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Abstract. We discuss recent applications of the perturbative chiral quark
model (PCQM) in the analysis of the structure of baryons. The PCQM is
based on an effective Lagrangian, where baryons are described by relativis-
tic valence quarks and a perturbative cloud of Goldstone bosons as required
by chiral symmetry. We discuss for example applications to electromagnetic
properties of the octet baryons and σ-term physics. Furthermore, we present re-
cent efforts to formulate and apply a manifestly Lorentz covariant chiral quark
model, which is consistent with the latest developments in the baryon sector
of chiral perturbation theory.
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1. Introduction

Chiral symmetry plays an important role in the low-energy domain of QCD: it
governs the strong interaction between hadrons. All known low-energy approaches
in the study of light hadrons have to incorporate the concept of at least an ap-
proximate chiral symmetry to get reasonable agreement with data. The concept
of chiral quark models dates back to the work of the early eighties [1]-[4], where
the baryon is described as a bound system of valence quarks with a surrounding
Goldstone boson cloud simulating the sea-quark contributions. These models in-
clude the two main features of low-energy hadron structure, confinement, put in
phenomenologically, and chiral symmetry, implemented by construction. Assum-
ing that the valence quark content dominates the baryon, meson contributions can
be treated perturbatively [1–4]. By introducing a static quark potential of general
form, these quark models contain a set of free parameters characterizing the con-
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2 Faessler et al.

finement (coupling strength) and/or the quark masses. The perturbative technique
allows a fully quantized treatment of the Goldstone boson fields up to a given order
in accuracy. Although formulated on the quark level, where confinement is put in
phenomenologically, perturbative chiral quark models are conceptually close to chi-
ral perturbation theory [5] on the hadron level in treating meson cloud corrections
perturbatively.

As a further development of chiral quark models with a perturbative treatment
of the Goldstone boson cloud we formulated the relativistic perturbative chiral
quark model (PCQM) in the study of the low-energy properties of the nucleon.
This model was in part applied to the electromagnetic properties of baryons [6–8]
and to sigma-term physics [9, 10], which we will review in the following. We also
indicate recent efforts to formulate and apply a manifestly Lorentz covariant chiral
quark model, which is consistent with the latest developments in the baryon sector
of chiral perturbation theory.

2. The perturbative chiral quark model

Starting point of the perturbative chiral quark model (PCQM) is an effective chiral
Lagrangian describing the valence quarks of baryons as relativistic fermions moving
in an external field (static potential) Veff(r) = S(r) + γ0V (r) with r = |~x|, which
in the SU(3) extension are supplemented by a cloud of Goldstone bosons (π, K, η).
(For details see Ref. [6].) The effective Lagrangian Leff = Linv + LχSB of the
PCQM includes a chiral invariant part Linv and a symmetry breaking term LχSB

(containing the mass terms for quarks and mesons):

Linv(x) = ψ̄(x)[i 6∂ − γ0V (r)]ψ(x)

+
1
2
[DµΦi(x)]2 − S(r)ψ̄(x) exp

[
iγ5 Φ̂(x)

F

]
ψ(x),

LχSB(x) = −ψ̄(x)Mψ(x)− B

2
Tr

[
Φ̂2(x)M

]
, (1)

where Φ̂(x) is the octet matrix of pseudoscalar mesons, Dµ is the covariant deriva-
tive; F = 88 MeV is the pion decay constant in the chiral limit; M = diag{m̂, m̂,ms}
is the mass matrix of current quarks with the isospin averaged u-d mass m̂ = 7 MeV
and ms = 25m̂; B = 1.4 GeV is the quark condensate constant.

Treating Goldstone fields as small fluctuations around the three-quark (3q) core
we formulate perturbation theory in the expansion parameter 1/F (F ∼ √

Nc) and
we also treat finite current quark masses perturbatively. Expanding the meson-
quark interaction exp[iγ5Φ̂(x)/F ] up to second order in the meson field Φ̂(x), all
calculations are performed at one loop or at order of accuracy o(1/F 2, m̂,ms). By
introducing renormalized quantities, such as for quark masses and field operators,
an additional set of counterterms δL has to be introduced in the Lagrangian.

The unperturbed three valence quark state is built up from the single quark
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wave functions obtained from the Dirac equation:
[
−iγ0~γ · ~∇+ γ0S(r) + V (r)− Eα

]
uα(~x) = 0, (2)

where Eα is the single-quark energy. The quark wave function uα(x) belongs to
the basis of potential eigenstates used for the expansion of the quark field operator
ψ(x). We use a variational Gaussian ansatz for the quark wave function given by
the analytical form:

u0(~x) = N exp
[
− ~x 2

2R2

] (
1

iρ ~σ~x/R

)
χs χf χc, (3)

where χs, χf , χc are the spin, flavor and color quark wave function, respectively.
The Gaussian ansatz contains two model parameters , R and ρ. The parameter
ρ is fixed by the axial charge gA of the nucleon calculated in zeroth-order (or 3q-
core) approximation. The parameter R is related to the charge radius of the proton
< r2

E >P
LO in the zeroth-order approximation. In our calculations we use the value

gA=1.25. Therefore, we have only one free parameter, that is R. In the numerical
results [6] R is varied in the region from 0.55 fm to 0.65 fm, which corresponds to
a change of < r2

E >P
LO from 0.5 to 0.7 fm2. In the evaluation we use, if not stated

otherwise, the approximation that intermediate quark lines are restricted to the
ground state, that is intermediate N and ∆ states occur in the one-loop terms.

3. Electromagnetic properties of baryons

As a standard application of quark models we considered the low-energy electro-
magnetic properties of the flavor octet baryons [6,7]. Local gauge invariance of the
electromagnetic interaction is fulfilled on the Lagrangian level by construction. Due
to the noncovariant nature of the effective confinement we introduced, local gauge
invariance is not necessarily fulfilled for physical amplitudes in any reference frame.
Only when working in the Breit frame, nucleon matrix elements are shown to be
consistent with the Ward identity.

The predictions for the magnetic moments of the baryon octet are summa-
rized in Table 1, where the leading order valence quark contribution (LO) including
corrections (renormalization of the quark wave function (NLO) and three-quark
counterterms (CT)), the meson loop corrections and the total result are indicated.
The mesonic contributions to the baryon magnetic moments are of the order of 20
- 40 % (except for Ξ− they contribute only 3 %). Variations in the theoretical
prediction correspond to a change in the size parameter R as discussed previously.
Results for the charge radii of the baryon octet are given in Table 2. Our result
for the proton and Σ− charge radii squared are in good agreement with the exper-
imental data. In the isospin limit the three-quark core does not contribute to the
charge radii of neutral baryons. Only the meson cloud generates a nonvanishing
value for the charge radii of these baryons. When we restrict the quark propa-
gator to the ground state contribution, meson-cloud effects give a small value for
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Table 1. Results for the magnetic moments µB of the baryon octet (in units of
the nucleon magneton µN ).

3q Meson loops Total Exp [11]
[LO+NLO+CT]

µp 1.81 ± 0.15 0.79 ±0.12 2.60 ± 0.03 2.793
µn -1.21 ± 0.10 -0.77 ± 0.12 -1.98 ± 0.02 -1.913
µΣ+ 2.24 ± 0.19 0.51 ± 0.11 2.75 ± 0.09 2.458 ± 0.010
µΣ0 0.71 ± 0.06 0.34 ± 0.07 1.05 ± 0.01 —
µΣ− -0.82 ± 0.06 -0.26 ± 0.02 -1.08 ± 0.05 -1.160 ± 0.025
µΛ -0.56 ± 0.06 -0.33 ± 0.09 -0.89 ± 0.03 -0.613 ± 0.004
µΞ0 -1.46 ± 0.14 -0.28 ± 0.11 -1.74 ± 0.03 -1.250 ± 0.014
µΞ− -0.62 ± 0.07 -0.05 ± 0.07 -0.68 ± 0.01 -0.651± 0.003
|µΣ0Λ| 1.29 ± 0.11 0.61 ± 0.09 1.89 ± 0.01 1.61 ± 0.08

Table 2. Results for the charge radii squared
〈
r2

E

〉B
of the baryon octet (in units

of fm2).

3q Meson loops Total Exp [11,12]
[LO+NLO+CT]〈

r2
E

〉p 0.60 ± 0.10 0.12±0.01 0.72 ± 0.09 0.76±0.02〈
r2
E

〉n

GS
0 -0.043 ± 0.004 -0.043 ± 0.004〈

r2
E

〉n

ES
0 -0.068 ± 0.013 -0.068 ± 0.013〈

r2
E

〉n

Full
0 -0.111± 0.014 -0.111 ± 0.014 -0.116±0.002〈

r2
E

〉Σ+

0.67 ± 0.10 0.14 ± 0.004 0.81 ± 0.10 —〈
r2
E

〉Σ0

0.038±0.010 0.012 ± 0.010 0.050 ± 0.010 —〈
r2
E

〉Σ− 0.56 ± 0.10 0.15 ± 0.03 0.71± 0.07 0.61 ± 0.21〈
r2
E

〉Λ 0.038±0.010 0.012 ± 0.010 0.050 ± 0.010 —〈
r2
E

〉Ξ0

0.07±0.02 0.07±0.02 0.14 ± 0.02 —〈
r2
E

〉Ξ− 0.52 ± 0.10 0.10 ± 0.03 0.62 ± 0.07 —〈
r2
E

〉Σ0Λ 0 0 0 —

the neutron charge radius squared. The result of the neutron charge radius can
be improved by including excited states in the quark propagator. In Table 2 we
explicitly indicate our results for the neutron charge radius for the different treat-
ment of the quark propagator. The value, where the quark propagator is restricted
to the ground state, is indicated by

〈
r2
E

〉n(GS). Contributions from excited states
are denoted by

〈
r2
E

〉n(ES). Exemplified for the neutron charge radius, we conclude
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that excited state contributions can also generate sizable corrections when the LO
results is vanishing.

Electromagnetic transitions of the nucleon to baryon excitations give important
insight into the degrees of freedom which are relevant for the structure of baryons.
From this point of view the study of the particular transition γN → ∆(1232) is
sensitive to the spatial and spin structure of the involved baryons. The transverse
helicity amplitudes are defined as

AM = − e√
2ωγ

< ∆, s
′
z = M |~j · ~ε |N, sz = M − 1 > (4)

with projection M = 1
2 , 3

2 and ωγ is the energy of the photon in the rest frame of
the ∆ with the polarization vector ~ε. In the context of the PCQM [8] the helicity

Table 3. Results for the transverse helicity amplitudes γN → ∆ at the real
photon point (in units of 10−3 GeV−1/2). Results for inclusion of ground (GS)
and excited states (ES) in the quark propagator are indicated separately.

A1/2(Q2 = 0) A3/2(Q2 = 0)
GS quark propagator
3q-core
-LO -69.7 ± 5.9 -120.7 ± 10.2
-NLO -8.6 ± 1.2 -14.9 ± 2.1
Counter-term 8.2 ± 1.1 14.2 ± 1.9
Meson-cloud -16.7 ± 2.6 -28.9 ± 4.5
Vertex-correction -0.7 ± 0.1 -1.2 ± 0.1
Meson-in-flight -23.0 ± 3.4 -39.8 ± 5.9
Total(GS) -110.5 ± 0.3 -191.3 ± 0.5
ES quark propagator
NLO -10.3 ± 1.1 -17.8 ± 1.9
Counter-term 4.9 ± 0.6 8.5 ± 1.0
Meson-cloud -13.5 ± 2.5 -23.4 ± 4.3
Vertex-correction -0.7 ± 0.1 -1.2 ± 0.1
Total(ES) -19.6 ± 3.1 -33.9 ± 5.3
Total=Total(GS)+Total(ES) -130.1 ± 3.4 -225.2 ± 5.8
Experiment [11] -135 ± 6 -255 ± 8

amplitudes A1/2 and A3/2 are evaluated at one-loop or to the order of accuracy
o(1/F 2, m̂,ms). At this level, which is also equivalent to O(1/Nc), we obtain the
naive relation A3/2 =

√
3 ·A1/2. Recently, in the framework of large-Nc [13] it was

shown that the ratio A3/2/A1/2 is mostly saturated by the naive SU6 quark model
result A3/2/A1/2 =

√
3. Deviations from this standard result are due to higher

order corrections with A3/2/A1/2 =
√

3 + O(1/N2
c ) [13]. In Table 3 we give our
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results for the helicity amplitudes at the real photon point, indicating separately
the contributions of ground and excited states in the quark propagator. Meson
cloud corrections play a decisive role in explaining the large deviation from the
result of the impulse, that is three-quark core, approximation. Excited quark states
in loop diagrams play an important role at the level of 15% to fully account for the
measurements. Because at one-loop we work at the order of accuracy o(1/F 2, m̂,ms)
or equivalently at o(1/Nc), a deviation from the standard ratio of A3/2/A1/2 =

√
3,

consistent with large-Nc arguments [13] cannot be obtained. Hence, we also predict
a vanishing value for the E2/M1 ratio.

4. Sigma-term physics

The meson-nucleon sigma-terms are fundamental parameters of low-energy hadron
physics, since they provide a direct measure of the scalar quark condensates in
baryons and constitute a test for the mechanism of chiral symmetry breaking.
Therefore, sigma-terms pose an important test for effective quark models in the
low-energy hadron sector, since these quantities are dominantly determined by the
quark-antiquark sea and not by the valence quark contribution.

The scalar density operators SPCQM
i (i = u, d, s), relevant for the calculation of

the meson-baryon sigma-terms in the PCQM, are defined as the partial derivatives
of the χSB model Hamiltonian HχSB = −LχSB with respect to the current quark
mass mi of i-th flavor:

SPCQM
i

.=
∂HχSB

∂mi
= Sval

i + Ssea
i , (5)

where Sval
i ≡ q̄iqi is the set of valence-quark operators and Ssea

i arises from the
pseudoscalar meson mass term.

A perturbative evaluation of SPCQM
i to one loop results in the expression for

the πN sigma-term [9]:

σπN = m̂ < p|SPCQM
u + SPCQM

d |p >= 3γm̂ +
∑

Φ=π,K,η

dΦ
N · Γ(M2

Φ) (6)

where the first term of the right-hand side corresponds to the valence quark, the
second to the sea quark contribution. The vertex function Γ(M2

Φ) is related to the
partial derivative of the self-energy operator Π(M2

Φ) with respect to the nonstrange
current quark mass m̂; dΦ

N are recoupling coefficients and γ = 5/8 is a relativistic
reduction factor.

In Ref. [9] we originally calculated the σπN sigma-term with the quark prop-
agator restricted to the ground state. The result we obtained there was 45 ± 5
MeV, where the variation of the value is due to a change of the range parameter
R. For the central value of R = 0.6 fm we obtain σπN = 42.5 MeV, where the
valence-quark contribution is σval

πN = 13.1 MeV (i.e. 1/3 of the total value) and the
meson-cloud contribution is dominated by the pions with σsea

πN = 29.4 MeV (i.e. 2/3
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of total value). Inclusion of the excited quark states [10] obviously does not change
the result for σval

πN but leads to an increase for σsea
πN from 29.4 MeV to 41.6 MeV.

Hence, we obtain a sizable increase of the sigma term by about 12 MeV leading to
the final value of σπN = 54.7 MeV. The main contribution is due to pion loops,
whereas kaon and eta loops are strongly suppressed. The obtained value of 54.7
MeV is still comparable to the upper limit of the canonical result 45 ± 8 MeV ob-
tained in Ref. [14]. It is also in agreement with the result obtained in the framework
of relativistic baryon ChPT up to next-next-to-leading order (NNLO) based on an
extrapolation of this observable from two-flavor lattice QCD results: σπN = 53± 8
MeV at the physical value of the pion mass [15]. Our final result is compiled as:

σπN = 54.7 MeV, σval
πN = 13.1 MeV, σsea

πN = 41.6 MeV, (7)
σπ

πN = 39.4 MeV, σK
πN = 2.1 MeV, ση

πN = 0.1 MeV ,

where the meson loop contributions are made explicit in the last line. For the slope
of the scalar form factor we get:

〈r2〉SN .= 〈r2〉SπN = − 6
σπN (0)

dσπN (Q2)
dQ2

∣∣∣∣∣
Q2 = 0

= 1.5 fm2 (8)

which is comparable to the model-independent prediction of Ref. [14]: 〈r2〉SN ' 1.6
fm2.

The scalar nucleon form factor can be extrapolated to the time-like region
t = −Q2 for small t by using the linear approximation:

σπN (t) = σπN (0)
(

1 +
1
6
〈r2〉SN · t + O(t2)

)
. (9)

Hence we obtain for the difference

∆σ = σπN (2M2
π)− σπN (0) = 13.8 MeV (10)

which is comparable to the canonical value of ∆σ = 15.2 ± 0.4 MeV deduced by
dispersion-relation techniques [14] and to the results obtained in ChPT: ∆σ = 14.0
MeV +2M4ē2 [16] and ∆σ = 16.9 MeV +2M4β [17]. The value of the σπN (t) at
the Cheng-Dashen point

σπN (2M2
π) = 68.5 MeV (11)

is comparable to the upper limit (68 MeV) of the value deduced in Ref. [14], close to
the central value (64 MeV) extracted from the analysis of pion-nucleon scattering
data [18] and smaller than the central values of the recent analyses [19–21].

5. Covariant extension

Recently we developed a manifestly Lorentz covariant quark model [22] for the
study of baryons as bound states of constituent quarks. We improved the PCQM,
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discussed previously, in several directions: i) the underlying model Lagrangian is
fully Lorentz covariant; ii) all low-energy theorems and the infrared structure of
QCD are reproduced in the extended approach due to the matching of the matrix
elements to the ones derived in Chiral Perturbation Theory; iii) effects of valence
quarks and meson cloud are separated in a model-independent way through the
derived factorization theorem.

The approach is based on the idea that constituent quarks are treated as inter-
mediate degrees of freedom between the current quarks (building blocks of the QCD
Lagrangian) and the hadrons (building blocks of ChPT). The internal quark struc-
ture of baryons (or distribution of valence quarks) is modelled by using three-quark
currents with quantum numbers of baryons and covariant baryonic wave functions.
In addition to the valence quark degrees of freedom we consistently include the sea-
quark effects which are parametrized by a cloud of pseudoscalar fields as dictated by
chiral symmetry. Dressing of the valence quarks by a cloud of pseudoscalar mesons
is based on a non-linear chirally symmetric Lagrangian. Here we follow the original
ideas of Ref. [23] and include the higher-order terms in the chiral expansion. The
structure of the Lagrangian is motivated by Baryon ChPT [16]. The difference is
that we replace the baryon fields by the quark fields.

In a first step, this Lagrangian can be used to perform a dressing of the con-
stituent quarks by a cloud of light pseudoscalar mesons and other heavy states using
the calculational technique based on the infrared dimensional regularization of loop
diagrams suggested in [16]. For the example of the electromagnetic quark transition
operator the dressing by a pseudoscalar meson cloud to order O(p4) and one-loop
is exemplified in Fig. 1.

For the case of the electromagnetic form factors of the nucleon, the projection
of the dressed quark operators between nucleon states leads to the factorization:

〈N(p′)|Jdress
µ, em(q)|N(p)〉 =

= (2π)4 δ4(p′ − p− q) ūN (p′)
{

γµ FN
1 (q2) +

iσµνqν

2mN
FN

2 (q2)
}

uN (p)

= (2π)4 δ4(p′ − p− q)
{

f ij
D (q2) 〈N(p′)|jbare

µ,ij (0)|N(p)〉

+i
qν

2 m
f ij

P (q2) 〈N(p′)|jbare
µν,ij(0)|N(p)〉

}
. (12)

where mN and m are the nucleon and constituent quark masses in the chiral limit;
FN

1 and FN
2 are the Dirac and Pauli nucleon form factors. The effects of hadroniza-

tion and confinement are contained in the matrix elements of the bare quark oper-
ators

jbare
µ,ij (0) = q̄i(0) γµ qj(0) and jbare

µν,ij(0) = q̄i(0) σµν qj(0) . (13)

The effects dictated by chiral symmetry (or chiral dynamics) are encoded in the
relativistic form factors f ij

D (q2) and f ij
P (q2). Due to the matching of physical ampli-

tudes to Baryon ChPT [16] we consistently reproduce all low-energy theorems and
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(10) (11) (12)

Fig. 1. Diagrams including pseudoscalar meson contributions to the electromag-
netic quark transition operator up to fourth order. Solid, dashed and wiggly lines
refer to quarks, pseudoscalar mesons and the electromagnetic field, respectively.
Vertices denoted by a black filled circle, box and diamond correspond to insertions
from the second, third and fourth chiral Lagrangian [22].

infrared properties of QCD, e.g. the leading nonanalytic (LNA) contributions to the
magnetic moments µp and the charge 〈r2〉Ep and magnetic 〈r2〉Mp radii of nucleons.
Presently, the calculation [22] of the full momentum dependence of, for example,
the electromagnetic form factors relies on a full parametrization of the bare quark
distributions in the nucleon and hence the particular matrix elements. To illustrate
the strength of this method we indicate the results for the electric form factors of
the nucleon in Fig. 2. The covariant extension of the quark model including chiral
corrections to order O(p4) and one-loop serves as a basis for further investigations
in topics of baryon structure, where also large momenta transfers can be studied.

Acknowledgements: This work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG) under contracts FA 67/25-3 and GRK683. This research is
also part of the EU Integrated Infrastructure Initiative Hadronphysics Project un-
der contract number RII3-CT-2004-506078.



10 Faessler et al.

5

5

5
55

545

×

×
45
?5

×

×
5

545

5

54

5

54

5

5
4

total

bare

Q2 (GeV2)

\

Gp
E(Q2)/GD(Q2)

G
p E
(Q

2
)/

G
D

(Q
2
)

0 1.0 2.0

0.8

0.9

1.0

1.1

45 �

?
×

total

bare

cloud

Q2 (GeV2)

Gn
E(Q2)

G
n E
(Q

2
)

0 0.5 1.0 1.5

0

0.02

0.04

0.06

0.08

0.10

0.12

Fig. 2. Electric form factors of the nucleon: (left) Measured ratio
Gp

E(Q2)/GD(Q2) for the proton, where GD is the dipole form factor, (right)
electric form factor of the neutron. The solid line is the total model contribu-
tion including chiral corrections and the dotted line is the bare valence quark
contribution. Experimental data are taken from the compilation of Ref. [24].
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