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Abstract. We study the properties of isospin asymmetric quark matter under
compact stars constraints using a relativistic quark model with non local in-
teractions in the mean field approximation. We consider a Gaussian regulator,
and medium coupling ratio. We present the corresponding phase diagrams and
discuss, in particular, the competition between chiral symmetry restoration and
the various forms of two flavor color superconductivity.
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1. Introduction

In the last years much effort was focused on the construction and understand-
ing of the QCD phase diagram[1]. On one hand, at high temperatures a decon-
fined weakly interacting quark matter phase takes place, the so-called Quark Gluon
Plasma phase. The signatures of that phase are being investigated in relativistic
heavy ion collisions. On the other hand, at low temperatures, in the region of low
baryon chemical potential the chiral symmetry is broken due to the presence of a
quark-antiquark condensate. However, when increasing the chemical potential, the
quark-antiquark channel is expected to vanish, giving rise to a diquark condensate.
This region is of great interest for the physics of the interior of neutron stars. For two
flavor isospin symmetric quark matter the QCD phase diagram has been explored
in the frame of different quark models. All of them agree in the sense that the two
flavor color superconductivity phase (2SC) occurs at moderate chemical potentials.
But when two non equal flavor chemical potentials are considered, and one imposes
compact star conditions —i.e., electric charge and color neutrality conditions, to-
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gether with β equilibrium—, the situation is more complicated and different models
lead to qualitatively different results[2,3]. The aim of this contribution is to report
on a study of this problem using non-local chiral quark models[4–6]. This type
of models have been previously used to investigate the phase diagram of isospin
symmetric matter[7, 8].

2. Formalism

The Euclidean action for the nonlocal chiral quark model in the case of two light
flavors and anti-triplet diquark interactions reads

SE =
∫

d4x

{
ψ̄(x) (−i/∂ + mc) ψ(x)− G

2
jf
M (x)jf

M (x)− H

2
[
jA
D(x)

]†
jA
D(x)

}
. (1)

Here mc is the current quark mass, which is assumed to be the same for both u and
d quarks. Two alternative ways to introduce the non-locality have been considered
in the literature[4]. One possibility[5] (that we call “Model I” hereon) is based in an
instanton liquid picture of the QCD effective interactions. In this case the explicit
forms of the non-local currents jM,D(x) appearing in Eq.(1) are

jf
M (x) =

∫
d4y d4z r(y − x) r(x− z) ψ̄(y) Λf ψ(z) ,

jA
D(x) =

∫
d4y d4z r(y − x) r(x− z) ψ̄C(y) iγ5τ2λA ψ(z) , (2)

where Λf = (11, iγ5~τ), ~τ and λA=2,5,7 are Pauli and Gell-Mann matrices acting on
flavor and color spaces, respectively, and we have used ψ̄C(x) = ψ t(x) γ2γ4 .

An alternative way[6] (that we call “Model II”) is based on an effective one-
gluon exchange picture. The corresponding form of the non-local currents jM,D(x)
is in this case

jf
M (x) =

∫
d4z g(z) ψ̄(x +

z

2
) Λf ψ(x− z

2
) ,

jA
D(x) =

∫
d4z g(z) ψ̄(x +

z

2
) iγ5τ2λA ψ(x− z

2
) (3)

The functions r(x− y) and g(y) in Eqs. (2) and (3), respectively, are nonlocal
regulators characterizing the interaction. The effective action in Eq. (1) might arise
via Fierz rearrangement from some underlying more fundamental interactions.

The partition function Z for the model at temperature T and quark chemi-
cal potentials µfc is obtained in the usual way by going to momentum space and
performing the replacements

∫
d4p

(2π)4
→ T

∞∑
n=−∞

∫
d3~p

(2π)3
(4)
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and p4 → ωn−iµfc. Here p4 is the fourth component of the (Euclidean) momentum
of a quark carrying flavor f and color c, and ωn are the Matsubara frequencies
corresponding to fermionic modes, ωn = (2n + 1)πT .

To proceed it is convenient to perform a standard bosonization of the theory.
Thus, we introduce the bosonic fields σ, πa and ∆A, and integrate out the quark
fields. In what follows we work within the mean field approximation (MFA), in
which these bosonic fields are replaced by their vacuum expectation values π̄a = 0,
σ̄ and ∆̄A. Moreover, we adopt the usual 2SC ansatz ∆̄5 = ∆̄7 = 0, ∆̄2 = ∆̄. In
this way, the mean field thermodynamical potential per unit volume reads

ΩMFA = −T

V
lnZMFA =

σ̄2

2G
+
|∆̄|2
2H

− T

2

∞∑
n=−∞

∫
d3~p

(2π)3
ln det

[
1
T

S−1(σ̄, ∆̄)
]

. (5)

The inverse propagator S−1(σ̄, ∆̄) is a 48 × 48 matrix in Dirac, flavor, color and
Nambu-Gorkov spaces. Its determinant can be analytically evaluated leading to a
rather simple expression in terms of the regulators. The corresponding explicit form
will be given elsewhere[9]. For finite values of mc, ΩMFA turns out to be divergent.
The regularization procedure used here amounts to define

ΩMFA

(reg) = ΩMFA − Ωfree + Ωfree
(reg) , (6)

where Ωfree is obtained from Eq. (5) by setting ∆̄ = σ̄ = 0, and Ωfree
(reg) is the usual

regularized expression for a free fermion gas.
The mean field values σ̄ and ∆̄ are obtained from the coupled set of gap equa-

tions

dΩMFA

(reg)

d∆̄
= 0 ,

dΩMFA

(reg)

dσ̄
= 0 . (7)

So far we have introduced one chemical potential for each quark flavor and
color. However, when the system is in chemical equilibrium not all of them are
independent. For the 2SC ansatz, only one color-dependent chemical potential is
needed to ensure color charge neutrality. Thus, the chemical potential for each
different quark can be given in terms of only three independent quantities: the
baryonic chemical potential µB = 3µ, the quark electric chemical potential µQq and
one color chemical potential µ8. The corresponding relations read

µur = µug = µ +
2
3
µQq +

1
3
µ8 , µdr = µdg = µ− 1

3
µQq +

1
3
µ8

µub = µ +
2
3
µQq −

2
3
µ8 , µdb = µ− 1

3
µQq −

2
3
µ8 (8)

In the core of neutron stars, in addition to quark matter, we have electrons.
Thus, within the MFA for the quark matter, and considering the electrons as a free
Dirac gas, the full grand canonical potential is given by

Ω = ΩMFA

(reg) + Ωe , (9)
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where Ωe is the free energy of a free electron gas written in terms of the electron
chemical potential µe. In addition, quark matter has to be in beta equilibrium with
electrons. Thus, assuming that antineutrinos escape from the stellar core, we must
have

µdc − µuc = µe = −µQq
. (10)

If we now require the system to be electric and color charge neutral, the number of
independent chemical potentials reduces further. Namely, µe and µ8 are fixed by
the condition that the electric and color densities vanish:

∑

c=r,g,b

(
2
3

ρuc − 1
3

ρdc

)
− ρe = 0 ,

1√
3

∑

f=u,d

(ρfr + ρfg − 2ρfb) = 0 , (11)

where ρe = −∂Ω/∂µe and ρfc = −∂Ω/∂µfc. Consequently, in the physical situation
we are interested in, for each value of T and µ we should find the values of ∆̄, σ̄,
µe and µ8 that solve Eqs. (7), supplemented by Eqs. (8) and (11).

3. Results

In this section we present some numerical results for the phase diagram using some
specific regulator. As it has been shown in previous analyses[8], in general the
results do not show a strong qualitative dependence on the shape of the regulator.
Thus, we will consider here only the simple Gaussian regulator which written in
momentum space reads

g(p2) =
[
r(p2)

]2
= exp(−p2/Λ2) , (12)

where Λ plays the rôle of an ultraviolet cut-off.
For definiteness we choose here, for both Model I and Model II, input parameters

G, mc and Λ which allow to reproduce the empirical values for the pion mass
mπ and decay constant fπ, and lead to phenomenologically reasonable values for
the chiral condensates and the dynamical quark masses at vanishing T and µfc.
The parameters considered here for Model I are G = 30 GeV−2, mc = 7.7 MeV
and Λ = 760 MeV . For Model II we use G = 28.8 GeV−2, mc = 5.2 MeV and
Λ = 817 MeV.

The resulting phase diagrams for the standard value of the coupling ratio
H/G = 0.75 are shown in Fig. 1. In both cases, for sufficiently low values of
T , when increasing the chemical potential we reach a first order transition line (full
line) that separates the chiral symmetry broken (CSB) phase (phase I) from a two
flavor color superconducting (2SC) region (phase II). For intermediate values of the
chemical potential, the effective pairing interaction is somewhat weaker in Model II
(as compared to Model I), and this leads to the existence of a small region of mixed
phase[10] (region V) at very low temperature in that model. We also observe that
although for both models there exists a region of gapless two flavor color supercon-
ducting (g2SC) phase[11], such region is confined to a very narrow band (region IV)
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along the second order phase transition line (dashed line) that separates the color
superconducting phases from the normal quark matter (NQM) phase.

Two critical points are shown in Fig. 1. The “end point” (EP) corresponds to
the place where the first order phase transition line disappears. The “triple point”
(3P) is the point at which the first order and second order transition lines meet.
At this point the CSB, NQM and g2SC phases coexist. Comparing both panels
of Fig. 1 we see that the positions of these critical points are quite dependent on
the model considered. In fact, although the basic features of the phase diagrams
remain unchanged, they are also quite sensitive to the input parameters used in
each model[9].

Finally, it is interesting to compare the present results with those in Ref. [8],
where isospin symmetric quark matter was considered. We see that although —as
expected— the electric and color neutrality conditions that characterize the compact
stars interior tend to reduce the size of color superconducting regions, they do not
lead to their complete disappearance.

Fig. 1. Phase diagrams in the T − µ plane. Left and right panels correspond
to Model I and Model II respectively. In both cases region I corresponds to the
chiral symmetry broken phase, region II to the 2SC phase, region III to the normal
quark matter (NQM) phase, region IV to the g2SC phase and region V to the
mixed 2SC−NQM phase.
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4. Conclusions

In this work we have studied the properties of isospin asymmetric quark matter
under compact stars constraints using a relativistic quark model with non-local
interactions in the mean field approximation. We have found that for both types of
non-local models considered the corresponding phase diagrams display either 2SC
or mixed 2SC−NQM phases in the region of low temperature and medium chemical
potential relevant for compact star applications.
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