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1. Introduction

It has been known for about 30 years that QCD is the correct theory of the strong
interactions that underline nuclear physics. Yet, progress in deriving the conse-
quences of QCD to nuclear structure have been slow, in no small measure due to
a mismatch of scales. QCD has an intrinsic mass scale, MQCD ' 1 GeV, set by
most hadronic masses (such as the nucleon mass mN ), above which it is formulated
in terms of weakly coupled quarks and gluons. On the other hand, the typical
nuclear binding energy per nucleon is B/A ' 10 MeV, and the relevant degrees
of freedom in nuclei seem to be nucleons, pions, and perhaps delta isobars with
momenta Q ∼

√
mNB/A ' 100 MeV. The theory of strongly coupled quarks and

gluons is incredibly complicated, and many of those who have thought about the
problem admire it, I suspect, with the same awe we experience at the cataratas of
Iguazú/Iguaçú.

What is needed in nuclear physics is a different formulation of QCD —a different
starting point that nevertheless is equivalent to the standard formulation. Fortu-
nately there exists a general framework —called Effective Field Theory (EFT)—
to deal with problems such as this, which have two (or more) separate scales. As
we go down in energy, fewer momentum modes, and so, in a sense, fewer degrees
of freedom are accessible. In order to reproduce the underlying-theory results for
low-energy observables, we need to renormalize the strength of interactions. EFT is
a framework to construct the effective interactions systematically, at the same time
maintaining desirable general principles such as causality and cluster decomposition.

Following Weinberg’s original proposal [1], we have been developing EFTs for
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nuclear systems [2]. The goal is to understand the regularities of traditional nuclear
physics from a QCD standpoint. In the process, it has been realized that this
problem is much richer from an EFT perspective than originally thought. As a
consequence, we have learned much about the structure of EFTs, such as the role
of three-body forces and the discovery of limit cycles [2].

Here I want to focus on the newest of such discoveries, which concerns the
renormalization of pion exchange. Most of the progress in nuclear EFTs has taken
place at the lowest energies, where pion exchange can be treated as a short-range
interaction. The range of nuclear phenomena is limited and the connection with
QCD tenuous. Explicit pion exchange brings in serious difficulties, however, be-
cause it produces a singular potential that couples long- and short-range physics.
Only now are we appreciating how much short-range physics it entails: short-range
interactions that Weinberg implicitly assumed to be small are actually enhanced by
the pion physics. We hope that eventually this insight will translate into even more
accurate nuclear potentials for nuclear structure.

I will start by reviewing the basic ideas of EFT in Sect. 2 and of its chiral
nuclear version in Sect. 3. In Sect. 4 I discuss the surprising renormalization of
pion exchange and some of its consequences for power counting, while an outlook
is offered in Sect. 5.

2. Effective Field Theories

EFT starts with the observation that the low-energy effective interactions consist of
the sum of all possible interaction terms in a Lagrangian that involves only the fields
representing low-energy degrees of freedom. Because of the uncertainty principle,
each of these interaction terms can be taken as a local combination of derivatives
of the fields. If the “integrating out” of the high-energy degrees of freedom is
done appropriately, the effective Lagrangian will have the same symmetries as the
underlying theory. The details of the underlying dynamics, on the other hand, are
contained in the interaction strengths. The latter depend also on the details of
how the low- and high-energy degrees of freedom are separated. This separation
requires the introduction of a cutoff parameter Λ with dimensions of momentum.
Both the interaction strengths and the quantum effects represented by loops depend
on Λ. However, the cutoff procedure is arbitrary, so by construction observables are
independent of Λ (“renormalization-group invariance”).

If we denote the scales of the underlying theory and of the EFT by Mhi and
Mlo, respectively, the T matrix for any low-energy process acquires the schematic
form

T (Q ∼ Mlo) = N
∞∑

ν=νmin

cν(Mhi, Λ)
(

Q

Mhi

)ν

Fν

(
Q

Mlo
;

Λ
Mlo

)
, (1)

where N is a common normalization factor, ν is a counting index starting at some
value νmin, the cνs are parameters, and the Fνs are calculable functions. We must
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have
∂T (Q ∼ Mlo)

∂Λ
= 0. (2)

In order to maintain predictive power in the EFT it is necessary to truncate
the sum in Eq. (1) in such a way that the resulting cutoff dependence can be de-
creased systematically with increasing order. We call such ordering “power count-
ing”. There are essentially two ways of doing this. One is to carry out the integration
of high-energy degrees of freedom explicitly and infer the power counting from the
sizes of the calculated terms. Another, which we use when we do not know or can-
not solve the underlying theory, is to guess the sizes of the effective interactions.
The simplest assumption is that the renormalized parameters are driven by short-
range physics and are “natural”, in the sense that they are in order of magnitude
given by Mhi to a power determined by dimensional analysis. Whatever guess we
make is confirmed a posteriori, by checking renormalization-group invariance and
convergence of the truncation after the data is fitted order by order.

This framework has been applied in various contexts. It has been best explored
in particle physics, where the Fν ’s could be obtained in perturbation theory. Much
of the existing intuition about EFTs comes from these situations, in which naive
dimensional analysis has been found to be a reliable tool for power counting. The
greatest challenge to nuclear EFT is that, while we want to have expansions of
the type (1), we also have to generate bound states. So, at least Fνmin has to
include an infinite number of (perturbative) Feynman diagrams. This interplay of
perturbative and non-perturbative physics has been the source of most of the fun
we have had. Renormalization and power counting are much less trivial than in a
purely perturbative context.

The challenges brought up by non-perturbative renormalization led to the de-
velopment of a simple nuclear EFT, where issues can be addressed at least par-
tially by analytical means. The typical momentum of nucleons in the deuteron is
ℵ1 ∼

√
mNBd ' 45 MeV, which means that the deuteron is an object about three

times larger than the bulk of the pion cloud around each nucleon, whose range
is set by the inverse of the pion mass, mπ. For the 1S0 virtual bound state, the
corresponding scale is even smaller, ℵ0 ∼

√
mNB′

d ' 8 MeV. With this resolution,
all mesons (even the pion!) that can be exchanged among nucleons propagate for
relative short times and distances. To address physics at this scale, one can then
consider an EFT where the the meson cloud is represented by a multipole expan-
sion: the Lagrangian contains only nucleon fields with “contact” interactions. In
this “pionless” EFT, Mhi ∼ mπ and Mlo ∼ ℵ (with ℵ some average of the ℵis). An
important subtlety in this case is that naive dimensional analysis fails in order to
accomodate the fine-tuning that places bound states at the anomalously-small scale
ℵ. Nevertheless, this EFT is now pretty well understood [2], including an explicit
demonstration that its renormalization can be quite different from the renormal-
ization of the related perturbative series. Perhaps the most important remaining
issue is how far in A we can go within this EFT. (For “halo” nuclei, an EFT with
additional explicit fields representing inert nuclear cores can also be formulated [2].)
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Here I want to go back to the origins of nuclear EFT: the “pionful” theory,
where Mhi ∼ MQCD and Mlo ∼ mπ. It is likely that for typical large nuclei we will
have to employ this EFT.

3. Pionful EFT

In the pionful EFT, pions are explicit degrees of freedom, and (approximate) chiral
symmetry plays a crucial role. The techniques to build the most general Lagrangian
involving nucleons, pions, and delta isobars are by now standard —see, for example,
Refs. [3, 2]. In the sector of A = 0, 1 nucleons this EFT reduces to well-known
chiral perturbation theory (ChPT) [4, 3], where power counting based on naive
dimensional analysis works well. Amplitudes can be written in the form (1) with
ν = 2 − A + 2L +

∑
i Vi(di + fi/2 − 2), where L is the number of loops and Vi

the number of vertices with di derivatives or powers of mπ and fi fermion fields.
However, in the A ≥ 2 sector power counting is much more subtle.

Weinberg [1] recognized that there is a breakdown of ChPT power counting in
the propagation of two or more nucleons, caused by an infrared enhancement. If
A ≤ 1, all energy denominators are O(Q), but A ≥ 2 diagrams with purely nucle-
onic intermediate states have small energy denominators of O(Q2/mN ). Weinberg
suggested that the calculation of a generic nuclear amplitude should consist of two
steps. In the first step, one defines the nuclear potential as the sum of “irreducible”
sub-diagrams that do not contain purely nucleonic intermediate states, and trun-
cates the sum according to a simple extension of the standard ChPT power counting.
In a second step, the potential is iterated to all orders, which can be done by using
the Lippmann-Schwinger (LS) or Schrödinger equations.

The potential includes pion exchanges and contact interactions, which represent
the contributions of more massive degrees of freedom. Assuming that contact inter-
actions obey naive dimensional analysis, only a finite number of pion exchanges and
contact interactions contribute to the potential at any given order. For example,
in leading order Weinberg’s power counting says [1] that the nuclear potential is a
sum of two-nucleon (2N) potentials of the form

V = V1π(~q ) + Vc, (3)

where

V1π(~q ) = −
(

gA

2fπ

)2

τ 1 · τ 2
(~σ1 · ~q ) (~σ2 · ~q )

~q 2 + m2
π

(4)

is the one-pion-exchange (OPE) potential written in terms of the pion-nucleon cou-
pling gA/2fπ, the Pauli spin and isospin matrices ~σi and τ i of nucleon i, and the
transferred momentum ~q; and

Vc =
1
4π

(cs Ps + ct Pt) , (5)

is a contact interaction with projectors onto spin-triplet and spin-singlet S-wave
states, Pt and Ps, and two strength parameters cs and ct that can be determined
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from 2N scattering data. It is possible to write

cs = C0 + m2
πD2 + . . . , (6)

where the parameters C0 and D2 are independent of the quark masses. According
to Weinberg’s power counting, only C0 appears in leading order. In subleading
orders, other components of the nuclear potential are present [5,6], such as contact
interactions with derivatives or powers of m2

π (e.g. D2 in Eq. (6)), two- (TPE) and
more-pion exchanges, and three- (3N) and more-nucleon interactions.

The resulting 2N [5] and 3N [6] potentials provide a quantitative description of
few-nucleon systems [7]. In addition, this approach matches well with the Nijmegen
energy-dependent partial-wave analysis (PWA) [8] of 2N scattering data, where the
Schrödinger equation is solved with a long-range potential that consists of OPE and
TPE (and the electromagnetic interaction), and a boundary condition with as many
short-range parameters as needed for an optimal description of the observables.
The pion mass and OPE parameters [9] and even TPE parameters [10] could be
determined from 2N scattering data, in good agreement with values obtained from
pion-nucleon scattering [11].

Yet, Weinberg’s power counting has been criticized. A consistent power count-
ing should provide sufficient counterterms at each order to absorb any cutoff de-
pendence in the limit of large cutoffs. Because the solution of the LS equation is
numerical in character, an explicit check of cutoff independence is challenging. This
led Kaplan et al. [12] to examine a few of the diagrams contributing to the 2N T
matrix coming from the iteration of Eqs. (4) and (5). They identified in two-loop
diagrams ultraviolet divergences proportional to m2

π and ~q 2 that are present in lead-
ing order but cannot be absorbed by the available counterterms. They concluded
that pion exchange should not be fully iterated, but instead be treated in finite order
in perturbation theory. Quantitative calculations at higher order showed, however,
that this idea fails in some partial waves at Q ' 100 MeV [13].

It seems inevitable, then, that at such momenta pions have to be iterated.
We are led to study the non-perturbative renormalization of OPE, which, based
on experience with the pionless EFT, is not necessarily the same as that of the
corresponding perturbative series.

4. Renormalization of Pion Exchange and Power Counting

OPE is a singular potential, and this has profound implications to the renormaliza-
tion of the LS equation. The Fourier transform of Eq. (4) has 1/rn singularities at
small distances r: in spin-singlet channels n = 1, while in spin-triplet channels the
tensor force has n = 3.

To understand the basic issue in the renormalization of singular potentials
[14], consider two particles of reduced mass µ interacting through an uncoupled
−λrn−2

0 /2µrn potential, where λ = O(1) is dimensionless and r0 sets the scale of
curvature. We account for short-range physics by replacing the potential below a
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distance R = 1/Λ by a square well of depth V0, which represents a regularization of
Eq. (3). Renormalization-group invariance requires that a V0(R) be found which
keeps low-energy data invariant under a change in R.

Let us consider the S wave. If n < 2, the wavefunction for r > R has regular and
irregular components. However, if n ≥ 2 and λ > 0, the zero-energy wavefunction
for R < r ¿ r0 is

rψ(r; 0) '
(

r

r0

)n/4

cos

( √
λ

n/2− 1

(
r

r0

)1−n/2

+ φn

)
, (7)

where the phase φn determines low-energy observables but is not fixed by the long-
range potential. This solution, which cannot be obtained in perturbation theory,
shows that one needs one piece of short-range physics in order to make the problem
well defined. This is provided by V0(R) through matching at r = R. One can then
show [14] that low-energy observables come out essentially R independent.

The extension of these results to 2N scattering is straightforward [15–17]. The
perturbative problem [12] of the ultraviolet divergence in the 1S0 channel propor-
tional to m2

π persists in this context [16]. In spin-singlet channels, OPE goes as
1−m2

π/q2+. . . at high momentum. When iterated, the first term by itself introduces
cutoff dependence in the S wave only, which can be removed by the chiral-symmetric
counterterm C0 in Eq. (6). The interference between the iteration of C0 and the
second term in OPE generates further cutoff dependence in the 1S0 wave, which
in turn can be removed [12, 16] by the chiral-breaking counterterm D2m

2
π. This

counterterm is enhanced with respect to naive dimensional analysis, and should be
promoted to leading order if pion-mass effects are kept at this order, as it seems
most efficient.

In spin-triplet channels, the situation is complicated by the tensor operator,
which retains angular dependence even asymptotically. However, divergences as-
sociated with momenta, present in the 3S1-3D1 coupled channel, can be absorbed
into a single chiral-symmetric, momentum-independent counterterm, as prescribed
by Weinberg’s power counting [15–17].

Thus, with a simple amendment, Weinberg’s power counting is consistent in
a non-perturbative calculation of the S waves [16–18]. Since, neglecting angular-
momentum factors, OPE is O(1/f2

π), a crude estimate for the momentum of bound
states is Q ∼ 4πf2

π/mN . The deuteron and 1S0 virtual state have, for the observed
value of the quark masses, binding momenta somewhat smaller than this estimate,
indicating an amount of fine-tuning. However, if one varies the pion mass the
momentum scales for the bound states acquire more natural values [16,19].

OPE contributes, however, also in higher partial waves. Weinberg’s power
counting does not predict leading-order counterterms in these partial waves. It has
been checked that higher spin-singlet [20, 17] and repulsive spin-triplet [17] waves
are indeed cutoff independent.

Now, the same is not true when the OPE tensor force is attractive [17]. Exam-
ples are given in Fig. 1. In those channels, as Λ is increased, OPE becomes more
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Fig. 1. Cutoff dependence of OPE phase shifts in attractive triplet channels at
laboratory energies of 10 MeV (solid line), 50 MeV (dashed line), and 100 MeV
(dotted line) [17].

and more attractive, creating bound states, which at certain values of the cutoff
cross threshold and make the low-energy phase shifts go haywire. The short-range
behavior of the wavefunction in these channels is similar to Eq. (7), but there is no
counterterm to prevent the phase from depending on the arbitrary cutoff. In exist-
ing calculations, the renormalization issue has been sidestepped by choosing rather
low cutoffs and by varying the cutoffs only in a very limited range [7]. The decrease
in cutoff dependence over small cutoff ranges with increasing order has apparently
been interpreted as consistent with the error expected from the truncation of the
expansion.

Instead, the cutoff dependence observed over a large cutoff range [17] shows that
not all necessary counterterms have been accounted for. The cutoff dependence is
stronger in the lower waves. If we include [17] contact interactions —which in
Weinberg’s power counting are higher order—

2∑

i=1

Vi + Vd =
2∑

i=1

ci

4
Pi(p′p) + cdPd(p′

2
p2), (8)

where Pi(p′p) and Pd(p′
2
p2) are projectors in the 3P0 (i = 1), 3P2-3F2 (i = 2),

and 3D2 (d) channels, the parameters ci and cd can be fitted so as to remove the
cutoff dependence. The parameters then exhibit a limit-cycle-like behavior. One
example is shown in Fig. 2. The resulting phase shifts are in good agreement with
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Fig. 2. Fit result [17] for the counterterm c1 as a function of the cutoff, and
the resulting cutoff dependence of the 3P0 phase shift at laboratory energies of
10 MeV (solid line), 50 MeV (dashed line), 100 MeV (dotted line), and 190 MeV
(dash-dotted line).
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Fig. 3. Comparison [17] of properly renormalized, attractive triplet phase shifts
(as function of the laboratory energy) for Λ = 20 fm−1 (solid line) to the Nijmegen
PWA (dashed line).

the Nijmegen PWA [8] at low energies, as illustrated in Fig. 3.
The conclusion is clear: a model-independent leading-order result can only be

obtained if counterterms are promoted in all waves where the attractive OPE tensor
potential is treated non-perturbatively. Implicit in Weinberg’s power counting was
the assumption that loops in the iteration of the potential do not bring significant
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new cutoff dependence. The parameters of contact interactions with derivatives or
powers of mπ would thus be suppressed by powers of a large mass scale, MQCD,
and the effects of derivatives would scale as Q/MQCD. However, we now see that
Weinberg’s implicit assumption is not correct. The short-range parameters needed
to renormalize iterated OPE are enhanced in the infrared and driven by pion pa-
rameters, effects of derivatives scaling as Q/fπ (if we use mN ∼ 4πfπ).

Fortunately OPE does not need to be iterated in all waves, because of a kine-
matic suppression due to the centrifugal barrier. The appropriate counterterms will
make OPE well defined, by selecting the correct phase in solutions such as (7), in
the region r ∼ 1/fπ . Therefore, the kinematic suppression can be estimated as for
a regular potential. In the case of a central potential, it can be shown [21] that for
l À Qd, where d is the range of the interaction, the l-wave phase shift is given by
tan δl ∼ (Qd/(l + 1/2))2l+1 ¿ 1 (barring fine-tuning). The ratio of the T matrix,
and thus the potential, between l + 1 and l is O(Q/lmπ)2, for large l. For Q ∼ mπ,
we are led to a suppression of O(1/l!2). In the case of the tensor force, we expect
O(1/l′!l!) for large l, l′. A more sophisticated argument for the momentum where
OPE becomes non-perturbative in various waves is given in Ref. [22].

The above qualitative argument suggests that the effects of the corresponding
higher-derivative counterterms are suppressed by a large (for large l) scale lfπ.
Obviously, there might be other dimensionless factors missing here, but the fact that
factors of l suppress OPE and its required counterterms in high-l waves must hold.
For sufficiently large l, the suppression factor in counterterms becomes dominated
by MQCD (rather than lfπ), representing omitted QCD degrees of freedom, and
the size of the counterterms is that assumed in Weinberg’s power counting. On the
other hand, for a finite number of low partial waves we find that perturbation theory
is not sufficient for Q ∼ mπ. Resummation is necessary and the cutoff dependence
can be absorbed by one counterterm per partial wave. The favorable agreement
of the leading-order calculation of Ref. [17] with data indicates that no additional
inconsistencies are introduced.

The success of existing fits [7] based on Weinberg’s power counting can be
understood from the plateaus in the cutoff dependence of the counterterms (c.f. Fig.
2). Variation of the cutoff within a limited range on these plateaus will generate a
band of values for observables. The error in a fit based on Weinberg’s counting is
likely dominated by the lowest partial wave without the required counterterm. As
one goes to higher orders in Weinberg’s counting, one acquires more counterterms,
pushing the error to higher waves. The l suppression then ensures that the bands
for the observables shrink, as observed [7], but, as we have seen, that does not imply
Weinberg’s counting is correct.

The corrected leading-order 2N interaction described above provides a model-
independent 2N T matrix. We have verified [17] that the resulting triton binding
energy is also cutoff independent. This is in contrast with the pionless EFT, where
a 3N force is required [2] for renormalization already at leading order, and suggests
that Weinberg’s argument [1] for the smallness of few-nucleon forces in the pionful
EFT holds.
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5. Conclusion and Outlook

We have conjectured [17] that this mixture of perturbative treatment of higher par-
tial waves, resummation of lower partial waves, and promotion of a finite number
of counterterms is the most consistent approach to ChPT for nuclear systems. As
we have seen, the leading-order nuclear potential consists of OPE plus the contact
interactions required by its renormalization, and provides the Fνmin in nuclear am-
plitudes of the type (1). In subleading orders, power counting naturally suggests
a perturbative treatment of the subleading interactions that lead to the Fν>νmins.
The next-to-leading-order interactions consist in principle of TPE and counterterms
with two more derivatives than leading order. Subsequent orders are constructed by
the inclusion of successive powers of Q/MQCD. The most-effective organizational
scheme for subleading interactions probably relies on taking into account an ex-
plicit delta-isobar field [23]. The correctness of our modified power counting needs,
of course, to be checked in future studies of higher orders [24].

After so many years and surprises, we hope that we are finally zeroing in the
correct organizational scheme for the pionful EFT. This should lead to a model-
independent nuclear potential with correct chiral-symmetry constraints, and better
convergence and accuracy than found so far. It would remain to mine the rich soil
of nuclear structure with this tool.
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