieder (1967) and Cowley & Rosensweig (1967) the effect of vertical 
boundaries could be treated by the methods of this paper. 

Two different types of rolls have been observed in circular dishes. With rigid 
horizontal boundaries, Koschmieder (1966) finds ‘round rolls ’ whose boundaries 
are concentric circles while Chen & Whitehead (1968) depict ‘ straightish rolls’ 
on which the effect of the circular boundary seems limited to curving the outer- 
most roll or two. (Uneven heating may be an important cause of the latter 
observations.) 

This selection of recent experimental results leads one to ask what convective 
pattern should be observed in a dish of given shape. For W near 9, existing 
theory gives the appropriate predictions for an unbounded layer. These pre- 
dictions are presumably valid for a sufficiently shallow dish. But how shallow 
is ‘ sufficiently shallow’ ? What effect do different-shaped vertical boundaries 
have on pattern selection? Such questions can be answered, when the vertical 
boundaries are not too close together, by the methods introduced here. Although 
this is a subject for future work we shall set forth some conjectures as to the 
results; to give experimenters something to aim for, and to show sceptics how 
the results for the unbounded layer might form part of the desired theory for 
finite dishes. 

To enhance simplicity of exposition our conjectures will be given for a layer 
which is bounded by circular vertical walls and which is subject to the changing 
mean temperature studied by Krishnamurti (1968). Three parameters will enter: 
(i) the aspect ratio p is the ratio of the depth of the layer to the radius of the 
circular dish; (ii) the vertical asymmetry measure 7 is Krishnamurti’s dimension- 
less rate of change of mean temperature. In  other contexts, a non-zero value of 7 
is associated with viscosity variation (Palm 1960), variation of any of the other 
fluid properties (Busse 1967b), variation from planar of the free surface position 
(Davis & Segel 1968), and variation of the surface tension with temperature 
(Scanlon & Segel 1967); (iii) the amplitude measure (for the unbounded layer) 

B = sgn (9 - a,) ,/ I W - Wcl /,/We. E is defined by 

This definition coincides with the definition of E when W > W, which was given 
in (2.13b). Remember that 9fC is the critical Rayleigh number for the unbounded 
layer, so that motion will not ensue in a bounded layer until E attains a sufficiently 
large positive value. 

Using clues gleaned from available results of theory and experiment we shall 
try to designate the various forms of convection possible at each point of (p, 7, E ) -  

space. We shall consider modulated hexagons, modulated rolls and wall modes. By 
the first two of these forms of convection we mean the hexagonal and roll patterns 
valid for the horizontally unbounded layer subject to slow spatial variation of 
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the type considered in previous sections. By wall modes we mean any pattern 
which cannot be obtained by spatial modulation of a stable steady flow appro- 
priate to an unbounded layer, For a given geometry there may be several different 
types of wall modes but we shall not distinguish among them. The round (toroidal) 
rolls observed by Koschmieder (1966) in circular dishes are an example of wall 
modes. Koschmieder’s (1967) pictures are an example of modulated hexagons. 

6 

FIGURE 3. For legend see facing page. 

71 

FIGURE 4. For legend see facing page. 

Results for p = 0 (unbounded layer), have been determined by Krishnamurti 
(1968). These perturbation results, displayed in figure 3, form the foundation 
of our speculations. They are valid for sufficiently small values of 7 and 8, but i t  
is reasonable to expect that their qualitative nature does not change markedly 
even when the perturbation methods lose their convergence or asymptotic 
nature. There has been some theoretical confirmation of this (Busse 1967a). 
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Nevertheless, one must always bear in mind that, the further a point in (p, 7, e)- 
space is from the origin, the more likely it is that our predictions are in error. 

Typical sections of (p, q,e)-space a t  E = eo, p = pot 7 = 7, (e0,pO,y0 constants) 
are given in figures 4-6. These figures were constructed on the basis of the 

a 

4 

- 
E 

FIGURE 5 

Y / 

E 

FIGURE 6 

FIGURES 3-6. Various sections of ( p , ~ ,  €)-space with conjectured stable states. p is depth- 
to-radius ratio for circular dish, 7 is measure of vertical asymmetry, E is magnitude of 
convection (see text). M ,  motionless layer; H ,  hexagonal pattern; R, roll pattern; w, wall 
modes (pattern determined by wall shape). FIGURE 3. p = 0 (unbounded layer), see 
Krishnamurti (1968). FIGURE 4. E fixed and positive. FIGURE 5. p fixed and not too small. 
FIGURE 6 . 7  fixed. 

following facts and conjectures. (i) Whenp = 0 we must recover the known results 
for the unbounded layer. (ii) When p is sufficiently small we still get the same 
results as for the infinite layer. (This is not inevitable; there could be a non-uni- 
form limit asp -+ 0.) (iii) For fixed E and 7, asp increases the layer becomes more 
and more confined so one eventually must attain a motionless state. (iv) When 
7 = 0 modulated hexagons will not appear (as is the case for the unbounded layer) 
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but for fixed E and p, as r ]  increases, hexagons are increasingly likely, due to 
second-order equilateral triangle interactions (Segell965). (v) For fixed p and r ] ,  

as E increases modulated rolls become more likely (as is the case again for the 
unbounded layer). 

In  figure 4 the possible states suggested for very large and very small p follow 
from (iii) and (i). As p decreases the motionless state should give way to wall 
modes unless r ]  is very large, in which case (iv) may mean that the motionless 
state is succeeded by hexagons. 

The dotted line segments in figures 4 and 5 are both projections of the same 
segment of the line p = pot e = c0. Figures 4 and 5 should be (and are) such that 
the same sequence of states is met as r] increases on the two projections. (The 
arrows point in the direction of increasing 7.) In  figure 4, a line p = pl,  parallel 
to the dotted line shown, would be the projection of a line like the dotted line in 
figure 5,  but on a planep = p1 different from the plane of figure 5.  It is a reasonable 
assumption, however, that the general appearance of the various sections only 
changes slowly as the sectioning plane is moved parallel to itself. If so, then, as 
r ]  increases along various lines parallel to the dotted line of figure 4, roughly 
the same sequence of states should be encountered as r] increases along corre- 
sponding lines in figure 5. To see the tendency of corresponding lines, note that 
both when p is relatively small and when E is relatively large we have a situation 
of rather vigorous convection with a relatively large amount of fluid buoyancy 
presumably dominating in selecting a flow pattern which is not much affected 
by the walls. For this reason, the dotted line in figure 4 along which p has a 
relatively small value corresponds to the dotted line in figure 5 along which E has 
a relatively large value. As the former line moves up the latter line should move 
to the left. 

In  like manner, roughly the same sequence of states will probably be met in 
traversing the dot-dashed lines and the double-dot-dashed lines. The way the 
dot-dashed lines correspond emerges from the fact that a relatively large ten- 
dency towards hexagons and small tendency towards rolls is associated both with 
r ]  large and with E small. The positions of corresponding double-dot-dashed lines is 
as is shown in figures 5 and 6 because with both r] small and p large there is a rela- 
tively small amount of vertical asymmetry and a relatively large amount of 
horizontal modulation. 

Using the above reasoning as a final tool in constructing figures 4-6, we have 
required that the same sequence of states is met if one moves in the direction 
of the arrows for any corresponding pair of lines. Exceptions are allowed in 
transition regions. Here is a typical feature which emerges. As the dotted line 
moves in the direction of decreasing E in figure 5, the first three sequences 
of states which appear are R, H or R, H ;  W ,  R, H or R, H ;  W ,  H or R, H .  In 
order that the same sequence of states appears as the dotted line in figure 4 
moves in the direction of increasingp, the lower boundary of the W region must 
be concave downward. Such features are details and are subject to future 
modification. It seems worth while to present some detail, however, if only to 
show what a complicated sequence of states is likely to be obtained as a given 
parameter is varied while the others are held constant. 
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(i) When p = 0 there are values of E and 7 such that either rolls or hexagons 
are obtained, depending on initial conditions. For other values of E ,  7 the fluid 
may either be motionless or convecting in a hexagonal pattern. Non-uniquenesses 
of this kind will doubtless occur for p > 0. In  figure 4, for example, there are 
probably regions where one can obtain either wall modes or hexagons. So as not 
to complicate the diagrams further, we have not indicated regions where the 
presence or absence of wall modes might depend on initial conditions. (ii) Pre- 
dictions for negative 71 can be obtained from figures 4 and 5 by reflexion in the 
p- and e-axes respectively. (iii) If p is fixed at a sufficiently small value we expect 
a situation like that of figure 3. In figure 5, p is taken large enough so that wall 
modes are possible. 

In concluding we recall some of the topics which have been left for future work. 
It remains to modify the results to take into account more realistic horizontal 
boundary conditions and different dish shapes. This paper deals only with 
modified rolls but the work should be extended to deal with modified hexagons 
and with more general combinations of rolls. The stability of the imaginary wall 
solutions must be determined. If these solutions are unstable as conjectured, 
this would be another instance of the preferred mode being one of maximum 
amplitude (see figure 2). 

Finding a solution for an initial-value problem appropriate to rolls, and to 
combinations thereof, has been left for the future. A goal of such investigations 
should be to determine how long it takes for a new convective pattern to be 
established after a change in the conditions of the problem. In experiments on 
the related problem of flow between rotating cylinders Snyder (1969) has found 
this time to be approximately L2/6v, where v is the kinematic viscosity and L is 
the length of the cylinders. The present work strongly suggests that such a 
diffusion time is involved because of the diffusive nature of the new terms which 
appear in the amplitude equation. 

As is shown by the complicated nature of the conjectures in figures 4-6 a good 
deal of work will be required before one can predict with confidence the form 
which convection will take in a bounded layer at various vaIues of p, 6 and q. 
Such predictions will be easier at  small p when, as we have seen, the flow has 
a boundary-layer character. The limit p -+ 0 is not uniform in all respects (see 
the paragraph under (5.6)) so one cannot be sure of the results even for very 
small p. 

There is little doubt that the effect of side boundaries is responsible for the 
discrepancy between the round rolls observed by Koschmieder (1966) in a fairly 
shallow round dish and the straight rolls or hexagons predicted by the theory 
of unbounded layers. In another type of disagreement between theory and experi- 
ment Koschmieder (1966) finds that the observed wave-number decreases as 
92 increases but this cannot happen according to Schluter, Lortz & Busse’s (1965) 
theory for the unbounded layer. It is less obvious that the discrepancy here is 
associated with the presence or absence of vertical boundaries; there are (in- 
evitably) many simplifications in the theoretical model. Yet wave-number 
selection is certainIy influenced by vertical boundaries: (3.9) shows how the 
critical wave-number is principally changed by the ‘width effect’ (L + co). Por 
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an unbounded region, the wave-number at  the onset of motion minimizes the 
ratio of potential energy release to dissipation per cell, but to explain (3.9) this 
ratio will have to be computed for the total number of cells in the dish. 

The calculation, in § 3, of maximum growth rate for large L and S shows no 
profound difference between the unbounded and bounded cases, although there 
is a slight tendency in the right direction. In  any case, wave-number selection 
is a non-linear problem. It will be interesting to see whether a combination of 
this analysis and that of Schluter, Lortz & Busse (1965) can resolve the dis- 
crepancy between theoretical and experimental predictions regarding the change 
of preferred wave-number with increasing 99. The 'shape assumption' work of 
Davis (1968) is encouraging. 

The idea that slow spatial modulation should prove useful in the theory of 
convection arose in a conversation with D. Benney. While this paper was in its 
later stages of preparation the author benefited from seeing a version of work 
by Newell & Whitehead (1969) which begins with essentially the same amplitude 
equation (2.17) but then goes on to a valuable investigation of 'sideband' in- 
stabilities in unbounded layers. Earlier blunders connected with the incorporation 
of Y variation were corrected thanks to seeing this work and a private communi- 
cation from Newell. 

Much of this paper was written in the summer of 1968 when the author enjoyed 
the hospitality of the Imperial College Department of Mathematics. The work 
was largely supported by the Office of Naval Research (Mechanics Branch), and 
also by the Army Research Office (Durham). It was completed while the author 
was on leave from (but partially supported by) Rensselaer Polytechnic Institute, 
at the Biomathematics Division, Graduate School of Medical Sciences, Cornell 
University, and Sloan-Kettering Institute, New York, N.Y. 

Appendix. Details of solution 
We look for a solution to (2.1)-(2.5) of the form 

w = 2e[A@) cos nax - A(i) sin nax] sin n z  + e2w(2)(7, X ,  Y ,  x, y) 

T = T,c[A(')cos nax - Atosin nax] sin nz + eZT(2)(7, X ,  Y ,  x, y) 

u = - 2a-le[A(" sin nax + Ati) cos nax] cos nz + e2u(2)(~,  X ,  Y ,  x, y) 

+ E ~ w ( ~ ) ( T ,  X ,  Y, 2, y) + ..., (A 1) 

+e3T(3)(7,X, Y,x,y)+ ..., (A2) 

+ e3d3)(7 ,  X, Y ,  x, y) + . . ., (A 3) 
where, to satisfy (2.5b)) 

A = O  on x = O , L  and y = O , S .  

It would be best to specify the problem further by imposing initial conditions 
at t = 0: 

w = ~ E [ A ( ~ ) ( O , X ,  Y )  co~nax-A(~)(O,X, Y)sinnax]sinnz, 

T = T,e[A(')(O, X ,  Y )  cos nax - Aci)(O, X ,  Y) sin nax] sin nz ,  

u = - 2a-le[A(T)(0, X, Y )  sin 7rax - A(o(0, X ,  Y) cos nax] cos n z ,  
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where A (0, X ,  Y )  is given. But a preliminary exploration indicates that a number 
of subtleties then arise, connected with the multiple-scale nature of the analysis. 
We do not choose to pursue these subtleties at  this time. Rather, we proceed 
under the assumption that the particular solution we shall exhibit differs from 
the solution to the initial-value problem only in details of the velocity and 
temperature fields, but that the fundamental amplitude equation (2.17) is un- 
affected. The above-mentioned preliminary exploration indicates that this as- 
sumption is correct, as does the fact that it holds when there is no spatial modula- 
tion of the amplitudes (Eckhaus 1965). 

To lowest order all equations and boundary conditions are satisfied by (A 3) 
for arbitrary A = A(?') + iAci) vanishing on the vertical boundaries. Non-unique- 
ness already enters at  this first stage. The continuity equation (2.1) remains 
satisfied at  order E if we add to u. any x independent function satisfying the 
boundary conditions. It may be that this function is uniquely determined by 
higher-order conditions or it may be that we have an instance of the non- 
uniqueness in multiple-scale expansions pointed out by Erdelyi (1968). We find 
no contradiction in taking this function to be identically zero. 

At O(e2) the forcing terms on the right side of (2.3) add to zero (a simplifying 
peculiarity associated with free-free horizontal boundary conditions). No 
O(e2) forcing terms arise from the linear left side of (2.3) (see below), so 

A3w2 - A1 w2 = 0, 

and we can take w2 = 0. We substitute (A 1), (A 3) into (2.1) and find at  O(e2) 

uL2) = 2a-1[A 9 cos nax + A s )  sin n m ]  cos nz, 

u(2) = 2 n - ~ a - ~ c o s n z [ A ~ ~ s i n n a x - A ~ c o s ~ a x + h ( ~ ,  X ,  Y ,  y)]. so 

Because u must vanish on the boundary [since A ,  = 0 on y = O,S], 

at y = 0, X, h = 0; at ~t:= 0, h. =A$'(T,o, Y); 

at 2: = A, h = A ~ ( T ,  A, y) cos nuL - A%(r, A, y) sinnaL; 

h is otherwise arbitrary. 
Substituting into (2.2), at O(e2) 

AT@) = T,sinnxQ(r,X, Y,1t:)+nT!!IA1~sin2nz, 

Q (2naA3 -A$)=) cosnax+ (2naAy+Apy)  s innu ,  

so 

g is the solution of the homogeneous equation 

T@)/T,, = - r 2 ( a 2 +  l)-lsinnz[Q-g(~, X, Y,z, y] - &r-11A12sin 2nz. 

Alq-n2g = 0, 
and the boundary conditions 

on x = 0, q = 2naA9(0, Y); (A 4b) 
on x = L, g = 2na[A!$(A, Y)cosnaL+Ag(A, Y)sinnaL]; (A4c) 

on y = 0, g = -A$&(X, 0) ~ o s n m + A g ) ~ ( X ,  0)sinnax; (A 4d)  

on y = X, g = - A ~ ~ = ( X , ~ ) c o s n a x + A ~ ' y ( X , ~ ) s i n n a x ;  (A4e) 
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which follow from the requirement that  T(2) vanish on the boundaries. Since X 
and Y are to  be considered constants in (A4a), the problem of (A4) seems to be 
standard. Using separation of variables, we expect to be able to solve it by 
superposing the solutions of four sub-problems in which g is required to vanish 
on three of the boundaries and one of the non-homogeneous boundary conditions 
(A 4b)-(A 4e) is applied on the appropriate fourth boundary. For example, if g 
is required to vanish on x = 0, X = L, and Y = 0, we would satisfy (A4e) by 
appropriate choice of the constants C, in the following formal solution of (A4a): 

g = C,sin[nnL-1~]sinh[n(l+n~L-~)t~/I. 
00 

n= 1 

But this approach is inconsistent because 

sin [nnL-lx] = sin [nnX]  

is a function of X, not of x.  A little thought shows that the only way out of the 
difficulty is to require 

A , , = O  on Y = O  and Y = X ,  

and to satisfy the conditions of (A4) by taking 

g = G,(X, Y )  sinh nx + G2(X ,  Y )  cosh nx,  

where G,(X,  0) = G,(X,C) = 0 (i = 1 , Z ) ;  

G2(0, Y )  = 2~aAg(O,  Y ) ;  

G,(A, Y )  sinh n-A + G,(h, Y )  cosh nA = Zna[AL$)(A, Y )  cos naL 

+Ag’(A, Y)sinnaL]. 

As is characteristic of multiple-scale methods, only the boundary conditions for 
the functions Gi are prescribed a t  this stage. The governing equations will 
emerge when higher-order terms are considered. 

We now substitute into (2.3) and obtain (2.17)from the existence condition 
which requires that there be no forcing terms proportional to the eigenfunctions 
sin nax sin m and cos na sin nz of the lowest-order (self-adjoint) operator A3 - Al. 
Note that in d2) and V2) all new terms associated with the slow spatial variation 
(which are proportional to X and Y derivatives of A )  have a vertical variation 
given by sin nz. They therefore cannot give a term proportional to sin n-z in O ( 8 )  
non-linear terms like u(l)T?) and W(V$~). This is why the coefficient of A2B in 
(2.17) is the same as the coefficient which appears when no spatial variation of 
the amplitude is present. 

In  determining O(s3) terms in (2.3) we make use of the fact that 

(A3 - Baz) (Ati)sin nz sin naz) = sin nz[P(a,) A(i) sin nax], 

where P(8,) is an even-order polynomial operator with constant coefficients 

P([ )  = ( p - 7 r 2 ) 3 - 9 p .  
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It is easy to show that if & ( E )  3 P(ig) then 

P(a,) A("sinnax = [P(a,) sinnax] A(i)+ [P'(a,) sinnax] 
+ *[P"(a,) sin nax] a;#)+. . . 
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= &(ma) A(i)sinnax-,uQ'(na) AT cosnax 

- &,uu"&"(na) Ask sin nax -I- o(p3). (A 5) 
But the neutral curve is given by &(na) = 0 and the critical wave-number 
satisfies &'(ma,) = 0. Thus the term in (A 5) proportional to COB nax is zero when 
a = a,. Actually, since 

the cos nax term is negligible if a - a, = 0(c2), and our analysis is valid for any 
fixed wave-number a in this range. The coefficient of A,, in (2.17) is zero for 
essentially the same reason (just discussed) that the coefficient of A ,  is zero. 

Insulating boundaries at  x = 0, L can easily be handled. To obtain a solution 
satisfying the appropriate boundary condition T, = 0 one merely needs to modify 
the boundary conditions in (A 4); equation (2.17) is unchanged. Insulating 
boundaries at  y = 0, S would require a non-trivial modification of our work since 
the normal derivative T! introduces a term proportional to €8 which is incon- 
sistent with our present analysis. 

Q'(7ra) = (a - a,) &"(na,) + O(a -ac)2, 
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