Física 3

(Cs. de la atmósfera y los océanos)

Primer cuatrimestre de 2015 **Guía 3**: Potenciales termodinámicos. Cambios de fase

- 1. Analizar la validez de las siguientes afirmaciones:
 - (a) ΔH de un proceso cualquiera es igual al calor neto intercambiado.
 - (b) ΔH de un proceso cualquiera es igual al calor neto intercambiado a presión constante.
 - (c) El calor neto intercambiado en un proceso es una función de estado.
- 2. En un recipiente de paredes aislantes se ponen en contacto 100 g de hielo a 0 °C y 2 kg de agua a 20 °C. La presión se mantiene constante en 1 atm. Luego de cierto tiempo, el sistema alcanza el equilibrio.
 - (a) ¿Cuánto habrá variado la entalpía del sistema cuando este haya llegado al equilibrio?
 - (b) Calcule la temperatura de equilibrio.
 - (c) Calcule la variación de la entropía de los 100 g de hielo al pasar del estado inicial al final, y la de los 2 kg de agua.
- 3. Decir si son posibles los siguientes procesos realizados a T y P constantes:
 - (a) Una sustancia pasa de la fase 1 a la fase 2 a $P_0 = 1$ atm y $T_0 = 300$ K; $\Delta H_{P_0,T_0} = 100$ cal mol^{-1} y $\Delta S_{P_0,T_0} = 1$ cal mol^{-1} K⁻¹.
 - (b) Idem con $\Delta H_{P_0,T_0}=200~{\rm cal~mol^{-1}}~{\rm y}~\Delta S_{P_0,T_0}=0.5~{\rm cal~mol^{-1}}~{\rm K^{-1}}.$
 - (c) Idem con $\Delta H_{P_0,T_0}=300~{\rm cal~mol^{-1}}~{\rm y}~\Delta S_{P_0,T_0}=1~{\rm cal~mol^{-1}}~{\rm K^{-1}}.$
- 4. Un sistema termodinámico evoluciona desde un estado I hacia un estado F en forma reversible y en contacto con una fuente térmica a 300 K. Como consecuencia de la transformación, el medio ambiente recibe 250 cal en forma de trabajo, y la entropía del sistema aumenta en 0.5 cal K^{-1} .
 - (a) ¿Cuánto vale el calor intercambiado entre el sistema y el medio?
 - (b) ¿Cuál es la variación de su energía libre A?
 - (c) ¿Cuál es la variación de su energía interna?
 - (d) ¿Cómo cambian sus respuestas a los puntos anteriores si se realiza una transformación irreversible entre los mismos estados?
- 5. La función de Helmholtz de un sistema mantenido a T y V constantes depende de T, V, y una variable adicional X en la forma

$$A = A_0 + BTX^2 - CXV^2,$$

donde A_0 , B, y C son constantes positivas.

- (a) ¿A qué valor de X corresponderá el equilibrio del sistema si $T = T_0$ y $V = V_0$?
- (b) ¿Cuál será la ecuación de estado del sistema P=P(T,V) para $X=X_0$ mantenido constante?

1

6. Una sustancia tiene las siguientes propiedades:

- (i) A $T=T_0$ constante, el trabajo realizado por una expansión de V_0 a V es $W=RT_0\ln(V/V_0)$.
- (ii) La entropía está dada por $S = R(V_0/V)(T/T_0)^a$ (V_0, T_0, y a son constantes).

Usando estas propiedades calcule:

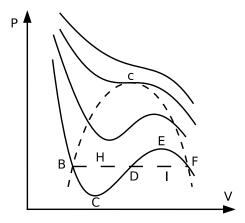
- (a) La energía libre de Helmholtz.
- (b) La ecuación de estado
- (c) El trabajo que se realiza a una temperatura T arbitraria (no necesariamente T_0).
- 7. La función de Gibbs para un mol de cierto gas está dada por

$$G = RT \ln P + A + BP + \frac{CP^2}{2} + \frac{DP^3}{3},$$

donde A, B, C, y D son funciones solo de la temperatura.

- (a) Encontrar la función de estado del gas.
- (b) Expresar las demás funciones termodinámicas en función de p, A, B, C, D, y sus derivadas.
- 8. La función de Gibbs para un sistema formado por vapor de agua y una gota condensada de radio *r* es

$$G = G_0 - \frac{4}{3}\pi r^3 \rho R^* T \ln\left(\frac{p}{p_S(T)}\right) + 4\pi r^2 \gamma,$$


donde γ es la tensión superficial, ρ es la densidad del líquido, R^* es la constante de los gases por unidad de masa para el vapor, p es la presión parcial del vapor de agua, y $p_S(T)$ es la presión de vapor de saturación (en la transición de fase).

- (a) Grafique cualitativamente la función de Gibbs en función del radio r para $p/p_S(T) \leq 1$ (condiciones subsaturadas o exactamente saturadas), y para $p/p_S(T) > 1$ (condición sobresaturada).
- (b) Para el caso $p/p_S(T) > 1$, muestre que el radio

$$r_c = \frac{2\gamma}{\rho R^* T \ln(p/p_S)}$$

es un equilibrio inestable.

- (c) ¿Cómo evoluciona la gota si $r > r_c$? ¿Y si $r < r_c$?
- 9. Las isotermas de un gas de van der Waals tienen la forma indicada en la figura.

El punto c es el punto crítico del gas. Las isotermas contínuas dentro de la campana corresponden a vapor sobresaturado, las punteadas corresponden a la línea de equilibrio líquido-vapor.

- (a) Hallar las coordenadas del punto c (T_c , V_c , y P_c).
- (b) Demostrar que las areas definidas por los puntos BCDH y DIFE son iguales.
- 10. Cuando 1 g de agua se transforma en vapor a la presión atmosférica, el volumen que ocupa es de $1671~{\rm cm}^3$. Si el calor latente de vaporización del agua es de $540~{\rm cal~g}^{-1}$, calcule $\Delta V, \Delta S, \Delta H, \Delta A, y \Delta G$.
- 11. A una temperatura de 10 °C, se tiene $\Delta H=1530~{\rm Kcal~mol^{-1}}~{\rm y}~\Delta S=5.65~{\rm cal~mol^{-1}}~{\rm K^{-1}}.$ para una reacción

$$H_2O(\text{s\'olida}) \to H_2O(\text{l\'iquida}),$$

- (a) ¿Es espontánea esta reacción a 10 °C?
- (b) ¿Cuánto valdrán $\Delta H(T)$ y $\Delta S(T)$ a 1 atm y $T \neq 10$ °C (datos: $C_{P, {
 m hielo}} = 0.5$ cal mol $^{-1}$ °C $^{-1}$, $C_{P, {
 m agua}} = 1.0$ cal mol $^{-1}$ °C $^{-1}$).
- (c) Despreciando ahora la variación de ΔH y ΔS con la temperatura, calcular la temperatura de equilibrio hielo-agua a 1 atm.
- 12. A 25 °C y 1 atm, las entropías molares de la calcita y de la aragonita (dos fases del CO_3) son de 22.20 cal K⁻¹ y de 21.20 cal K⁻¹ respectivamente. Sus entalpías de formación, en iguales condiciones, son de -288.45 Kcal mol⁻¹ y -288.49 Kcal mol⁻¹. Determine la variación de G para la transformación calcita-aragonita a 25 °C y 1 atm de presión. ¿Cuál de las dos fases es estable en estas condiciones?
- 13. Encontrar ΔS para pasar 1 mol de agua líquida a $T_1=25$ °C al estado gaseoso a la misma temperatura. (Datos: presión del vapor saturado del agua a $T_1=25$ °C: $P_1=23,76$ mm Hg; presión del vapor saturado del agua a $T_2=100$ °C: $P_2=760$ mm Hg; calor de evaporación a la temperatura T_2 : $C_2=9720$ cal mol $^{-1}$; en todo el rango de temperaturas precedente $C_P=9$ cal mol $^{-1}$ K $^{-1}$ para el vapor, mientras que la capacidad calorífica del líquido es 18.0 cal mol $^{-1}$ K $^{-1}$.)
- 14. Un mol de gas ideal experimenta una expansión isotérmica reversible desde un volumen inicial de 0.5 litros hasta un volumen final de 2.5 litros. Sabiendo que la energía libre A disminuye 1050 cal en el proceso:
 - (a) ¿Cuál es la temperatura del sistema?
 - (b) ¿Cuál es la variación de G?
- 15. Se tiene un mol de gas ideal confinado en un recipiente a presión P_0 . Se lo comprime hasta un volumen V_f en forma reversible e isotérmica. La variación de energía libre es ΔA .
 - (a) Demuestre que la temperatura está dada por la siguiente expresión:

$$T = -\frac{\Delta A}{R \ln(V_f/V_i)},$$

siendo V_i el volumen inicial.

- (b) Encuentre ΔG en función de ΔA .
- 16. En un cilindro de 1 litro de volumen se encuentra un pistón trabado en la parte media. De un lado hay 10 moles y del otro 12 moles de un gas ideal monoatómico. Todo el sistema está dentro de un baño térmico a $T=300~\rm K$. Se destraba el pistón y el sistema llega al equilibrio. Calcular para ambos lados:
 - (a) ΔU

- (b) ΔH
- (c) ΔG
- (d) ΔA
- 17. El agua líquida muy pura puede sobre-enfriarse a presión atmosférica hasta temperaturas muy por debajo de 0 °C. Suponer que se ha enfriado una masa de agua en estado líquido hasta -5 °C. Un pequeño cristal de hielo cuya masa es despreciable es añadido como perturbación al líquido sobrenfriado. Si el cambio de estado subsiguiente sucede adiabáticamente y a presión atmosférica constante ¿qué fracción del sistema se solidifica? ¿Cuál es el cambio de entropía del sistema?