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Abstract. The running coupling constant is evaluated at order g? within an
extended model of Quantum Chromodynamics with color antitriplet scalar di-
quarks. Asymptotic freedom is valid also when the matter fields are originated
by diquarks composed by strongly correlated pair of quarks. Diquarks slightly
enhances agcp at scales about 1 GeV, in qualitative agreement with data.
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1. Introduction

Correlated quarks in color anti-triplet states can play a role in low-energy QCD
and hadron structure [1]. These pairs - diquarks - have an enhanced stability due
to the color exchange-interaction between the quarks. The explicit diquark de-
gree of freedom has been largely explored to model the nucleon structure (see e.g.
[2])) and more recently appeared in the interpretation of light scalar mesons as an
antidiquark-diquark nonet [3]. Although, it has been recognized that color anti-
triplet pairs of quarks in a symmetrical combination of flavors and spin 1 states
may also be important to hadron structure, we study a color gauge invariant effec-
tive Lagrangian containing quarks, gluons and a scalar diquark, considered as an
elementary field. Within a chiral effective Lagrangian, Hong and collaborators [4]
have already introduced a color antitriplet diquark coupled to the gauge field. Our
model is a direct extension of QCD with quarks and diquarks as the matter fields.

Our aim in this work is to calculate, within the extended renormalizable QCD
model with diquarks, the running coupling constant. The strong correlation of
quarks in pairs forming diquarks should be consistent with asymptotic freedom.
For that purpose we evaluate the S-function up to second order in the coupling
constant and by solving the appropriate RG-equation we obtain the contribution of
diquarks to the QCD running coupling constant.
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2. Extended QCD with diquarks

The Lagrangian of the color antitriplet scalar diquark and quarks coupled to the
gauge field is given by:

L=~ {G MG T 0Py~ my) W — (Do) (Dayd) — m3o’o, 1)

where ¢(z) is the diquark field with mass mg, G%, is the gauge field tensor and ¥

nv
the quark field. The covariant derivative for diquark and quark fields are written

as:
[(Dd)u(/)]i = Outhi — ZQAZ(TZ)*% and [(Dq)#w]i = Outhi + Z'QAZT%{/’J' : (2)

Note that the covariant derivative of the diquark field is constructed accordingly to
the conjugate representation of the color group, as the diquark belongs to the color
anti-triplet representation.

The generators of the color group are given by the matrices T% (a=1 to 8) which
obey comutation relations: [T%,T%] = ifeb°T¢ with the f¢ being the structure
constants of the group. The gauge field tensor is written as

GZV = a,uAZ - 8,,AZ - gfabcAzAfn (3)

in terms of the gluon field Aj.
For infinitesimal gauge group transformations the fields transform as:

1
AZ/ _ AZ + fabcAbAz + gauAa ,
W= — AT, 6= 6+ IAYTE) g @)

where A, are infinitesimal functions. The model of Eq. (1) with the covariant
derivatives from Eq. (2) is gauge invariant and renormalizable. Based on that, we
calculate the scale dependence of the coupling constant evaluating the renormaliza-
tion constants up to O(g?). Our results are shown in the next sections.

3. Field and coupling constant renormalization

The renormalization constants of the fields and vertices in the bare Lagrangian,

1 v - T a a
Lp = *ZG% Geuw+Y¥Yp (1P — gpART* —mp)Vp —
(065 —igA% T ¢5)" (0udp — igA%,T" ¢5) —migdpde . (5)

are obtained using dimensional regularization. The bare Lagrangian can be written
in terms of the renormalized fields, masses and coupling constant as:

Ly = ZoWidV + Zygud VAT — (m 4 C)W + Zsg?uc fe AP, A°, fode A2 Ae¥
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T (0, A~ 0,A5) (" AV — 0" AR — Zugu’ (9,A% — 0, A%) FUAM A 4

+240" 38,6 — (mg + D)o +iZ{gus A** (T )" 9, + ..
+Z8 g7 pt AP AL (T )" T 6, (6)

where € = d — 4 (d number of dimensions), g and the masses are the physical ones.
Comparing the bare Lagrangian given by Egs. (5) and (6) and taking into account
the renormalization of the fields, i.e., ¥ = /Z5 ¥ g, A“BM =VZ3A}, ¢ = V2465,

one arrives at several identities, and among them:

Zy

. Zd
= 2 =
9B = gt e = i

NS

which are indeed valid as a consequence of Ward identities. In particular the last
term in the above equality comes from the gluon-diquark-diquark vertex. The run-
ning coupling constant is derived from renormalization group invariance expressed

by‘zg—fzo.

i

(7)

4. Running coupling constant from the quark-gluon vertex

The diquarks contributes to the standard calculation of the quark running coupling
constant through the renormalization of the gluon field, which fluctuates in a pair
of diquark-antidiquark or when diquark bubble emerges in the gluon propagation.
The Feynman rules for the interaction of the gluon field with diquarks from the
effective Lagrangian, Eq. (1), are shown in fig. 1.

W,a w,a v,b
= igT{(p+ )" = ig’g"{T*,T"}:;
», q p q
i?ﬁ j7a i’ﬂ j’a

Fig. 1. Feynman rules for diquark-gluon coupling.

The corrections to the gluon propagator in order g due to the vaccum polar-
ization coming from diquark fluctuations are shown in fig. 2. A straightforward
calculation with dimensional regularization gives the diquark contribution to the
gluon polarization tensor as:

2
Tzl — g ®)

- 2) =
ab (d+d ) 487'('2
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= il (d) b,v a, = il (d2)
P P
Fig. 2. O(g?) diquark contributions to vacuum polarization effects in the gluon

propagation. Left diagram: vaccum fluctuation in diquark pairs. Right diagram:
diquark-bubble.

and together with the standard results for QCD with quarks [5], we obtain a new
value for the gluon renormalization constant:

2 q d

g 2np  ng
Zs =1 5 F _ TFy 9
3 +87725( 3 6) )

Taking into account the values of Z; and Z, [5] we can evaluate agcp for a model
with quarks and diquarks, or only diquarks as matter field. The result is

47
q
2ny,

nd ’
(11— 5= — ) log §

abih(@Q%) = (10)

and when only diquarks are considered, i.e., n%, =0, we get
4

S

(11 — 2£)log %

(11)

O‘%CD(QZ) =

We notice that even when strong correlations between quark pairs are included
through an independent diquark field, for n%, = 15 from six quark flavors (u, d, s,
¢, b, t), the running coupling constant is still dominated by gluon self-interactions.
Therefore, the asymptotic freedom behavior is maintained thanks to the non-abelian
nature of the gauge field.

5. Running coupling constant from the diquark-gluon vertex

In this section we present results for the renormalization constants Z{ and Z¢ of
the diquark-gluon vertex and diquark field, respectively. Using Z¢ and Z§ and Z3
from Eq. (9), we verify the validity of the identity (7).

We begin by showing the correction in O(g?) for the diquark self-energy as
illustrated in fig 3. We present only the terms in the diquark self-energy which
contribute to the diquark field and mass renormalization. Our result is:

—ig*Cy(F)
8m2e

where Co(F) = 4/3 is the second Casimir constant for the SU(3) group. The
coefficient of the p? term in the r.h.s. of Eq. (12) contributes to the renormalization

—i¥qp(d1 + d2) = Sap[2p* +m3] +0(e) , (12)
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m y = —iZw(d o €:§‘ y = —iZw(d2)
P Tp

Fig. 3. O(g?) corrections to the diquark self-energy.

of the diquark field, which is given by:

while the constant term in (12) is cancelled by a mass counterterm.
Next, we are going to show the results in O(g?) of the corrections to the diquark-

gluon vertex. The Feynman diagrams corresponding to these corrections are shown

in figs. 4 and 5.

a a

a

Fig. 4. O(gQ) corrections to the diquark-gluon vertex, named d1 and d2 given

by right and left diagrams, respectively.

Evaluating all vertex corrections from d1 to d4 one easily gets:

3
ighS,(d1 + d2 + d3 + d4) = 817rQ€ T (p + )M [~2Co(F) + Co(G)] |

(14)

with Cy(G) = N, being number of colors. The renormalization of the diquark-gluon

= igA5.(d3) =igAg.(d4)

€

a

Fig. 5. 0(92) corrections to the diquark-gluon vertex, named d3 and d4 given

by right and left diagrams, respectively.
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vertex is obtained from Eq. (14) as:
g

d __
Zl_l_247r2a’

(15)

Finally, introducing the renormalization constants Z3, Z¢ and Z{ from Eqgs. (9),
(13) and (15) in Eq.(7), we obtain the same (-function as already derived from
renormalization of the quark-gluon coupling constant. Consequently, we obtain the
same result for the running coupling constant shown in Eq.(10).

6. Conclusion

The running coupling constant is evaluated in O(g?) within Quantum Chromody-
namics model extended to include strongly correlated quark pairs in color antitriplet
states with J = 0%. The gluon self-interactions dominates the asymptotic free-
dom property even when matter fields are formed only by strongly correlated quark
pairs. For u, d, s, ¢, b and t flavors, strongly correlated diquarks slightly increases
agcep- Our calculation goes beyond the perturbative expansion by including non-
perturbative effects, i.e., the dynamical correlation of quark pairs, which enhances
agcep in qualitative agreement with the data [6]. At scales below ~ 1 GeV where
nonperturbative effects are expected to dominate, possibly our results extends the
range of validity of Eq. (11) giving a glimpse to the onset of confinement and a
theoretical basis to formulate diquark interactions for application in exotic hadron
phenomenology.
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