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Effective interactions from q-deformed quark fields
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Abstract. From the mass term for q-deformed quark fields, we obtain effective
contact interactions of the NJL type. The parameters of the model that maps
a system of non-interacting deformed fields into quarks interacting via NJL
contact terms is discussed.
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It is very common in physics to use transformations that make one particu-
lar system mathematically simpler, yet describing the same phenomena. A clear
example is the use of canonical transformations in classical mechanics.

q-Deformed algebras provide a nice framework to incorporate, in an effective
way, interactions not originally contained in the Lagrangian of a particular system
[1–3].

In hadron physics, the NJL model [4,5] is a very simple effective model for strong
interactions that describes important features like the dynamical mass generation,
spontaneous chiral symmetry breaking, and chiral symmetry restoration at finite
temperature.

In recent works [6–8], we have been investigating possible applications of quan-
tum algebras in hadronic physics. In general, we observed that when we deform the
underlying algebra, the system is affected with correlations between its constituents.
We have studied in detail the NJL model under the influence of a quantum su(2)
algebra.

The question we approach in this contribution is: is it possible to obtain a
kind of ”canonical transformation” connecting the NJL model to a simpler non-
interacting system? We verified that we can indeed obtain the same dynamics of
the NJL interaction with non-interacting q-deformed quark fields.
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We start by writing a mass term for the q-deformed quark fields

Lmass
q = −M ΨΨ

= −M
(

Ψ1Ψ1 + Ψ2Ψ2

)

= −M
(

UU +DD
)

(1)

where Ψ1,2 = U,D are the components of Ψ.
The q-deformed quark fields can be written in terms of the standard fields as

Ψ1 = ψ1 + (q−1 − 1) ψ1ψ2γ0ψ2 , (2)

Ψ2 = ψ2 + (q−1 − 1) ψ2ψ1γ0ψ1 , (3)

or

U = u+ (q−1 − 1) udγ0d , (4)

D = d+ (q−1 − 1) duγ0u , (5)

and ψ1,2 = u, d. Here both components are modified in the same way, so that the
above expressions are different from he ones used in [2,3], where only one component
is affected. Extending the deformation to the two components is required to obtain
a set of terms that will form an interaction of the NJL type. This implies that the
anti-commutation relations for the deformed fields Ψ will also be different from the
ones in [2,3]. Since obtaining the new anti-commutation relations is not in the scope
of this work, we focus on the effective interactions contained in the non-interacting
Lagrangian.

Using Eqs. (4) and (5), we can re-write the Lagragian Eq.(1) in terms of the
non-deformed quark fields

UU = uu+Q uud†d+Q d†duu+Q2 dduudd , (6)

DD = dd+Q ddu†u+Q u†udd+Q2 uudduu , (7)

where Q = (q−1 − 1).
We can re-write the above equations as follows

UU =
(

1 + 2Q d†d
)

uu+
Q2

2

(

dduudd+ dduudd
)

, (8)

DD =
(

1 + 2Q u†u
)

dd+
Q2

2

(

uudduu+ uudduu
)

, (9)

so that we identify the contact interactions between the quarks contained in the
non-interacting deformed fields Lagrangian.

We can reduce the six-point interactions to four-point contact terms in a mean
field approach [5], so that we have

(

UU +DD
)

=

(

1 + 2Q

〈

ψ†ψ
〉

A

)

(

uu+ dd
)

+
Q2

2

〈

ψψ
〉

A2

(

dduu+ dddd+ uudd+ uuuu
)

, (10)
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where 〈ψ†ψ〉 = 〈u†u〉 = 〈d†d〉 = ρv,
〈

ψψ
〉

= 〈uu〉 =
〈

dd
〉

= ρs, and A = A(T ; q) has
the same dimension of the condensate and will be determined later in this work.

Now we can write the mass term for the q-deformed quark fields

Lmass
q = −MΨΨ = −M

(

1 + 2
〈

ψ†ψ
〉

Γ
)

ψψ −
M

2

〈

ψψ
〉

Γ2 ψψψψ , (11)

with Γ = Q/A
Accordingly, the kinetic energy term for the deformed fields, Ψγµ∂µΨ, can be

written in terms of the non-deformed ones as

Ψγµ∂µΨ = Uγµ∂µU +Dγµ∂µD (12)

= uγµ∂µu+Q
(

dγ0duγ
µ∂µu+ uγµ∂µudγ0d

)

(13)

+ dγµ∂µd+Q
(

uγ0udγ
µ∂µd+ dγµ∂µduγ0u

)

(14)

+ Q2
(

dγ0duγ
µ∂µudγ0d

)

+Q2
(

uγ0udγ
µ∂µduγ0u

)

(15)

By using an extreme mean field approximation, namely, substituting everywhere in
the kinetic energy contribution 〈ψ†ψ〉 = 〈u†u〉 = 〈d†d〉 → ρv, and

〈

ψψ
〉

= 〈uu〉 =
〈

dd
〉

→ ρs, we obtain

Ψγµ∂µΨ = uγµ∂µu (1 + 2Γρv) (16)

+ dγµ∂µd (1 + 2Γρv) (17)

+ (uγµ∂µu) Γ2ρv +
(

dγµ∂µd
)

Γ2ρv (18)

=
(

uγµ∂µu+ dγµ∂µd
)

(1 + Γρv)
2

(19)

This corresponds to a usual kinetic energy with a shifted momentum p→ p (1 + Γρv)
2
.

The treatment of the density dependence of the kinetic energy term is rather
cumbersome and will be postponed to a further contribution. We will consider
the influence of this momentum dependent kinetic energy term in an effective way.
Therefore, we will study a class of Lagrangians of the type

L′
q =

1

(1 + Γρv)
2
Lq = ψγµ∂µψ −M

(

1 + 2
〈

ψ†ψ
〉

Γ
) 1

(1 + Γρv)
2
ψψ

−
M

2

〈

ψψ
〉

Γ2 1

(1 + Γρv)
2
ψψψψ (20)

This representative of the full Lagrangian Lq = Ψγµ∂µΨ+Lmass
q , when written

in terms of the standard quark fields, can be identified with the NJL Lagrangian

LNJL = ψγµ∂µψ −m0 ψψ +G ψψψψ . (21)

The conditions for both Lagrangians, LNJL and L′
q, to be equivalent for any values

of T and q are

M =
(1 + Γρv)

2

(1 + 2Γρv)
m0 , (22)



4

and

G = −
M

2

ρsΓ
2

(1 + Γρv)
2
. (23)

If we insert Eq. (22) in Eq. (23), we obtain an equation for Γ

Γ2 − 2αρv Γ − α = 0 , (24)

where

α = −
2G

m0ρs

> 0. (25)

This equation has two solutions

Γ± = αρv

(

1 ±

√

1 +
1

αρ2
v

)

. (26)

The mass of the q-deformed fermion fields, M , has to be positive, so we associate
the two solutions Γ− and Γ+ with the two regimes q < 1 and q > 1, respectively.
The quantity A will be negative in both cases.

The scalar (ρs) and vector (ρv) densities were calculated from the NJL model
at finite temperature:

ρs = −
NcNf

π2

∫ Λ

0

dpp2m

E
[1 − n− n] , (27)

ρv =
NcNf

π2

∫ Λ

0

dpp2 [n− n] , (28)

where

n(p,T, µ) =
1

1 + exp [β (E− µ)]
, (29)

and

n(p,T, µ) =
1

1 + exp [β (E + µ)]
, (30)

are the fermions and anti-fermions distribution functions respectively with E =
√

p2 + m2.
First solve the set of coupled gap equations for m, µ, and ρv (Eqs. 31 and 28,

respectively) in the NJL model at finite temperature and chemical potential

{

m = m0 − 2Gρs ,
µ = µ0 −

G
Nc

ρv .
(31)

The next step is to calculate the scalar and vector densities entering in the equation
for Γ for a given value of the deformation parameter q. In this way we obtain
A(T ; q), which in turn is used to obtain M . The numerical results are displayed in
Figures 1 and 2, where we show the quantity A, in units of the condensate at zero
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temperature, as a function of both temperature and deformation for the q > 1 and
q < 1 regimes. It is worth to note that the mass of the q-deformed fermion fields,
M , does not depend on the deformation of the algebra.

The quantity A (T ; q) maps the simple non-interacting model into the NJL
model. It represents, in an effective way, the correlations introduced by the quantum
algebra, when we write the non-interacting Lagrangian in terms of the standard
quark fields. These correlations, in a mean field approximation, are effectively
represented by contact interactions of the NJL type. It is also important to mention
that it inherits the phase transition. When the condensate and the dynamical mass
vanishes with increasing T , the quantity A also experiences the phase transition.
This is an expected behavior, since it depends on the dynamical mass. For a given
temperature, T , and deformation, q, there is a value of the mapping function,
A(T ; q), that makes the Lagrangians Eq.(20) and Eq.(21) equivalent.

Summarizing, we have shown that it is possible to describe the dynamics of an
interacting system of the NJL type with a simple non-interacting system by using
a set of quantum algebra transformations and a mapping function.
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Fig. 1. The quantity A, in units of the chiral condensate at zero temperature

ρ0 = ρs(T = 0) = −1.42 × 10−2 GeV3, as a function of temperature and
q-deformation for the q > 1 regime.
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Fig. 2. The quantity A, in units of the chiral condensate at zero temperature

ρ0 = ρs(T = 0) = −1.42 × 10−2 GeV3, as a function of temperature and
q-deformation for the q < 1 regime.


