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Abstract. Gamow-Teller (GT) transitions in the region of A=56 are described
in terms of the coupling between isovector and isoscalar pairing phonons and
Gamow-Teller excitations. The available experimental information is used
to extract coupling constants and strength functions of addition (removal)
isoscalar and isovector pairing phonons and GT phonons. The validity of the
approach is tested by the calculation of intensities for GT transitions in 58Cu.
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1. Introduction

The calculation of nuclear matrix elements of spin-isospin dependent operators is an
esential component in the description of neutrino induced transitions and decays,
like single and double beta decay. In this work we analyze the experimental informa-
tion for transitions involving low spin and isospin states in nuclei near closed shells
[1]. For the theoretical analysis we have adopted isoscalar and isovector pairing ex-
citations and GT excitations as elementary degrees of freedom. In the present work
we extend the analysis of Ref. [2] to include the spin. Therefore, we shall study the
properties of those states which may be interpreted either as members of isoscalar
pairing multiplets or as Gamow-Teller excitations of closed shells. This is in con-
trast with usual treatments of the isoscalar pairing in terms of an extension of the
BCS formalism. This note is intented to show that the adopted formalism may in-
deed be applied to calculate the strenght distribution corresponding to spin-isospin
excitation, for nuclei near close shells. The numerical results presented in this work
may be taken as preliminary results. Final ones will be published elsewhere [3].
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2. Formalism

We take into account three boson degrees of freedom, labeled by the angular mo-
mentum I, the isospin T and the transfer number α = 0,±1. The quantum number
ν orders the states with the three previous labels in common. We assume that the
dominant coupling scheme is given by the isovector pairing phonons. On top of
this basic structure we locate the I=1 phonons (either isoscalar pairing or Gamow-
Teller). We include only those states which one may recognize from the empirical
evidence in the region 52 ≤ A ≤ 60. We define the following pairs of single-particle
operators coupled to good angular momentum I and isospin T

[
a+

j1
a+

j2

]I=0 T=1

0Tz
;

[
a+

j1
a+

j2

]10
M0

;
[
a+

j1
aj2

]11
MTz

, (1)

where a+
j = b+

j , c+
j and j = k, h. We construct the operators
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IM,TTz,1 = f IT1

j1j2 [a+
j1

a+
j2

]I T
MTz

P+
1M,1Tz,0 = f110

j1j2 [a+
j1

aj2 ]
1 1
MTz

P+
IM,TTz,−1 = (−1)I+T+M+TzPI(−M),T (−Tz),1 (2)

Here

f
01(±1)
j1j2

= δj1j2 ĵ1 ; f101
j1j2 = f110

j1j2 =
〈j1||σ||j2〉√

3
(3)

and with them we construct separable residual interactions of the form

HITα = − gITα

1 + δα0
P+

IM,TTz,αPIM,TTz,α (4)

which are diagonalized through the usual RPA procedure. The coupling pairing
strengths gIT (±1) are fixed from the lowest states of the systems with A=54 and 58
with I=0 and 1, while the value of Gamow Teller strength g110 is an educated guess
based on the energetics of the GT mode. Thus, the calculation is parameter-free
for all practical purposes.

3. Gamow-Teller transitions

In this section we discuss the matrix elements of the operator

Q1M =
〈j′||σ||j〉√

3
[b+

j′cj ]1M (5)

We illustrate the treatment through the reaction (3He,t) on 58Ni. Thus the tar-
get nucleus is represented by the one-phonon isovector pairing state |0〉 ≡ Γ+

00,1(−1),1;1| 〉.
The states of 58Cu listed in Table 1 are populated in lower order of the NFT dia-
grammatic perturbation theory. For cases A-E the symbols κi in Table 1 stand for
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graph ν energy (κi)bare (κi)ren

A 1 3.84 1.21 0.83
2 5.32 0.35 0.22

B 5.81 0.23 0.16
C 1 10.84 0.016 0.026
D 1 10.84 0.172 0.286
E 1 10.84 0.158 0.257
F 1 9.34 -0.152 -0.256
G 1 9.34 0.444 0.540
H 1 9.34 0.021 0.033
I 1 8.59 -0.919 -0.134
J 1 8.85 0.778 -0.088

2 12.13 0.191 0.250

Table 1. Model energies and GT matrix elements to excited states with good
isospin projection Tz.

the matrix elements

κA = 〈Γ+
1M,00,1;ν |Q1M |0〉

κB =
1√
2
〈[b+

3
2−

c+
1
2−

]1M − [b+
1
2−

c 3
2−]1M |Q1M |0〉

κC , κD, κE = 〈[Γ+
1,00,1;νΓ+

1,10,0;1]
1
M |Q1M |0〉 (6)

The isospin of the final state is well defined for these transitions. In the case of
transitions F-H Table 1 includes the matrix elements

κF = 〈Γ+
1M,11,0;1Γ

+
00,1(−1),1;1|Q1M |0〉F = −2 〈Γ+

1M,10,0;1Γ
+
00,10,1;1|Q1M |0〉F

κG = 2 〈Γ+
1M,10,0;1Γ

+
00,10,1;1|Q1M |0〉G (7)

κH = 〈Γ+
1M,1(−1),0;1Γ

+
00,11,1;1|Q1M |0〉H = −2〈Γ+

1M,10,0;1Γ
+
00,10,1;1|Q1M |0〉H

From (7) we extract the amplitudes for populating states with good isospin. The
corresponding values obtained are listed in Table 2.

κT
Tz=0 = 〈[Γ+

1M,1,0;1Γ
+
00,1,1;1]

T
0 |Q1M |0〉 (8)

Transitions I − J correspond to the matrix elements

κI = 〈
(
Γ+

1M,00,1;νΓ+
00,11,−1;1|0〉

)
|Q1M |0〉

κJ = 〈
(
Γ+

1M,00,−1;1Γ
+
00,11,1;ν |0〉

)
|Q1M |0〉 (9)
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T κT
0

(
κT

0

)
bare

(
κT

0

)
ren

0
√

3
2 (κF + κH − κG/3) -0.261 -0.373

1 1√
2
(κF − κH) -0.112 -0.209

2 1√
6
κG 0.181 0.220

Table 2. The bare and renormalized amplitudes to states of good T arising from
graphs F-H.

final state |u〉 ν T E(i, A, T ) |〈u|Q1M |0〉bare|2 |〈u|Q1M |0〉ren|2
Γ+

1M,00,1;ν | 〉 1 0 1.50 1.42 0.69
2 0 2.98 0.12 0.05

1√
2

(
[b+

3
2−

c+
1
2−

]1M − [b+
1
2−

c 3
2−]1M

)
| 〉 3.69 1 3.69 0.07 0.03

[Γ+
1,1,0;1 Γ+

1,0,1;ν ]1M | 〉 1 1 8.72 0.12 0.32
[Γ+

1M,1,0;1 Γ+
00,1,1;ν ]T | 〉 1 0 5.50 0.79 1.96

1 1 7.22 1.67 2.58
1 2 10.67 0.96 0.40

Γ+
1M,00,1;ν [Γ+

00,1,−1;1 Γ+
00,1,1;1]

T | 〉 1 0 4.76 large large
10.67 1 6.48 - -

2 9.93 -
Γ+

1M,00,−1;1 [Γ+
00,1,1;ν Γ+

00,1,1;1]
T | 〉 1 0 5.01 -

1 6.73 -
2 9.93 -

5.15 6.04

Table 3. The predicted population of final states in 58Cu through the reaction
(3He,t) on 58Ni. The predicted “true” excitation energies E(i, 58, T ) are in MeV.
Accidental degeneracies of energy denominators produced the results indicated
as ” large”, and they have been omitted from the final sum

Matrix elements to states with good isospin are given by

κT
I,J = 〈11; 1(−1); T0〉κI,J (10)

The last two columns in Table 3 are obtained by squaring the sum of all amplitudes
listed in Table 1 to the same final state |u〉. Only contributions larger than 0.01
are considered. The last column but one displays the bare matrix elements, while
last one includes the renormalization through the Gamow-Teller phonon. This
renormalization is taken into account in perturbation theory. The amplitudes to
final states [Γ+

1M,1,0;1 Γ+
00,1,1;ν ]T | 〉 include also the direct creation of the GT phonon
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(GT giant resonance)

〈
([

Γ+
1M,1,0;1 Γ+

00,1,1;1〉
]T

)
| (Q1M )coll |0〉 = −Ξ110

1

g110
〈 11; 1(−1); T0〉. (11)

Our results are not restricted to cases in which the energies of the initial and final
states are much smaller than the frequency of the giant resonance. In fact, we
would like to find out how the sumrule is preserved and where the missing intensity
lies. Thus we go beyond the usual prescription of effective charges. The details
concerning the renormalization procedure are given in [3].

4. Ikeda’s sumrule

For a two-particle state |0〉, Ikeda’s sumrule reads

2 = N − Z = |〈a|Q1M |0〉|2 − |〈b|Q′1M |0〉|2 (12)

where the sum over M is omitted, the GT operator Q1M is given in (5) and

Q′
1M = −〈j

′||σ||j〉√
3

[c+
j′bj ]1M (13)

Let us verify the sumrule for the case of a pure two-neutron state |0〉 =
[c+

k c+
k ]0| 〉, and assume that |h〉, the spin-orbit partner of |k〉, is filled. In this case,

|a1〉 = [b+
k c+

k ]1M | 〉 ; |〈a1|Q1M |0〉|2 =
〈k||σ||k〉2

3k̂2
(14)

|a2〉 = [b+
k ch]1M |0〉 ; |〈a2|Q1M |0〉|2 =

〈k||σ||h〉2
3

|b,m′m〉 = c+
kmbh(m−M)c

+
km′c

+
k(−m′) (m 6= ±m′ ; m′ > 0)

|〈b,m′m|Q′1M |0〉|2 =
〈k||σ||h〉2〈km;h(M −m); 1M〉2

3k̂2
=
〈k||σ||h〉2

3

(
1− 1

k̂2

)

Thus the sumrule is verified since

〈k||σ||k〉2 + 〈h||σ||k〉2
3k̂2

= 2 (15)

The moral of this example is that the verification of the sumrule depends on the
matrix elements of the operator Q′1M (13) as much as on those of the original
operator (5). The deviation from the leading order term in the last of eqs. (14) is a
Pauli blocking effect on the giant resonance due to the existence of the two neutrons
above the Fermi surface.

Within the NFT formalism, these effects are treated through the diagrammatic
contributions.
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5. Conclusions

In this note we have presented preliminary results concerning the treatment of spin-
isospin transitions near close shell nuclei. We have adopted the formalism consisting
of the simultaneous treatment of isoscalar pairing and GT vibrational states. The
formalism was applied to a test case (transitions in 58Cu) and the results show that
the method is indeed feasible. The presence of accidental degeneracies may prevent
for the inclusion of the complete set of diagrams prescribed by the NFT method, but
the gross structure of the strength distribution, for spin excitations, is reproduced
reasonably.
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