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Abstract. We present a microscopic description of the nucleon-nucleon col-
lision cascade that permits the modeling of typical cascade and exciton de-
scriptions of the process. Each configuration of particles and holes is treated
explicitly and transitions induced by energy-conserving two-body collisions are
considered. We can reproduce the extreme limits assumed in cascade and exci-
ton type models. Although the microscopic description of the interaction chain
can be written in the form of a master equation, the number of configurations
is usually quite large and a Monte Carlo simulation method is used to obtain
solutions.
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Introduction

Pre-equilibrium emission plays an important role in nucleon-induced reactions at
incident energies above about 10 MeV. Although quantum mechanical models of
these reactions have been developed [1,2], most calculations for technological appli-
cations still rely on older, but very successful, semi-classical models of the cascade
[3, 4] or exciton [5, 6] type. Yet, these models assume radically different properties
of the chain of nucleon-nucleon interactions that leads to pre-equilibrium emission
[7].

Semi-classical pre-equilibrium reaction models are normally formulated on the
basis of a set of single-particle states of the composite nucleon-nucleus system. In
the ground state of the system, all single-particle states up to the Fermi energy
are occupied by one and only one nucleon. In an excited state, a number of the
particles occupy states above the Fermi energy, leaving the same number of holes
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below the Fermi energy. Each distinct arrangement of the particles and holes (taking
into account indistinguishability and the exclusion principle) defines a particle-hole
configuration. We define an exciton class as a set of configurations with the same
number of particles and holes.

As discussed in Ref. [7], models of the cascade type, the hybrid model [4], as
well as its more modern version, the hybrid Monte Carlo simulation (HMS) [5],
neglect all transitions between configurations of the same exciton class. The HMS
model describes the reaction cascade in terms of a sequence of one particle-one hole
(1p-1h) excitations. These excitations are taken to be well-defined configurations
that are altered only when the particle or hole participate in a subsequent collison
or the particle is emitted.

Fig. 1. Exciton model transition rates (arbitrary units) at excitation energies of
20 MeV (blue) and 100 MeV (red).

Models of the exciton type assume that the configurations of an exciton class
are in equilibrium at all stages of the reaction cascade. Exciton models thus define
transition rates using state [8] and transition [9] densities for the exciton classes.
However, for equilibrium to be established, the transition rate between configura-
tions of a given exciton class must necessarily be much larger than the transition
rates between classes. We can test this hypothesis within the exciton model itself,
since it permits the calculation of the transition rate between configurations of the
same class, λ0(n), n being the exciton number, as well as the rates of transitions
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that increase and decrease the exciton number, λ+(n), and λ−(n), respectively.
In Fig. 1, we display the transition rates (in arbitrary units) for the system

nucleon + 40Ca as a function of the number of excitons n, at excitation energies of
20 and 100 MeV. At all energies, we see that the transition rate λ0(n) is smaller
than or about equal to the transition rate λ+(n) at low exciton number. Thus we
do not expect the equilibrium hypothesis of the exciton model to be satisfied at the
initial stage of the reaction cascade.

In the following, we develop a unified microscopic model that permits us to
simulate both the cascade and exciton type models, as well as intermediate ones,
and compare the results of numerical simulations.

The model

We use a uniformly-spaced single-particle spectrum in the model, with the spacing
between states, ∆E, determined so that the most deeply-bound nucleon of the A+1
target-nucleon system is bound by 45 MeV while the projectile nucleon, if it were in
its fundamental state at the Fermi energy, would be bound by a separation energy
B of about 8 MeV. The initial configuration of the system is thus a 1p-1h one,
with the hole at the Fermi energy and the particle (the projectile) occupying the
single-particle state closest in the total excitation energy E∗ = En +B MeV, where
Enis the incident center-of-mass energy. We do not distinguish between neutrons
and protons.

We treat each particle-hole configuration explicitly. We label each particle-hole
configuration by a letter from the beginning of the alphabet a, b, c, . . . as well as
a class label l, m, n, . . . denoting the exciton number, that is, the total number
of particles and holes. The class label is actually redundant, being completely
determined by the configuration, but is useful when considering the exciton-model
limit. We thus denote the occupation probability of a typical configuration as Pna.

Master equation. The configuration occupation probabilities are governed by a
master equation,

h̄
dPna

dt
=

∑

mb

Γna,mbPmb − ΓnaPna. (1)

The total decay width of the configuration na is given in terms of the partial tran-
sition widths Γlc,na and partial emission widths Γe,na by

Γna =
∑

lc

Γlc,na +
∑

e

Γe,na . (2)

The rate of emission of particles of energy e is given by

dSe

dt
=

1
h̄

∑
na

Γe,naPna . (3)

The number of configurations is usually quite large. In the simple case of a nucleon
incident on 16O at 20 MeV, about 600 configurations and, thus, 600 coupled equa-
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tions are required, while at 100 MeV, about 43000 configurations are involved. In
the case of a nucleon incident on 56Fe at 100 MeV, the number of configurations is
on the order of 130 million. Direct solution of the equations is simply not viable in
general. We use instead a Monte Carlo simulation method, which has the additional
advantage of being easily parallelizable.

Emission. We estimate emission using the usual Weisskopf-Ewing expression.
We take the partial width for nucleon emission in an interval ∆E of the emission
energy e from the configuration na to be

Γe,na =
dΓe,na

de
∆E =

2gsµ

πh̄2 eσabs(e)∆E, (4)

if the configuration contains a particle at an excitation energy of e + B, where
B is the separation energy, and as zero otherwise. Here, gs = 2 is the nucleon
spin multiplicity, µ is the reduced mass and σabs(e) is the absorption cross section,
which we approximate geometrically as σabs(e) = πR2. The total emission width of
a configuration is then the sum over the partial widths of each of the particles that
can be emitted.

Transitions. We consider transitions induced by energy-conserving two-body
collisions and denote the partial width for such a transition from mb to na as
Γna,mb. We assume microscopic reversibility, so that Γna,mb = Γmb,na. Since the
transitions are due to two-body interactions, the nonzero partial transition widths
will be those that increase the exciton number by 2, Γn+2a,nb, those that leave it
the same, Γna,nb, and those that decrease it by 2, Γn−2a,nb. The two-body collision
inducing the transition from a configuration mb to a configuration na is unique.
The partial width of any transition can thus be associated with the squared matrix
element of the corresponding two-body interaction. If we assume that all two-body
collisions are equally likely, we can then associate a single value to all non-zero
partial widths. In the following, we call this model the natural one.

HMS and exciton model limits. By varying the value used for different classes
of states, we can study the effects of the different hypotheses of models in use today.
By taking Γna,nb → 0, we eliminate transitions between configurations in the same
exciton class. We will denote this limit as the HMS model.

When the partial widths for transitions within an exciton class are much bigger
than those between classes,

Λna,nb >> Λna,mb, Λmb,na m 6= n, (5)

we would expect the configurations within each exciton class to reach equilibrium
before transitions take place between exciton classes. In this limit, the model should
reduce to the usual exciton model, in which system evolution and emission rates
depend only the populations of the exciton classes and not those of the individual
configurations. In the following, we will denote as Monte Carlo (MC) exciton cal-
culations those in which the transitions between configurations of the same exciton
class have been taken to be a factor of 1000 larger than those used in the natural
model.
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Fig. 2. Spectrum of first and total nucleon emission from nucleon + 40Ca at an
incident energy of 100 MeV.

Numerical Results

In this section, we compare the results of calculations using the different model
hypotheses discussed above. In Fig.2, we show the spectrum of the first and total
nucleon emisson from the system nucleon + 40Ca at an incident center-of-mass-
energy of 100 MeV. The curve labeled exc (green) refers to the usual exciton model
with a hole frozen at the Fermi surface. This hole is free in the exciton model cal-
culation labeled exc0 (blue). The first emssion spectrum is essentialy equal to the
total spectrum above about 50 MeV. At lower energies, the total emission spectrum
greatly exceeds that of the first emission. We see that three of the four simulations
give fairly similar results. The HMS (black curve) and natural (red curve) simula-
tions are in such close agreement that they are superimposed on one another. The
two are also in fair agreement with the exciton calculations (green curve). However,
the agreement of the exciton calculations with the HMS and natural ones is only
obtained by freezing the initial hole at the Fermi energy until after the first emission
had occurred. The exciton model thus depends on a conceptual inconsistency: one
must freeze one degree of freedom, the hole at the Fermi energy, but require that
the others interact strongly within the exciton class.



6 C. A. Soares-Pompeia and B. V. Carlson.

Conclusions

We have developed an unified microscopic model of semi-classical nucleon-induced
pre-equilibrium reactions that permits us to simulate the radically different hypothe-
ses of cascade and exciton type models, as well as intermediate ones. We simulate
an exciton type model by making the partial widths for transitions between configu-
rations of the same exciton class much greater than those that change the class, and
verified that the Monte Carlo simulation of the exciton model produces the same re-
sults as the exciton model obtained by assuming equilibrium among configurations
and reducing the problem to one of transitions between classes.

We find the results of the natural model to be much closer to those of the cascade
type model than to the exciton one. In addition, we find that the exciton model
is capable of producing results similar to the other two only when two inconsistent
hypotheses are used simultaneously: One must freeze a hole at the Fermi energy
yet assume that the other degrees of freedom interact strongly within the class.
Although the exciton model will certainly continue to be used due to its simplicity,
work on models that are more consistent conceptually is warranted.
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