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Abstract. We discuss the use of the semiclassical approximation of Alder and
Winther in the description of fusion and breakup reactions with weakly bound
nuclei. A comparison with realistic CDCC calculations shows that the method
leads to accurate predictions for the breakup cross section. We show how the
method can be extended to fusion reactions and apply it to a schematic two-
channel model, in which the breakup states are approximated by a single effec-
tive channel. The complete fusion cross section so evaluated compares very well
with predictions of fully quantum mechanical coupled-channels calculations.
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1. Introduction

The effects of channel coupling on the fusion of weakly bound nuclei on heavy targets
has attracted great interest over the last decade [1]. Recently, several measurements
of fusion cross sections in reactions with stable and radioactive weakly bound nuclei
have been performed [2].

The first calculations of the complete fusion cross section for weakly bound
projectiles lead to different conclusions. Some calculations predicted a suppression
of this cross section [3] while others predicted enhancement [4]. However, these cal-
culations were based on very schematic models, which did not take into account all
the relevant properties of the breakup channel. Recently, realistic coupled-channels
calculations of breakup [5] and fusion cross sections were performed [6]. These
calculations were based on the Continuum Discretized Coupled-Channel (CDCC)
method. Although the CDCC method is the natural way to describe coupled-
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channels problems involving the continuum, calculations based on this method are
very complicated and requires considerable computer power. In this paper, we re-
view some recent works based on the semiclassical theory of Alder and Winther
(AW) [7]. The paper is organized as follows. In section 2, we present the semiclassi-
cal approach to the coupled-channels problem. In section 3 we discuss its application
to study the breakup of weakly bound projectiles. In section 4, we show how the
method can be used to calculate the complete fusion cross section in collisions of
weakly bound projectiles. In section 5 we present the calculation of upper bounds
to the incomplete fusion cross section. Finally, in section 6, we give our conclusions.

2. The semiclassical coupled-channels equations
Let us consider the collision described by the Hamiltonian
H = Ho(r) + h(§) + V (1), 1)

where r is the projectile-target separation vector and ¢ stands for the set of relevant
intrinsic coordinates of the projectile and the target. The AW method consists of
treating the relative motion by classical mechanics whereas the intrinsic motion is
handled as a time-dependent quantum mechanics problem. Solving the classical
equations of motion with the Hamiltonian Hj, one obtains the classical trajectory
rp(t) for each impact parameter b and total energy E. The intrinsic wave funtion is
then the solution of the Schrédinger equation with the time-dependent Hamiltonian

H(ED) = Q)+ V(E (D) = hE) + V(E.1). @)
That is,
H(E D) w6 1) = in 20D, ®)

Expanding 9(&,t) in terms of the eigenfuntions of h (truncated at « = N) and
inserting the expansion in eq.(3), one obtains the set of coupled differential equations
on the time-variable,

ihaa(t) = Vap(t) e q5(t); a,f=0,1,..,N. (4)
B

Above, Vo 5(t) = [dE ¢%(§) V(1) ¢p(€), where ¢k (pp) is the eigenstate of h
with eigenvalue £, (¢g) . The above equations should then be solved with the initial
conditions

aa(t - —OO) = (5(&, 1)7 (5)

which means that before the collision the projetile-target system was in its ground
state.

The cross sections are then given in terms of the final values of the Alder-
Winther amplitudes. The integrated cross section for channel-a is given by the
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integral over impact parameter
0o = 2W/Pa () bdb;  with P, (b) = |a(t — 00)|*. (6)

Angular distributions in channel-a can be expressed in terms of the elastic cross
section and the final population of this channel,

do, (6) _ doe ()

d0 a0 Pa (bﬁ) . (7)

Above, by is the impact parameter associated with the scattering angle € through
the classical trajectory. Usually, the elastic cross section is approximated by its
classical value. In this case, it should be multiplied by a factor Agps (bg), which
accounts for the absorption along the classical trajectory.

3. Breakup reactions

The procedure described in the previous section is particularly useful in problems
involving a large number of coupled channels, where fully quantum mechanical cal-
culations become very complicated. This is the situation where the elastic channel
is strongly coupled to breakup states. In this case, one of the collision partners,
usually the projectile, breaks into one or more fragments moving in the continuum.
The channel label is then continuous and the problem becomes very complicated.
This difficulty is usually handled by the CDCC method [8], where the continuum is
discretized in a set of bins of variable size. Recently it has been used in the realistic
calculations of Nunes and Thompson [5] to study ®B breakup in the 8B + ®®Ni
collision, at Ej,; = 26 MeV. The resulting angular distribution is represented by
a solid line in figure 1. The authors have pointed out that continuum-continuum
couplings play a very important role in the calculations.

Marta et al. [9] studied the same problem with the Alder-Winther method.
They discretized the continuum using the same bins and angular momentum states
as in ref. [5]. Their results correspond to the dashed line in figure 1. The agreement
with the CDCC calculations is very good. This suggests that the semiclassical
method may be an important tool to study nuclear reactions induced by weakly
bound projectiles.

4. Extension to fusion reactions

An extension of the AW theory to fusion reactions has been proposed in ref. [10].
Before discussing this work, we recall the evaluation of the fusion cross section in a
quantum mechanical coupled-channels calculation. For the time being, we assume
that all channels are bound and have spin zero. Assuming that the channel-coupling
interaction is real, the total fusion cross section is a sum of separate contributions
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Fig. 1. ®B breakup angular distributions obtained with the semiclassical method
(dashed line) and with CDCC calculations (solid line).

from each channel. Carrying out partial-wave expansions one gets

OTF :Z l%2(2l+1) PlF(a) , (8)
l

@

with
Pr@) = [ dr luealha, ) WEW. ©)

Above, uq(kq,r) represents the radial wave function for the [**-partial-wave in
channel a and W7 is the absolute value of the imaginary part of the optical potential

associated to fusion in this channel.
The basic idea of ref. [10] is to approximate the fusion probabilities as

PP () ~ B[ T/(E,). (10)

Above, Tl(a)(Ea) is the probability that a particle with energy E, = E — ¢, and
reduced mass po = moApAr/ (Ap + Ar) tunnels through the potential barrier in
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channel-a, and 13l(a) is the probability that the system is in that channel at the point
of closest approach on the classical trajectory. This method was used to evaluate
complete (CF) and incomplete fusion (ICF) cross sections in reactions induced by
weakly bound projectiles. For simplicity, the ground state was assumed to be the
only bound state of the projectile, with breakup processes producing two fragments,
Fy and F,. In this way, labels @ = 0 and a # 0 correspond, respectively, to the
GS and the breakup states represented by two unbound fragments. Neglecting any
sequential contribution, CF can only arise from the elastic channel. Thus the sum
over channels in eq.(8) is reduced to a single term with

B = P = Jag(tea )|, (11)

where the amplitude ag is evaluated along a trajectory with impact parameter
b =1/k. The factor P*™ is usually called survival (to breakup) probability. The
CF cross section can then be written

™
oor = 13, (2+1) B T0(B). (12)
i

The accuracy of this procedure was checked in a preliminary two-channel calcu-
lation for the scattering of ®He projectiles on a 238U target, at near barrier energies
[10]. The weakly bound %He nucleus dissociates into *He and two neutrons, with
threshold energy B = 0.975 MeV. The elastic channel is strongly coupled to the
breakup channel and the influence of this coupling on the fusion cross section is
very important. In this model, the breakup channel is represented by a single ef-
fective state [11]. For simplicity, the effective channel was treated as a bound state
but it was assumed to contribute only to incomplete fusion. In this way, the CF
cross section was given by eq.(12). The threshold energy was neglected and the
same potential barrier was used for both channels. The optical potential was given
by Woods-Saxon parametrizations with V5 = —60 MeV, 7o, = 1.25 F, a, = 0.65
F, Wy = =50 MeV, ro; = 1.0 F and a; = 0.1 F. The form factor had the radial
dependence of the electric dipole coupling with an arbitrary strength chosen in such
a way that the coupling modifies the cross section of the one dimension penetration
barrier appreciably. The CF cross section was shown to be in very good agreement
with the results of a full coupled-channels calculation at above barrier energies.
However, the agreement was very poor at sub-barrier energies. The semiclassical
calculation underestimated the CF cross section drastically [12].

To improve the semiclassical model at sub-barrier energies, one can resort to
the analytical continuation method, which consists of introducing the imaginary
part of the time variable to obtain a classical trajectory in the sub-barrier region
[13]. This procedure is illustrated in figure 2, where the time scale is chosen such
that ¢ = 0 at the external turning point, r.. Along the incident branch of the
trajectory (A), the time develops on the real axis as the system approaches the
barrier. At r = re, the trajectory splits into two parts: the reflected branch (B)
and the classically forbidden transmission branch (C). On the former, which is not
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Fig. 2. Analytical continuation of the time variable. The upper panel shows
the branches of the classical trajectory and the lower panel the evolution on the
complex time plane.

relevant to the fusion process, the time remains real. Along the branch (C), the real
part of ¢ remains equal to zero while its imaginary part develops on the negative
part of the imaginary axis, until this trajectory reaches the exit point r;, at t = —iA.
This trajectory is then continued into the internal classically allowed region (D),
towards the strong absorption radius, Rr, where fusion occurs. Over this branch,
the real part of ¢t grows whereas its imaginary part keeps the value t; = —A. The
fusion probability is then evaluated in terms of the elastic Alder-Winther amplitude
calculated along the trajectory A — C' — D. The survival probabilities become

PP = lao(tr)|”, (13)

where tp is the complex value of the time variable at which the system reaches the
strong absorption radius.

In order to account for the excitation energy in the breakup channel and
simulate the irreversible nature of the breakup process [14], the complex value
E = @ —il'/2 was assigned to the energy of the effective channel. One uses the
fact that an exponentially decaying state with mean life 7 = /T, can be obtained
through the inclusion of a constant imaginary potential equal to —iI'/2 in the sys-
tem Hamiltonian. This procedure requires some care. Solving the AW equations
does not present difficulties since the population of the resonant state is vanishingly
small as t - —oo. The numerical solution of the coupled-channel equations, how-
ever, requires attention. To handle this situation one should switch-off the —iT"/2
imaginary potential at some distance much larger than the range of the potentials,
and then match the radial wave functions with their asymptotic forms [12].
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Fig. 3. Quantum mechanical (full line) and semiclassical (full circles) CF cross
sections for B = 0.975 MeV and I' = 2 MeV. At sub-barrier energies, the contri-
bution from the elastic channel alone is already as large as the cross section in
the no-coupling limit (dashed line). This is a consequence of channel coupling.

Let us now consider the CF cross sections obtained with the above discussed
procedures. The results of the improved semiclassical calculation (solid circles) are
shown in figure 3, in comparison with results of the CC method (solid line) and in
the no-coupling limit. In order to exhibit the details above and below the barrier,
the cross sections are represented on a linear (a) and on a logarithmic (b) scale.
Comparing the semiclassical estimate for ocp with the CC values, we conclude
that the improved semiclassical model leads to accurate results, above and below
the Coulomb barrier.

5. Incomplete fusion

In ref. [11], the ICF cross section was associated with the contribution from the
effective breakup channel to eq.(8). However, this procedure may be wrong, since
the potential barrier for the fragments may be very different from the one in the
entrance channel. In this section we present a simple model to take into account this
effect. For simplicity, we consider collisions of light weakly bound projectiles with
a heavy target, where E. ,,. ~ Ej,s = E, and assume that the share of the incident
energy corresponding to each fragment is proportional to its mass. Neglecting the
relative momentum of the fragments, the total energy in the laboratory frame after
breakup is E' = E — B, where B is the breakup threshold. The energy of the it*
fragment (i = 1,2) is given by

A
Ap
where A; and Ap are respectively the mass numbers of the i** fragment and of the
projectile. The angular momentum of the it* fragment, [;, scales with respect to

E; = (14)
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the projectile-target angular momentum, /, in a similar way. That is,

4 , A [E

= T VE

l. (15)
The ICF cross sections for the fragments F; and F» are then approximated by
the expressions

2

OICF, = %Z (21 + 1) Plbup Tl(1F1)(E1) [1 _ Tl(Fz)(E2)] , (16)
1

’IT =bu F. F
orom = 23 > (@A+1) B TP(B) [1-T(E), (17)
1
with the total ICF cross section given by
OICF = O0ICF, +OICF;. (18)

Above, TZ(F)(E,) is the probability that a fragment F; with energy E; and angular
momentum /; tunnels through the barrier associated with its interaction with the

target. In each case, [1 — ]’lgFj) ( EJ)] is the non-tunneling probability for the other

fragment. The factor B
Plbup = |a1 (tc.a.)|2 (19)

is the population of the effective breakup channel when the system reaches closest
approach, along the classical trajetory with impact parameter b = [/k.

A similar procedure leads to the sequential contribution to complete fusion, cor-
responding to the situation where both fragments tunnels through their interaction
barriers with the target. One obtains

™ _
oscr =15 0 (@ +1) B T(E) T (B). (20)
l

It is clear that the schematic two-channel model provides a very crude descrip-
tion of the breakup process. For quantitative calculations of the ICF cross section
one should resort to more realistic continuum discretization procedures, as the one
used in the CDCC method. However, this simple model may be used to make pre-
dictions of upper bounds to the ICF cross section. For this purpose, one assumes
that the populations of the breakup channel has their largest possible values. One
sets : ]5lb"p = 1 for all partial-waves. To illustrate the application of this procedure,
we show two examples studied in ref. [15]: (a) "Li + 2°°Bi, with the breakup process
"Li —=*H + *He, and (b) *He +2?8 U, where the breakup process is ‘He — 2n +* He.
The reduced cross sections at energies slightly above the barrier are shown in fig-
ures 4 (a) and (b), respectively. For comparison, the fusion cross sections of the
one-dimensional barrier penetration model (BPM) are also shown. In the case of
"Li projectiles, the ICF cross section may be very important. This is consistent
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Fig. 4. Upper bounds for incomplete fusion for two systems. For details, see the
text.

with the experimental results of Dasgupta et al. [2], which indicate that ICF may
be responsible for a reduction of ~ 30% in the CF cross section at above-barrier
energies. The cross section for the fusion of 3H is much larger than that for *He.
This follows from the lower mass and Coulomb barrier for the former fragment. We
now consider ICF in the He 4238 U collision. The dashed line represents the upper
bound for the fusion of the *He fragment with 238U. From the experimental point
of view, this corresponds to complete fusion, since the whole projectile’s charge is
captured by the target. Formally, however, it is incomplete fusion. Since the *He
fragment carries roughly 2/3 of the incident energy whereas its barrier is slightly
higher than that for the projectile, it has a very low fusion cross section. The con-
clusion is that the fusion of *He with the target at near-barrier energies is negligible.
In this way, the formal and the operational definitions for CF are approximately
equivalent.

6. Conclusions

The application of the semiclassical method of Alder and Winther to fusion and
breakup of weakly bound nuclei has been discussed. The B breakup cross section
in collisions with a 58Ni target was calculated using a continuum discretized basis
for the breakup channel. The results were very close to those of a fully quantum
mechanical calculations using the same states.

Complete fusion cross sections were evaluated in a schematic two-channel model,
in which the breakup states were mocked up by a single effective channel. In order
to describe the fusion cross section at sub-barrier energies it was necessary to carry
out the analytical continuation of the time to complex values. A comparison with
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results of a fully quantum mechanical calculation indicated that the method leads
to accurate results, above and below the barrier. The extension of the model to
incomplete fusion was discussed and upper bounds for this cross section have been
calculated.

The semiclassical method discussed in this paper has the advantages of em-
ploying the correct barriers for incomplete fusion and to allow the description of
sequential complete fusion. A more quantitative calculation of the fusion cross
section using a realistic discretization of the continuum is under development.
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