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12228-901 São José dos Campos, Brazil
2 Departament of Physics and Astronomy, The Open University, Milton Keynes

Mk7611 Buckinghamshire, England
3 DPTA/Service de Physique Nucléaire
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Abstract. We analyze the surface geometry of the spherical even-even Ca,
Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-
Bogoliubov one with several parameter sets and the non-relativistic Hartree-
Fock-Bogoliubov one with the Gogny force. The proton and neutron density
distributions are fitted to two-parameter Fermi density distributions to obtain
the half-density radii and diffuseness parameters. Those parameters allow us
to determine the nature of the neutron skins predicted by the models. The
calculations are compared with existing experimental data.
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1. Introduction

New experimental facilities have enabled the measurement of masses, radii and
deformations in an ever wider region of the nuclear chart. Studies in this ’terra
exotica’ have revealed new features such as neutron haloes and skins and brought
new perspectives to nuclear physics. A more detailed analysis of the variations in
surface geometry becomes possible, with the growing number of measurements of
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the radial distributions of neutrons and protons in nuclei far from stability [1, 2].
For heavy neutron-rich nuclei, self-consistent methods, have achieved a level

of sophistication and precision which allows analyses of experimental data for a
wide range of properties. Those microscopic calculations require a simultaneous
description of pairing and continuum effects that can be achieved by mean-field
methods like the non-relativistic Hartree-Fock-Bogoliubov approach (HFB) with a
Skyrme or Gogny interaction [3,4], or relativistic Dirac-Hartree-Bogoliubov (DHB)
approach [5](and references there in).

In this work, we analyze the surface geometry in of the even-even isotopic
chains of the spherical Ca, Ni, Sn and Pb nuclei, using the relativistic Dirac-
Hartree-Bogoliubov (DHB) with several parametrizations and the non-relativistic
HFB+Gogny (HFB) approximations. The proton and neutron densities obtained
from the calculations are fitted by two-parameter Fermi density distributions to
extract the half-densities, and rms radii as well as their diffuseness parameters.
The results are compared with each other and also with the experimental data [6].
The calculated differences between neutron and proton rms radii, ∆rnp, as a func-
tion of the asymmetry parameter δ = N−Z

A
are discussed and compared with those

obtained from the systematics given in Ref. [2].

2. Theoretical Formalism

2.1. The Dirac-Hartree-Bogoliubov approximation (DHB)

Relativistic many-body theories have been applied to nuclei and nuclear matter
with remarkable success [7] (and references therein). The DHB approximation is
obtained by taking into account the average effect of the interaction of a nucleon
with the other nucleons through an effective single-particle Lagrangian, given in
terms of a self-energy Σt(~x, ~y), which describes the average interaction of a nucleon
with the surrounding matter, and a pairing field ∆t(~x, ~y) (and its conjugate ∆̄)
which describes the creation (annihilation) of a pair during the propagation.

The DHB approximation used here was studied previously [5] and found to
give a good description of the binding energies, rms radii and deformations in a
large range of nuclei. It contains a free and interacting Lagrangians with nucleons,
σ, ω, ρ mesons and Coulomb fields as well as a non-linear potential or density
dependent coupling constants and rearrangement terms. The DHB equations are
solved self-consistently together with the meson fields that are solutions of Klein-
Gordon equations. Both fields and wave-functions are expanded in a complete set
of eigenfunctions of an axially-deformed harmonic oscillator potential, with several
parameter sets, namely, the NL3 interaction [8], the density-dependent DDME1
force [9], the non-linear PK1 and density-dependent PKDD forces [10] and a zero-
range Hartree-Fock interaction with finite-range corrections, DHFB [11], using 16
major fermion shells and 32 major boson shells.
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Fig. 1. The several DHB calculations and the HFB one together with the sys-
tematics (delimited by dotted-lines) for differences between neutron and proton
rms radii as a function of the asymmetry parameter. The experimental data for
Sn and Pb are also shown.

2.2. Hartree-Fock-Bogoliubov with the Gogny interaction (HFB)

The Gogny interaction [12] was originally proposed to describe the mean-field
and pairing properties on the same footing within the HFB theory. One of its advan-
tages in relation to a zero-range pairing interaction is the elimination of divergences
that can occur when using the latter. This interaction has 13 adjustable parameters
well known from the literature [12, 13]. The parameters used are those of the D1S
version of the force, given in the Appendix of Ref. [3]. The HFB equations are
solved by expanding the quasi-particle states on finite sets of an harmonic oscillator
basis containing 13 shells in O and Ca, 15 shells in Ni and 17 shells in Pb.

3. Results

Results of the calculations are used as input for the two-Fermi density distribu-
tions least-square fitting. The diffuseness parameter and half-density radii are then
extracted. The rms radii are determined directly from the neutron and proton dis-
tributions. The dependence of the difference between neutron and proton rms radii
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Fig. 2. Calculations for difuseness parameters for neutrons (full lines) and pro-
tons (dashed lines) for HFB calculations and several parametrizations of the DHB
approach, compared with the experimental data when available. The legends are
the same as the previous figure.

of the DHB and HFB calculations on the asymmetry parameter, δ = (N −Z)/A is
shown in Fig. 1. Our results are compared with the ones obtained from systematics,
∆rsys [2]. The HFB calculations lie, for the most part, between the maximum and
minimum values of ∆rsys, extending beyond the upper limit of the systematics only
for extremely large values of the asymmetry parameter. The DHB calculations in
most cases deviate substantially from the systematics at high neutron excess.

The diffuseness parameter (a) as a function of mass (A) for even-even Ca, Ni,
Sn and Pb isotopes is shown in Fig. 2. The diffuseness extracted from the fit-
ting of DHB and HFB protons density distributions are connected by dashed lines,
while the full lines represent the neutron diffuseness parameters. The experimental
data shown in the figure are obtained from the two-parameter Fermi(2pF), three-
parameter Fermi (3pF) and three-parameter Gaussian (3pG) fits to elastic electron
scattering data, as compiled in Ref. [14]. The density distributions given there were
fitted with a two-parameter Fermi distribution convoluted with the proton charge
distribution to obtain the half-density radii and diffuseness parameters shown as
data points in the figures. The DHB calculations tend to provide slightly smaller
neutron diffuseness parameters than the ones obtained from the HFB calculations
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Fig. 3. Calculations for half-density radii for neutrons (full line) and protons
(dashed lines) for HFB calculations and several parametrizations of the DHB
approach, compared with the experimental data when available. The legends are
the same as in Fig. 1

for low neutron excess. The proton diffuseness parameters in the relativistic cal-
culations are smaller then those calculated relativistically. One notes that, as a
closed shell is approached the nucleons become more bound on the average and the
diffuseness parameter decreases (excepting the case of Pb), increasing again as a
new shell opens.

Similar features are found when the behavior of the half-density radii is ana-
lyzed. Figure 3 presents the half-density radius (c) as a function of mass (A) for the
even-even Ca, Ni, Sn and Pb isotopes. In each isotopic chain we can see that the
half-density radii for both protons and neutrons increase smoothly with the increase
in mass, in both calculations.

The shell closure effects are more pronounced in the diffuseness parameters
extracted from the DHB calculations while these effects are more prominent in the
half-density radii extracted from the HFB ones, as seen in Fig. 2 and Fig. 3.

4. Conclusions

A study of the surface geometry (diffuseness and half-density radii) by a least-
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square fitting of neutron and proton density distributions of spherical nuclei has
been performed. The density distributions of the spherical neutron-rich even-even
mass Ca, Ni, Sn and Pb isotopic chains have been adjusted to two-parameter Fermi
density distributions. Both neutron and proton half-density radii increase fairly
smoothly towards the neutron drip-line in all calculations. A substantial increase
in the diffuseness parameter in isotopes far from the stability line is seen in all
calculations. In general, the diffuseness parameters decrease at the last sub-shell
before the magic number is reached. The only exception occurred for Pb isotopes.

The DHB approach greatly overestimates the neutron and proton rms radius
difference at large neutron excess when compared to the systematics of Ref. [2].
The HFB approach shows a better agreement with the empirical systematics for
the ∆rnp differences.
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