"INTRODUCCION A LA TEORIA DE PROBABILIDADES Y DEDUCCION DE LA DISTRIBUCION BINDMIAL"

Fiuiz Gales Maria Fernanda.
Dasso, Eergio Ficardo.

Buenos Aires, Argentina.

Febrero. 1795.

Fecultad de Ciencias Exactas y Naturales, U.B.A.

```
    "Todo el mundo cree en ella, me decia un dia Lippmann,
pues los experimentadores se imaginan que es un teorema de
matematicas y los matematicos que es un hecho experimental".
```

Sobre la LEY de GAUSS.
Henrj Foincare.

En la primera parte de este tradajo se introducen algunos conceptos basicos afines a la teoria de probabilidad tales como espacio muestral, suceso, algebra booleana, medida de probabilidad, variable aleatoria (discreta, continua y mixta) y función de distribución acumulativa.

Luego, haciendo uso de estos conceptos, se realiza un desarrollo que nos permite mostrar los fundamentos de la Distribución Einomial.

CONTENIDOS

1: Introduceion.
2.1. Espacios musstrales.
2.2. Algehra hoolpamat.
2. ت. Medidas for aditividad finita
2.4. Definicion de probadilidad para espacios muestrales fintios:
2.5. Comjumtos numerables y no numerables.
2.6 Fropiedad de aditividad numerable.
2.7. Definicion de probabilidad para espacios muestrales infinitos numerables.
2.8. Definicion de probabilidad para espacios muestrales infinitos no numprebles.
2. $9 . \quad$ Variatle aleatoria.
2.10. Sumesos mquivalenter.
2.11. Veriables aleatorias discretas.
2.12. Yariables alpatorias continuas.
2.t3. Variables aleatorias mistas.
2. 3. Funciron de distritumion acumulativa.
S.l. Frobabilidad condicionnda.
3.2. Independencia.
3. З. Experimentos o pruebas compuestas.
S.4. Distribucion binomial.
3.5. Aproximación para El calculo de la distribución binomial.
4. Conclusiones.
5. Apéndice.
6. Eibliografia.

1. INTRODUCCION

Muchas veces nos asombramos al descubrir como han nacido ciertas teorias que en principio fueron utilizadas para resolver problemas que nada tienen que ver con la "ciencia". Una de estas teorias, que comenzo a formarse a partir de una disputa entre jugadores: es el Calculo de Probabilidades, a partir de la cual se han desarrollado la estadistica, la teoria de errores. 1 a teoria de juegos de azar, y muchas otras.

Historicamente el Calculo de Frotabilidades estuvo lleno de controversias y ambigüedades, incluso hubo dos grandes interpretaciones filosoficas opuestas acerca del caracter objetivo o subjetivo del concepto de pratabilidad. Recien a principios del siglo $X X$ se llegaron a establecer claramente las bases aniombticas de esta rama de la metemítica.

Es importante dejar er. claro que la teoria be probabilidades es un modelo matenatico no deterministáa o estocastico. Estos estan en contraposicion con los modelos deterministicos que estipulan que las condiciones bajo las cuales se realiza un experimento determinan el resultada del mismo.

2.1. ESPACIOS MUESTRALES

Si para representar algún fenómeno utilizamos un modelo no determinista, y al realizar cierto experimento relacionado con dicho fenómeno conocemos la totalidad de los resultados que pueden ocurrir: se define como espacio muestral \mathbb{E} al conjunto de todos los resultados posibles. Asi, dado un experimento, cada resultado posible sera un elementa del conjunto \mathbb{E}. Entonces, para poder realizar un modelo estocastico de la realidad, debemos poder definir con certeaa todos los resultados posibles del experimento en cuestion.

En la teoria de probabilidad es común referirnos a una coleccion determinada de resultados posibles, es decir a un suboonjunto del espacio muestral, llamaremos sureso a este subconjunto. Definido un suceso $B ;$ al realizar el experimento obtendremos un resultado x, diremos que ocurrió el sureso $\mathbb{B} s i x \in \mathbb{B}$. Si en cambio tenemos que $x \in \mathbb{B}$ diremos que el suceso B no ha ocurrido.

2.2. ALGEBRA BODLEANA

Definido el espacio muestral; es frecuente realizar operaciones con subconjuntos (sucesos) de este: unión: interseccion, complemento.

Si tomamos una clase A de subconjuntos de un binversal wa seria interesante garantizar que A sea cerrado con respecto a las operaciones mencionadas. Fara esto definimos un A gebra booleana de conjuntos.

Una clase no vacía A de subconiuntos de un Universal si se llama algebra booleana si para todo par de subconjuntos \mathbb{B} y \mathbb{C} tal que $\mathbb{B} \in A$ y $\mathbb{C} \in A$ se cumple:

$$
\mathbb{B} \cup \mathbb{C} \in A \quad y \quad x^{2}-\mathbb{B} \in \mathbb{A}^{2}
$$

Estas dos propiedades implican que tanto el conjunto yacio como el Universal 5 pertenecen a $\mathrm{A}^{3}{ }^{3}$

2.3. MEDIDAS CON ADITIVIDAD FINITA

Existen funciones que poseen ciertas Earacteristicas en común:

1 - Estan definidas sobre una coleccion As de conjuntoss es decir que cada elemento del dominio de la funcion es un conjunta que pertenece a la clase A.

2 - Su imagen pertenece a las numeros reales.
${ }^{1}$ Una clase de subconjuntos es una coleccion de subconjuntos. ${ }^{2}$ El complemento de E con respecto a 5 pertenece a la clese A.
${ }^{3}$ Ver Apendice.

S Cumplen con la propiedad aditiva :
f: Al-->R es de aditividad finita si
$f(\mathbb{B} \cup \mathbb{C})=f(\mathbb{B})+f(\mathbb{C})$
para todos $10 s$ conjuntos disjuntos \mathbb{B} y \mathbb{C} que pertenezcan a la clase A.

4 - Cumplen con la condición

```
f(\mathbb{B})\geq0\quad\forall}\mathbb{B}\in
```

Si f cumple con estas cuatro propiedades se dice que $f: A--Y \mathbb{R}$ es una medida con aditividad finita o simplemente una medida.

2.4. DEFINICION DE FROBABILIDAD PARA ESPACIOS MUESTRALES FINITOS

En la teoría de probabilidad, al Universal \$ se lo asocia Eon el espacio muestral \mathbb{E}, es decir que $\mathbb{S}=\mathbb{E}$.

Eligiendo una clase As de subconjuntos de un espacio muestral finito \mathbb{E} tales que formen un algebra de Booles se define a la medida de probabilidad, o simplemente probabilidad; a la funcion de conjunto P definida sobre A que cumple con las siguientes propiedades:

1 - F es una medida con aditividad finita.
$2-F(\mathbb{E})=1$

```
Tenemos entonces que para definir una medida de probabilidad es necesario definir tres conceptos :
```

- El espacio muestral \mathbb{E}.
- El algebra de Eoole As esto es, la coleccion de subconjuntos de \mathbb{E} que serán los sucesos considerados.
- La propia funcion de conjunto F:

A la terna ($\mathbb{E}, A_{;} F$) se la denomina frecuentemente Espacio de Probabilidad.

2.5. CONJUNTOS NUMEFAELES Y NO NUMEFAELES

Dos conjuntos B y \mathbb{C} estan en correspondencia und a uno sj existe cierta función f con las siguientes propiedades:

- El Dominio de f es \mathbb{B}. El recorrido de $f e s \mathbb{C}$.
- Si x e y son elementos distintos de \mathbb{B}_{3} se implica que $f(x) y f(y)$ son elementos distintos de \mathbb{C}.

Dos conjuntos $\mathbb{B} y \mathbb{C}$ que estan en correspondencia uno a uno se llaman tambien conjuntos equivalentes y se denota con $\mathbb{B} \sim \mathbb{C}$.

Un conjunto \mathbb{B} se llama finito y se dice que contiene n elementos si $\mathbb{B}-\{1,2, \ldots, 0\}$.

El conjunto vacio tambien se considera finito.
Un conjunto \mathbb{B} se llama infinjto numerable si $\mathbb{B} \sim\{1,2, \mathcal{Z}, \ldots\}$, es decir que \mathbb{B} es equivalente al conjunto de 105 numeros naturales.

Los numeros naturales nos ayudan a marcar los elementos del conjunto \mathbb{B} y todos los elementos reciben marcas.

Un conjunto se dice numerable en sentido amplio si es finito o infinito numerable.

Existen conjuntos que son no numerables.
2.6. PROFIEDAD DE ADITIVIDAD NUMERABLE

Fara toda coleccion infinita numerable de elementos de As, $\left\{\mathbb{B}_{1}, \mathbb{B}_{2}, \ldots\right\}$ tales que sean disjuntos entre ellos, es decir que $\mathbb{B}_{i} \cap \mathbb{B}_{j}=\phi \quad \forall \quad i \neq j$ se debe cumplir:

$$
F\left(\begin{array}{c}
\cup \mathbb{B}_{k=1}
\end{array}\right]=\sum_{k=1}^{\infty} F\left(\mathbb{B}_{k}\right)
$$

Entoncess si F es una medida de aditividad finitas decimos que F es completamente aditiva o de aditividad numerable.

Para pedir esta propiedad debemos suponer que el algebra de Boale tambien cumple que :

$$
\bigcup_{k=1}^{\infty} \mathbb{B}_{k} \in A \quad 5 i \text { cada uno de } 1 \square s \mathbb{B}_{k} \in A
$$

Las algebras de Eoole que Gumplen con esta ultina propiedad se denominan o-aleebras de Soole= El ejempla mas tipico es el caso en que A incluye a todos los subconjuntos de \mathbb{E}.

2.7. DEFINICION DE FFOEAEILIDAD FAFA ESFACIOS MUESTFALES INFINITOS NUMERAELES

Sea \mathbb{E} un conjunto infinito numbrable y A una oralgebra de Foole de subconjuntos de \mathbb{E}, se dice que ina funcion de conjunto F definida sobre A es una medida de probabilidad 5i:

1 - Fes una medida cof aditividad finita.

2 - Fes una medida con aditividad numerable.
$3-F(\mathbb{F})=1$.

Si A es la clase de tofos los subconjuntos que pertenecen a \mathbb{E}, entonces la funcion F queda completamente determinada con solo asignarie valores a todos y a cada uno de los subconjuntos de un elemento (probabilidades puntuales) =

Si \mathbb{B} es un sutconjunto rualquiera de \mathbb{E}_{s} tal que $\mathbb{B} \in \mathbb{B}_{s}$ entonces:

$$
F^{\prime}(\mathbb{B})=\sum_{x \in \mathbb{B}} F^{\prime}(\{x\})
$$

2.8. DEFINICION DE FRDEAEILIDAD FARA ESPACIOS MUESTRALES INFINITOS NO NUMERABLES

Abstract

Intentar definir una medida de probabilidad teniendo un espacio muestral no numerable con el mismo proceso que para espacios muestrales numerables ocasiona ciertas dificultades que exceden la esencia de este trabajo. Para salvarlas sin ahondar demafiedo, vamos a realizar algunas restricciones:

[^0]- Para el algebra Eogleana utilixaremos subconjuntos de \mathbb{E} que sean medibles. intentaremos mencionar solo algunas propiedades esenciales que poseen los conjuntos medibles.
a) Si \mathbb{B} es medible, entonces $\mathbb{R}-\mathbb{B}$ es medible.
b) La unión de una colección infinita numerable de conjuntos medibles, Es medible. Es decir que si $\left\{\mathbb{B}_{1}, \mathbb{B}_{2}, \ldots\right\}$ es una colecrion numerable de conjuntos

c) Todo intervalo es medible, tanto si es abierto, cerrado; semiabierto; finito o infinito.

Asi: las clases restringidas A seran o-algebras de Eoole que contienen sólo subconjuntos medibles de \mathbb{E} a su vez \mathbb{E} esta incluido en \mathbb{R}.

Existe una o-algebra de Boole minima que contiene a todos los intervalos de \mathbb{E}, cuyos elementos son 11 amados conjuntos de Eorel en \mathbb{R}.

Definimos entonces a las medides de probabilided sobre una o-álgebra de Boole As, formada por subconjuntos de Borel de \mathbb{E} $(\operatorname{con} \mathbb{E} \subseteq \mathbb{R})$ a una funcion de conjunto F que cumple con las siguientes propiedades:

- F' es funcion de coniunto no negativa.
- Fes funcion de conjunto completamente aditiva, definida En A.
$-P(\mathbb{E})=1$.

Se puede demostrar que la mayor parte (podrian ser todas) de las probabilidades puntuales de un espacio de probabilidad con espacio mesestral infinito no numerable serban cero. Entonces mo se pueden calcular las probabilidades de sucesos eualesquiera sumando les correspondientes probabilidades puntuales. La solurioni vendra dada por el calculo de intecrales que reemplazarari a las sumatorias.

2.9. VAFIABLE ALEATORIA

A veces se hace necesario asociar un numerg a cada ung de

```
los resultados de un experimentog es decir, a cada miembro
del espacio muestral 訨. Fara esto definamos a la variable
aleatoria}\mp@subsup{}{}{4}\mathrm{ como una funcion que tiene como dominio a 在 y sus
valores pertenecen a los reales [R.
    Si notamos con X a esta variable aleatoria, resulta
X:\mathbb{E}-\cdots-->R .
    En general, dada un conjunto \mathbb{E}
variable aleatoria; conviene elegir una sencilla que
simplifique la forma de escribir los sucesos que nos
interesargn estudiar.
```

Ejemplo: Si tomemos como experimento tirar una moneda dos Vecess y notamos con c si sale cara y con 5 si sale ceras el espacio muestral sera : [CC, $C S, 5 C, 5 S\}$.

Si estamos interesados en cada uno de los cuatro resultados, podriamos definir a la variable aleatoria de la siguiente manera :

$$
X(C C)=0 ; X(C S)=1 ; x(S C)=2 ; \times(S S)=3
$$

Para describir la probabilidad del suceso "que salga solamente una cara en las dos tiradas", podemos escribir $F(X=1$ o $X=2)$.

Una manera alternativa podria ser definir una variable aleatoria distinta Y :

$$
Y(C C)=0 \quad \because \quad Y(C S)=Y(S C)=1 \quad: \quad Y(S S)=2^{5}
$$

[^1]Entonces para describir la probabilidad del misino suceso anterior: "solamente una cara" ${ }^{\text {a }}$ estibiremos $F(Y=1)$.

Si nos interesa diferenciar cada lino de los resultados del experimento, debemos restringir la función que elegimos como variable aleatoria a ser uno a uno. Es decir que si $\varepsilon_{1} y \varepsilon_{2}$ son dos resultados cualesquiera diferentes del espacio muestral \mathbb{E}, entonces X debe ser tal que $X\left(\varepsilon_{1}\right) \neq X\left(\varepsilon_{2}\right)$.

Si nos quedamos con este tipo de funcioness la variable aleatoria heredara necesariamente la numerabilidad o no numerabilidad del conjunto $\mathbb{E}^{\text {© }}$.

2.10. SUCESOS EQUIVALENTES

Dado un espacio muestral fit y ura variable aleatoria x con recorrido ${ }^{7} \mathbb{R}_{x}$, diremos que un subconjunto \mathbb{B} de $\mathbb{E} y$ un subconjunto \mathbb{C} de \mathbb{R}_{x} son equivalentes si:

$$
\mathbb{B}=\{s \in \mathbb{E} \text { tal que } x(5) \in \mathbb{C}\}
$$

Es decir que \mathbb{B} contiene a todos los resultados en \mathbb{E} que $\exists \in$ corresponden con \mathbb{C} en \mathbb{R}_{x} mediante x.

[^2]Definimos la probabilidad del suceso \mathbb{C} como:

$$
\begin{equation*}
F(\mathbb{C})=F(\mathbb{B}) \tag{2.1}
\end{equation*}
$$

donde \mathbb{B} es equivalente con \mathbb{C}.
Esto significa que las probabilidades en el espacio muestral \mathbb{E} se definen según el modelo que se utilice para representar a la realidad, mientras que las probabilidades en \mathbb{R}_{x} quedan determinadas a partir de la definición dada a traves de la ecuacion (2.1).

2.11. VARIABLES ALEATORIAS DISCRETAS

Decimos que una variable aleatoria X es discreta $5 i$ la cantidad de elementos que contiene el conjunto Imagen de la función que define a x^{8} es finito o infinito numerable. Entonces podremos enumerar a cada uno de los elementos como un miembro de la lista $\left\{x_{1}, x_{2},=\{ \}\right.$

Si a cada x_{i} le asignamos una probabilidad, según queda definido por la probabilidad de los correspondientes conjuntos equivalentes en \mathbb{E}, se debe cumplir:

$$
p\left(x_{i}\right) \geq 0 \quad y \quad \sum_{i \equiv 1}^{\infty} p\left(x_{i}\right)=1
$$

La funcion p se denomina función de probabilidad puntual

[^3]de la variable aleatoria X. La coleccion de pares ($x_{i}, p\left(x_{i}\right)$) Se denomina frecuentemente distribution de probabilidad de la variable aleatoria X.

Figura 1. Grafico de probabilidad puntual. Las variables aleatorias discretas pueden tomar una cantidad numerable de valores.

Si tenemos un suceso asociado con x, esto es $\mathbb{C} \subseteq \mathbb{R}_{x} y$ tenemos que $\mathbb{C}=\left\{x_{i 1}, x_{i 2}, x_{i 9},=\ldots\right\}$.

$$
\text { Entonces } \quad F(\mathbb{C})=\sum_{j=1}^{\infty} P\left(x_{i, j}\right)
$$

Es interesante notar que ruando el espacio muestral es infinito numerable no puede esistir equiprobabilidad en todos sus elementos pumtules, si lo suponemos tendriamos que $p\left(x_{i}\right)=k \quad \forall i s$ pero entonces no podriamos obtener la propiedad $\sum_{i=1}^{\infty} p\left(x_{i}\right)=1$ pues deberia cumplirse $\sum_{i=1}^{\infty} k=1$.

2.12. VARIABLES ALEATORIAS CONTINUAS

```
    Decimos que una variable aleatoria \(X\) es continua si la
cantidad de elementos que contiene el conjunto Imagen de la
funcion que define a \(X\) es infinito no numerable.
    En este caso deja de tener sentido \(p\left(x_{i}\right)\), ya que al no ser
numerables los valores que toma \(x\); no podemos
contabilizarlos con \(\left\{x_{1}, x_{2}, \ldots\right\} \quad y\) entonces sustituiremos
esta probabilidad puntual por una función f(x) que tendrá
como dominio a \(\mathbb{R}_{x}\), el conjunto no numerable de valores que
puede tomar la variable aleatoria \(X\).
    Asi \(f(x)\) cumplirá las propiedades :
    \(-\quad f(x) \geq 0 \quad \forall x \in \mathbb{R}_{x}\)
    \(-\int f(x) d x=1\)
        \(\mathbb{R}_{x}\)
Fodemos entonces extender al dominio de los reales \(\mathbb{R}\) a la funcion \(f(x)\) definiendo \(f^{*}(x)\) tal que \(f^{*}(x)=0 \quad \forall x \notin \mathbb{R}_{x}=\)
Asi tenemos entonces que
\[
F^{\cdot}(\mathbb{B})=\int_{\mathbb{B}} f^{*}(x) d x
\]
para todo conjunto \(\mathbb{B}\) que pertenece a la o-algebra de Boole A formada por \(10 s\) subconjuntos de Eorel que pertenecen a \(\mathbb{R}\).
Esta funcion \(f(x)\) se llama funcion de densidad de probabilidad de la variable aleatoria \(X\).
```

Vale la pena acotar que =
$-5 i f(x)$ es acotada, $F\left(x=x_{0}\right)=\lim _{\varepsilon \rightarrow 0} \int_{x_{0}}^{x_{0}+\varepsilon} f(x) d x=0$ sin embergo esto no significa que sea imposible (en el sentido estricto) que x tome el valor x_{o} "

- $f(x)$ no es ninguna probabilidady lo que si es una probabilidad es $\int_{B} f(x) d x$
\mathbb{B}

Figure 2 Grafico de wna funcion de densidad de probabilidad. Las varianles aleatorias continuas tienen asociada una funcion de probabilidad $f(x)$.

2.13. VARIABLES ALEATORIAS MIXTAS

describen mejor a traves de una variable aleatoria x con valores pertenecientes $a \mathbb{R}_{x} \subseteq \mathbb{R}, y$ tales que tienen una medida de probabilidad F que es discreta y continua a la vez. Esto es, X por un lado toma valores $x_{1}, x_{2}, \ldots, x_{n}$ donde cada uno de éstos tiene asociado una probabilidad puntual $p\left(x_{i}\right) \geq 0, y$ tal que $\sum_{i=1}^{n} p\left(x_{i}\right)=F \quad 0=A$ su vez x tambien toma todos los valores $x \in I_{j}$, siendo $I_{j}=\left(a_{j}, b_{j}\right)$ algưn intervalo abierto de los reales, con $j=1,2, \ldots, m$. Cada uno de los intervalos I_{j} es disjunto con respecto a todas los otros, es decir $I_{j} \cap I_{k}=\phi$ para $j \neq k$. Entonces definimos una funcion $f(x)$ tal que

$$
F_{j}=\int_{T} f(x) d x=\int_{j}^{b_{j}} f(x) d x \quad, \operatorname{con} F_{j} \geq 0
$$

y tal que

$$
\sum_{j=1}^{m}\left[\int_{a_{j}}^{b_{j}} f(x) d x\right]=\sum_{j=1}^{m} F_{j}=\tilde{F}=1-F
$$

Asi tenemos que, si \mathbb{E} es el espacio muestral completo, la probabilidad de que ocurra un resultado cualquiera es :
$P(\mathbb{E})=F(-\infty<x<\infty)=\left[\sum_{i=1}^{n} p\left(x_{i}\right)\right]+\sum_{j=1}^{m} F_{j}=F+F^{n}=F+(1-P)=1$
${ }^{\circ}$ Fodrian ser infinitos valores de x, pero el conjunto debe ser numerable. En ese caso se reemplaza en la sumatoria n por ∞.
${ }^{1}$ Este conjunto particular de intervalos $\left\{I_{j}\right\}$ sera un subconjunto del conjunto de Borel de \mathbb{R}.

Si ahora extendemos la función $f(x)$ a los realess definiendo $f^{*}(x)=f(x)$ para los x que pertenezcan a algún intervalo I_{j}, $y f^{*}(x)=0$ para los x que no pertenezcan a ningún intervalo I_{j}, tenemos que :

$$
F(a \leq X \leq b)=\left[\sum_{\left\{i / a \leq x_{i} \leq b\right\}} p\left(x_{i}\right)\right]+\int_{a}^{b} f^{*}(x) d x
$$

A este tipo de variable aleatoria se le llama variable aleatoria de tipo mixta*

2.14. FUNCION DE DISTRIEUCION ACUMULATIVA

Si tenemos una variable aleatoria X, definimos la funcion de distribucion acumulatiya $F(x)$ de la siguiente manera :

$$
F(x)=P(X \leq x)
$$

i) Si x es uma variable alertoria discreta

$$
F(x)=\sum_{\text {fi/ } \left.x_{i} \leq x\right)} p\left(x_{i}\right)
$$

ii) Si X es una variable aleatoria continua

$$
F(x)=\int_{-\infty}^{x} f^{*}\left(x^{\cdot}\right) d x^{*}
$$

iii) Si X es variable aleatoria mixta

$$
F(x)=\int_{-\infty}^{x} f^{*}\left(x^{\prime}\right) d x^{\prime}+\sum_{\left\{i / x_{i} \leq x\right\}} p\left(x_{i}\right)
$$

La función de distriburión acumulativa, a veces notada con fda, tiene varias propiedades interesantes, algunas de las cuales enunciaremos:
a) $F(x)$ es una funcion que tiene como dominio a todo el eje real \mathbb{R}.
b) $F(x)$ es no decreciente, es decir que si $x<x$, entonces sera $F(x) \leq F\left(x^{\prime}\right) \quad \forall x, x^{\prime} \in \mathbb{R}$.
c) $\lim _{x \rightarrow)^{\prime}} F(x)=F(-\infty)=0$
d) $\underset{x->+\infty}{\lim } F(x)=F(+\infty)=1$
e) $P(a<X \leq b)=P(X \leq b)-F(X \leq a)=F(b)-F(a)$
f) Si x es una variable aleatoria continua con funcion de probabilidad $f(x)$, tenemos que $f(x)=\frac{d}{d x} F(x)$ para todos $105 x$ en que $F(x)$ sea diferenciable.
g) Si X es variable aleatoria discreta y rotulamos los

$$
\begin{gathered}
x_{1}, x_{2}, x_{3}, \ldots \text { tales que } x_{1}<x_{2}<x_{3}<\ldots, \text { tenemos que } \\
p\left(x_{i}\right)=P\left(X=x_{i}\right)=F\left(x_{i}\right)-F\left(x_{i-1}\right)
\end{gathered}
$$

h) $5 i x$ es una variable aleatoria mixta con una funcion de distribución $f(x)$, tendremos que la foa $F(x)$ sera discontinua con saltos solamente en los valores x_{i} tales que $P\left(x_{i}\right)>0_{3}$ asi tendremos que

$$
\lim _{x \rightarrow x_{i}^{+}} F(x)=F\left(x_{i}\right)
$$

Y

$$
\lim _{x \rightarrow x_{i}^{-}} F(x)=F\left(x_{i}\right)-P\left(X=x_{i}\right)
$$

Es decir que en cada punto x_{i} tal que $p\left(x_{i}\right) \geqslant 0, F(x)$ es continua solamente a derecha. El salto de $F(x)$ en la discontinuidad es igual a la probabilidad en el punto x_{i} correspondiente.

Figura s. Grático de una función de distribución acumulativa. Las funciones de distribucion acumulativas de variables aleatorias mixtas tienen saltos en los puntos que poseen probabilidad no nula.

3.1. PROBABILIDAD CONDICIONADA

Veamos cómo podemos utilizar en algún tipo de experimento cierta información adicional. Fara ello utilizaremos un ejempla.

Se lanzan dos dados y se sabe que la suma de los mismos es seis. Cuál es la probabilidad de que los dos números sean impares? Formularemos este problema de otra manera. Sea A el suceso: "la suma de los números es seis" y E el suceso: "los dos números son impares". Cuál es la probabilidad de que ocurra el suceso E sabiendo que A ha ocurrido?

Hay que tener cuidado de no confundir esta probabilidad con la probabilidad del suceso AnB, que no son necesariamente 10 mismo.

Calculemos estas dos probabilidades para ver sus diferencias. Comenzaremos calculando $F(B / A)^{11}$. El espacio muestral correspondiente al lanzamiento de dos dados es: $\mathrm{S}=$ $\{(1,1) ;(1,2) ;(1,3) ; \ldots ;(6,6)\}$ que tiene 36 elementos ${ }^{12}$. Ahora queremos calcular cual es la probabilidad de que los dos números sean impares sabiendo que este suceso ya está en A, es decir que $10 s$ dos numeros suman seis; por lo tanto hay que restringirse al subconjunto $S_{A}=\{(1,5) ;(5,1) ;(3,3)$; (2,4); 4,2$)\}$. De esta manera debemos tomar de este subconjunto los elementos tal que los dos números sean

[^4]impares, esto es $5_{B / A}=\{(1,5) ;(5,1) ;(X, 3)\}$. Entonces, $5 i$ asignamos a cada uno de los resultados de A la misma probabilidad $1 / 5, F(B / A)=3 .(1 / 5)=3 / 5$.

Veamos que sucede con $F(A \cap B)$. Esto se puede enunciar de la siquiente manera: se lanzan dos dados. Cual es la probabilidad de que los dos números sean impares y sumen seis? En este caso el espacio muestral es 5 y cada uno de los elementos tienen la misma probabilidad $1 / 36$. Como el suceso $A \cap E$ es el subconjunto $S_{A M B}=\{(1,5) ;(5,1) ;(3,3)\}$, tenemos que $F(A \cap B)=3 .(1 / 36)=1 / 12 . \quad$ La diferencia fundamental entre $F(B / A)$ y $P(A n B)$ es el espacio muestral con el que estamos trabajando. Sin embargo estas dos probabilidades requieren casi 10 mismo, es decir que sucedan A y $\mathrm{A} . \mathrm{Esto}$ nos da la pauta que deben estar relacionadas de alguna manera.

Lo que debemos hacer es definir una nueva función de probabilidad F^{\prime} que este restringida al nuevo espacio muestral y un algebra booleana \mathbb{B}^{\prime} de subconjuntos de A de modo que $\left(A, \mathbb{B}^{\prime}, F^{\prime}\right)$ sea un espacio de probabilidad. En nuestro caso el nuevo espacio de probabilidad es $S_{A}=A$ (conjunto de elementos relarionado con el suceso A): estando F' definido de tal manera que la probabilidad asignada a dicho espacio sea 1 , esto es $F^{\prime}(A)=1$. Una forma de definir la funcion de probabilidad F^{\prime} es dividiendo cada una de las antiguas probabilidades por $F(A)$. Esto es:
$\operatorname{si} C \leq 5_{A}$ y $F(A) \neq 0$

$$
P^{\prime}(C)=\frac{F(C)}{F(A)}
$$

Se ve facilmente que $F^{\prime}(C)$ es no negativa y que $F^{\prime}(A)=1=$ C es un suceso que esta incluido en $5_{a} y$ que tambien puede estar incluido en otro suceso; en nuestro caso $C=A n B$. De esta manera fodemos definir F ' de la siguiente forma:

$$
F \cdot(A \cap B)=\frac{F(A \cap B)}{F(A)}
$$

Esto nos sugiere una definicion adecuada a nuestro problema de interes $F(B / A)$.

Definición de probabilidad Gondicianada= Sea (S, \mathbb{B}, \mathcal{F}) un espacio de probabilidad y A un elemento tal que FíA) x o. La probabilidad condicionada de que un suceso B ocurra, en el supuesto de que A ha ocurrido, se representa mediante el Simbolo $F(E / A)$ y $5 e$ define por la igualdad

$$
F(B / A)=\frac{F(A \cap B)}{F(A)}
$$

La probabilidad $F(E / A)$ no esta definida si $F(A)=0$.

Sigamos con nuestro ejemplo tomando en cuenta que $F(A \cap E)=1 / 12$ y que $F(A)=5 / E 6$, entonces

$$
F(E / A)=\frac{1 / 12}{5 / 36}=3 / 5
$$

```
    Este resultado concuerda con nuestro calculo anterior.
    Habiendo definido la probatilidad condicional se pueden
hacer dos afirmaciones generales acerca de F(E/A). El primer
caso es cuando AmE = ф, es decir que los sucesos A y E no
```

pueden ocurrir simultáneamente. Entonces $F^{\prime}(E / A)=0$ pues si ocurre uno no puede ocurrir el otro.

El segundo caso a considerar es cuando $A \subset E$, entonces

$$
F(B / A)=\frac{F(A \cap B)}{F(A)}=\frac{F(A)}{F(A)}=1
$$

Si ocurre $A(u n$ conjunto incluido en $E)$ con seguridad ocurre B.

3.2. INDEFENDENCIA

Comenzaremos con un ejemplo para ilustrar este concepto. Se lanza dos veces una moneda, sean los sucesos A y A como sigue:

$$
\begin{aligned}
& A=\{\text { la primera moneda es cara }\} \\
& B=\{\text { la segunda moneda es cara }\}
\end{aligned}
$$

Intuimos que saber que A ha ocurrido no nos proporciona ninguna informacion adicional acerca de la ocurrencia de B. Hagamos un simple calculo para comparar $F(E)$ y $P(B / A)$. Nuestro espacio muestral es $S=\{(c, c) ;(c, 5) ;(5, c) ;(5,5)\}$, donde c indica "cara" y 5 indica "ceca". La probabilidad de que ocurra E, considerando todos los resultados igualmente probables: es $F(B)=2 / 4=1 / 2$: para calcular $F(B / A)$ necesitamos saber $F(A)=2 / 4=1 / 2$ y $F(A \cap B)=1 / 4$ entonces

$$
F(E / A)=\frac{F(A \cap E)}{F(A)}=\frac{1 / 4}{1 / 2}=1 / 2=F(E)
$$

Vemos entonces que $F(B / A)=F(E)$, es decir que la
ocurrencia de A no ha afectado la ocurrencia de A. Del
calculo anterior vemos que se tiene que cumplir
$\frac{P(A \cap B)}{F(A)}=F(E)$

Entonces debe ser $F(A \cap E)=F(A) . F(E)$.
Hemos llegado asi al concepto de independencia; que se define formalmente como sigue:

Definicion de independencia. Dos sucesos Ay E se llaman independientes (o estocasticamente independientes) si, y Sólo 5is

$$
F(A \cap E)=F(A) \cdot F(E)
$$

Muchas veces es dificil determinar de antemano si dos sucesos son independientes, sin embargo la definicion de independencia nos proporcione un metodo útil para llegar a esta determinacion.

3.3. EXFEFIMENTOS D FRUEBAS COMPUESTAS

Se considera como prueba compuesta al resultado de
ejecutar sucesivamente dos o más pruebas que pueden ser distintas 0 no. Estas pruebas pueden estar relacionadas entre 51 o pueden ser estocásticamente independientes:

Comenzaremos nuestra discusion citando un interesante ejempla historica en el cual se realizan pruebas iguales sucesivas, estocasticamente independientes. Antoine Gombaud, Caballero de Meré, en 1654 1levo a Elaise Fascal y a Fierre de Fermat a interesarses a traves de cuestiones de juego y apuestas, en el calculo de probabilidades.

Uno de los problemas que planted de Meré a Fascals aparentemente contradirtorio según el primero, fue el siguiente: se lanzan 24 veces un par de dados. Es conveniente apostar a favor o en contra de la aparición de por la menas un doble seis?

Hariendo un analisis muy superficial se puede razonar de la siguiente manera: existen So resultadas diferentes en la tirada de un par de dados, $5 i$ uno hace 24 tiradas debe ser bastante probable que salga un doble seis.

Hay que tener mucho cuidado con este tipo de razonamientos apresurados. Como hemos dicho al principio de esta sección, este problema es una prueba compuesta cada una de las cuales es estocasticamente independiente una de las otras. Entonces haciendo uso de un razonamiento un poco mas profundo pensemos de la siguiente manera: en la primera tirada tengo una probabilidad de $1 / 30$ de que salga un doble seis. Cuando tiro por segunda vez los dados el resultado de la primera prueba no tiene influencia, entonces, la probabilidad de obtener un doble seis es también 1/36. Puesto que las pruebas son independientes la probabilidad deberia ser el producto de las probabilidades; pero si multiplicamos $1 / \underset{\sim}{6}$
tantas veces como pruebas hagamoss la probabilidad de obtener por 10 menos un doble seis disminuirias en contraposicion con 10 que experimentalmente se observa.

El error que se ha cometido en estos razonamientos es no definir adecuadamente el espacio muestral y la correspondiente medida de probabilidad.

Definamos el mencionado espacio fomo sigue: sea x_{i} el resultado de la $i-6 s i m a t i r a d a, ~ e s ~ d e c i r, ~ u n ~ p a r ~ o r d e n a d o ~$ (a,b). El resultado del juego se puede representar con la 24-pla ordenada $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$. For ejemplo, urn resultado puede ser que en las primeras zs tiradas haya salida el par ordenado (1,1) y en la ultima el (1,2), y otro resultado diferente es que en la primera tirada maya salido el par ordenado (1,2) y en 1 as restantes el (1,1). Entonces el espacio muestral es el producto cartesiano de los espacios muestrales de cada una de las pruebas, esta es $5^{24}=5 \times 5$ $x=x=x$ s donde 5^{24} es el espacio que queremos definir. De esta manera el espacio S^{24} tiene $3 s^{24}$ elementos diferentes. y: asignando a cada una de las 24-plas igual probabilidads se tiene $F(x)=1 / 34^{24}$, donde x representa un elemento del nueva espario muestral.

Volvamos a nuestro ejemplo pero calculemos el suceso complementario por simplicidad. Sea este suceso $\vec{A}=$ "que na salga ningún doble seis en 24 tiradas de un par de dados". Calculemos ahora la cantidad de elementos que tiene este sucesa. Las resultados posibles de \vec{A} son las 24-plas que no contengan el par (6,b) por 10 tanto podemos tener ž valores posibles para cada $x_{i}(\operatorname{con} 1 \leq i \leq 24)$ entonces existen 35^{24} posibilidades. Como cada uno de estos resultados tiene la misma probabilidad (1/50 ${ }^{24}$) $1 a$
probabilidad del suceso \bar{A} es

$$
F(\bar{A})=\left[\frac{35}{36}\right)^{24}
$$

De esta manera podemos encontrar el resultado tan esperado por de Mere

$$
F(A)=1-\left[\frac{35}{36}\right]^{24}=0,49
$$

Es decir: es conveniente apostar en contra de la aparición de un doble seis en 24 tiradass 10 que contradice al primer razonemiento hecho.

Esta discusion nos lleva a encontrar un metodo mas general para tratar los experimentos sucesivos. For simplicidad ronsideromos dos prubbes independientes combinadas en una prupbe compuesta.

Comenzaremos estableriendo on una prueba compuesta el nuevo espacio de probabilidades (S: B. F) donde S es el nuevo espacio muestrals \mathbb{E} el algebra booleana de subconjuntos de S y P la medida de probabilidad.

Si tenemos dos experimentos $E_{1} \nsucc E_{2}$, asociamos a cada uno de ellos un espacio de probabilidad $\left(S_{1}, \mathbb{B}_{1}, P_{1}\right)$ y $\left(S_{2}, \mathbb{B}_{2}\right.$, F_{2}) respectivamente. Sea E el experimento compuesto que resulta de hacer E_{1} y E_{2} suresivamente. El espacio muestral de E serb, como hicimos en el Ejemplo anterior, el producto cartesiano de S_{1} y S_{2}. esto es. $5=S_{1} \times S_{2}$. Entonces: Si el espacio de probabilidad S tione n elementos $\%$ el espacio S_{2}, m elementos, S tendra $n m$ elementos. Un resultado de S se podra expresar a traves del par ordenado (x, y) donde x es un resultado de hacer E_{1} e y de hacer E_{2}.

Como nueva algebra booleana \mathbb{B} tomamos la coleccion de todos los subeonjuntos de S.

Ahora debemos definir la nueva medida de probabilidad F. Fara llegar a una definicion razonable consideramos dos sucesos A y A del nuevo espacio muestral S definidas como sique:

$$
\begin{aligned}
& A=\left\{\left(x_{1}, y_{1}\right) ;\left(x_{1} ; y_{2}\right) \ldots\left(x_{1}, y_{m}\right)\right\} \\
& B=\left\{\left(x_{1} ; y_{1}\right) ;\left(x_{2} ; y_{1}\right) \ldots\left(x_{n}, y_{1}\right)\right\}
\end{aligned}
$$

El conjunto unitario $\left\{\left(x_{1}, y_{1}\right)\right\}$ es la intersección entre A y B. Considerando a estos dos sucesos independientes entre 51, F debe ser tal que

$$
\begin{equation*}
F(A \cap B)=F^{\prime}(A) \cdot F(B) \tag{3.1}
\end{equation*}
$$

Notese que $F(A \cap B)$ es en definitiva $F\left(x_{1}, y_{1}\right)=$ Debemos encontrar ahora la forma de asigmar las probabilidades $F(A)$ y $F(E)=E l$ suceso A ocurre solamente si el resultado de la primera prueba es x_{1} sin importar cual es el resultado de la segunda. Como el suceso A esta determinado a partir del valor que adquiere $x\left(s i \quad x=x_{1}\right.$ o no), es razonable considerar que $P(A)=F_{1}\left(x_{1}\right)$. De manera similar podemos pensar que $F(E)=P_{2}\left(y_{1}\right)$. Entonces la ecuacion (3.1) nos queda

$$
F\left(x_{1}, y_{1}\right)=F_{1}\left(x_{1}\right)-F_{2}\left(y_{1}\right)
$$

Este razonamiento se puede generalizar a cada elemento (x, y) de 5. Entonces, $5 i$ dos pruebas $E_{1} y E_{2}$ son estocasticamente independientes, definimos F mediante la ecuacion

$$
\begin{equation*}
F(x, y)=F_{1}(x) \cdot F_{2}(y) \tag{3.2}
\end{equation*}
$$

Comprobemos que F es efectivamente una medida de probabilidad. F es un producto de dos factores no negativos, entonces P debe ser no negativo. La suma de todas las probabilidades puntuales es

$$
\sum_{(x, y) \in S} F(x, y)=\left[\sum_{x \in S_{1}} F_{1}(x)\right]\left[\sum_{y \in S_{2}} F_{2}(y)\right]=1.1=1
$$

La asignación de probabilidades (3.2) implica que para toda par de subconjuntos U de \mathbb{B}_{1} y V de \mathbb{B}_{2} vale

$$
\begin{equation*}
F(U \times V)=F_{1}(U)=F_{2}(V) \tag{3,3}
\end{equation*}
$$

Demostremos esto:

$$
\begin{aligned}
F(U x v) & =\sum_{(x, y) \in U \times v} F(x, y)=\sum_{\substack{x \in U \\
y \in V}} F(x, y)=\sum_{x \in U} \sum_{y \in V} F_{1}(x) \cdot F_{2}(y)= \\
& =\left[\sum_{x \in U} F_{1}(x)\right] \cdot\left[\sum_{y \in V} F_{2}(y)\right]=P_{1}(U) \cdot F_{2}(v)
\end{aligned}
$$

Podemos deducir entonces algunas consecuencias importantes.

Consideremos un suceso A tal que tada elemento es un par
ordenado (x, y); donde x es un resultado de la primera prueba E_{1} que pertenece a un conjunto C_{1}, e y puede ser cualguier resultado de S_{2}. Es decir, A ES de la forma $A=\bar{C}_{1} \times S_{2}$ donde $C_{1} \in \mathbb{B}_{1}$.

Utilizanda la ectación (S. S) llegamos a

$$
F(A)=F\left(C_{1} \times S_{2}\right)=F_{1}\left(C_{1}\right) \cdot F_{2}\left(S_{2}\right)=F_{1}\left(C_{1}\right)
$$

Un suceso coma $A\left(\right.$ tal que $\left.F(A)=F_{1}\left(C_{1}\right)\right) s e$ dice que esta determinado mediante Ia primera prueba E_{1}. Andlogamente definamos un suceso B que este determinado por la segunda prueba E_{2}. Esto es. si $\mathrm{C}_{2} \in \mathbb{B}_{2}$

$$
B=S_{1} \times C_{2}
$$

Tenemos entances

$$
F(E)=F\left(S_{1} \times C_{2}\right)=F_{1}\left(S_{1}\right) \cdot F_{2}\left(C_{2}\right)=F_{2}\left(C_{2}\right)
$$

Considerando todo estos analicemos lo que sucede con P(AnE). Primeramente encontremos que conjunta es AnG. For definicion de interseccion son 105 pares ordenados tal que (x, y) pertenecen a $C_{1} \times S_{2} y=S_{1} \times C_{2}$. La primera de estas condiciones $\left((x, y) \in C_{1} \times S_{2}\right)$ dice que se debe considerar $105 x$ que pertenecen a C_{1} sin importar el resultado de la segunda prueba, pues y siempre pertenece a $S_{2} ;$ la otra condicion impone que $y \in C_{2}$ sin considerar el resultado de la primera prueba. En resumen (x, y) debe ser tal que $x \in C_{1}$ e $y \in \mathrm{C}_{2}$. Esto es $\mathrm{AnB}=\mathrm{C}_{1} \times \mathrm{C}_{2}$.

Utilizando la ecuación (צ. ※) obtenemos

$$
F(A \cap B)=F^{\prime}\left(C_{1} \times C_{2}\right)=F_{1}\left(C_{1}\right)-F_{2}\left(C_{2}\right)
$$

Como $F_{1}\left(C_{1}\right)=F(A) \quad y \quad F_{2}\left(C_{2}\right)=P(B)$ resulta

$$
F(A \cap B)=F(A) \cdot F(E)
$$

Demostramos entonces que 105 sucesos A y B son independientes.

Fodemos generalizar estos resultados haciendo una deducrión análoga a experimentos compuestos de n pruebas independientes $E_{1}, \quad E_{2}, \ldots E_{n}$. Cada resultado del nuevo Espacia muestral $5=S_{1} \times S_{2} \times S_{3} \times \ldots \times S_{r}$ sera una n-pla de la forme $\left(x_{1}, x_{2}, x_{n_{1}}\right)$ y la medida de probabilidad será

$$
\begin{equation*}
F^{\prime}\left(x_{1}, x_{2}=x=x_{n}\right)=F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right) \ldots F_{r_{1}}\left(x_{n}\right) \tag{3.4}
\end{equation*}
$$

Cuando utilizamos esta definicion de F se dice que E está determinade por n pruebas independientes $E_{1}: E_{2}, \ldots, E_{r_{1}}$

Existe un caso esperial de probbas compuestas en el que todas las pruebas estan asoriadas al mismo espacio de probabilidad. Se dice que la prueba compuesta E es un caso de pruebas independientes repetidas bajo identicas condiciones. Un ejemplo de este tipo de pruebas es el de las 1lamadas pruebas de Eernoulli.

3.4. DISTRIEUCION BINOMIAL

A las pruebas compuestas que tienen una distribucion binomial se las conoce tambien por el nombre de sucecion de pruebas de Bernoullis tal nombre fue puesto en honor a Jacobo Eernoulli. Se trata de una sucecion de pruebas repetidas ejecutadas en las mismas condiciones; siendo cada resultado estocasticamente independiente de 105 demás. En las pruebas de Eernoulli solamente existen dos resultadas posibles en cada una de las pruetas; 11 amadas comunmente "exito" y "fallo". Se asocia al Exito una probabilidad P y al fallo una probabilidad q, conde $q=1-p$. Consideremos un caso sencillo para ejemplificar estas ideas.

Se lanza una moneda tres veces. Se asume que esto cumple con la condicion de que cada una de las pruebas i"se lanza una moneda") es estocasticamente independiente una de las otras. Además podemos tener solamente dos resultados posibles. Asociemos el exito al resultado "cara" y el fallo a "ceca". Supongamos que la moneda no esta bien balanceada y que la probabilidad de que salga cara es $p=2 / 3$ entonces la probabilidad de falloes $q=1 / 3$. Designemos al Exito con $E y$ al fallo con F, el espacio muestral es

$$
\begin{aligned}
& S=\{(E, E, E) ;(F, E, E) ;(E, F ; E) ;(E, E, F) ;(F, F, E) ;(F, E, F) ; \\
& (E, F, F) ;(F, F, F)\}
\end{aligned}
$$

Utilizando la ecuación (3.4) obtenemos las respectivas
probabilidades

$$
\begin{aligned}
& (2 / 3)^{3} ;(1 / 3)=(2 / 3)^{2} ;(1 / 3)-(2 / 3)^{2} ;(1 / 3)-(2 / 3)^{2} ; \\
& (1 / 3)^{2}=(2 / 3) ;(1 / 3)^{2}=(2 / 3) ;(1 / 3)^{2}-(2 / 3) ;(1 / 3)^{3} .
\end{aligned}
$$

Fero comúnmente no nos interesa saber, por ejemplo, si en la segunda tirada salio cara o ceca, sino que queremos saber cuántas caras salieron o cuantas cecas. En este caso necesitamos definir una variable aleatoria x que indique el número de veces que se obtuvo el exito en las tres tiradas (tambien se podria haber definido el fallo). Esto es, x puede tomar los valores $O, 1,2 y=$ De esta manera $x=0$ si ocurre $(F, F, F), x=1$ si ocurre $(E, F, F),(F, E, F)$ o (F, F, E), etcétera.

Entonces las probabilidades seran como sigue:
$P(x=0)=P(0)=(1 / 3)^{3} \quad P(1)=3 \cdot(1 / 3)^{2}=(2 / 3)$
$P(2)=\Xi \cdot(1 / 3)-(2 / 3)^{2} \quad P(3)=(2 / 3)^{3}$

Notemos que la suma de las pobabilidades es

$$
\begin{aligned}
& (1 / 3)^{3}+3 \cdot(1 / 3)^{2} \cdot(2 / 3)+3 \cdot(1 / 3) \cdot(2 / 3)^{2}+(2 / 3)^{9}= \\
& =(1 / 3+2 / 3)^{3}=1
\end{aligned}
$$

Ahora enunciemos y demostremos el teorema principal relacionado con las sucesiones de Bernoulli.

Formula de Bermoulli. La probabilidad de k exitos en n
pruebas de Eernoulli es

$$
\binom{n}{k} p^{k} q^{n-k}
$$

donde $\left[\begin{array}{l}n \\ k\end{array}\right]$ representa el coeficiente binomial $\frac{n!}{k!(n-k)!}$, p es la probabilidad de exito en una de las pruebas y $q=1-p$.

Demostración. Consideremos un resultado particular del espacio muestral, esto es la n-pla

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Si representamos el exito con E y el fallo con F cada x_{i} ($1 \leq i \leq n$) es F a E En particular nosotros estamos interesados en los resultados que contienen t veces $E \quad y$ $n-k$ veces F; designemos con A este suceso. Calculemos la probabilidad de uno de los resultados de A, por ejemplo

$$
\bar{x}_{0}=(E, E, \ldots, E, F, F, \ldots, F)
$$

Utilizando la ecuacion (s.4), la probabilidad de que ocurra "os

$$
P\left(\bar{x}_{0}\right)=F_{1}(E)-P_{2}(E) \ldots F_{k}(E)-F_{k+1}(F) \ldots F_{n}(F)=p_{q}^{k}{ }^{n-k}
$$

Como cada uno de los elementos de A tiene la misma probabilidad que \bar{x}_{o}, solamente necesitamos contar el número de elementos de A y multiplicar dicho número por $p^{k} q^{n-k}$.

Fara contar los elementos de A hay que ver de cuantas
maneras es posible colocar k veces la E en las n posiciones de la n-pla. Este numero es $\left[\begin{array}{l}n \\ k\end{array}\right]$. Entonces sumando las probabilidades de todos los elementos de A obtenemos

$$
F(A)=\left[\begin{array}{l}
n \\
k
\end{array}\right] p^{k} q^{n-k}
$$

Observacion: Ilamemos $F_{k}(n, p)$ a la probabilidad de obtener E Exitos en un sucesión de pruebas de Eernoulli con n ensayos y con probabilidad de exito p en cada una de las pruebas: Veamos que $F_{k}(n, p)$ es una medida de probabilidad. Este numero es un producto de factores no negativos; por lo tanto es no negativo. Sumemos las probabilidades sobre todos los posibles valores de k

$$
\sum_{k=0}^{n} F_{k}(n, p)=\sum_{k=0}^{r_{1}}\left[\begin{array}{l}
n \\
k
\end{array}\right] p^{k} q^{r_{1}-k}=(p+q)^{n}=1^{n}=1
$$

Con esto probamos que F es una medida de probabilidad.

3.5. APROXIMACION PARA EL CALCULO DE LA DISTRIBUCION EINOMIAL

Muchas veces es dificil calcular $F_{k}(n, p)$ cuando n es un número grande debido a que esta probabilidad involucra factoriales de n. Haciendo uso de la formuia de Stirling, la cual aproxima factoriales de enteros que son mucho mayores que 1s puede demostrarse la siguiente aproximacion:

$$
F_{k}(n, p) \simeq \frac{1}{\sqrt{2 \pi n P q}} \exp \left[-\frac{1}{2}\left(\frac{k-n p}{\sqrt{n p q}}\right)^{2}\right]
$$

Si se define una variable aleatoria X como la cantidad de Exitos obtenidos en las n pruebas se tiene que

$$
F(x \leq k)=\sum_{i=0}^{k} F_{i}(n, p)=F\left[\frac{x-n p}{\sqrt{n p q}} \leq \frac{k-n p}{\sqrt{n p q}}\right] \simeq
$$

$$
\simeq \frac{1}{\sqrt{2 n}} \int_{-\infty}^{(k-n p) /(n p q)^{1 / 2}} e^{-t^{2} / 2} d t
$$

Este último termino representa a la fanción de distribucion acumulativa de la conocida densidad de probabilidad normal.

4. CONCLUSIDNES

A 10 largo de este trabajo vemos que cuando describimos un experimento a través de un modelo no determinista es de suma importancia definir en forma adecuada el espacio de probabilidad ($\mathbb{E}_{5} \mathbb{A}, F$) con el que estamos trabajando. Este espacio debe ser tal que \mathbb{E} refleje todos los resultados posibles de muestra experiencia y F sea una medida de probabilidad bien definida.

También mencionamos que la diferencia entre el calculo de probabilidades utilizando variables aleatorias discretas o continuas se fundamenta en la cantidad de elementos del espacio muestrals ya sea este numerable en sentido amplio o no numerable.

Al ser frecuente encontrarnos con experimentos compuestos: es de mucha importancia y utilidad el estudio de un caso particular que es la sucesion de pruebas de Eernoulli. Dicha sucesión esta formada por n pruebas estocásticamente independientes cada una de lers cuales está asociada al mismo espacio de probabilidad, teniendo el espacio muestral de cada prueba solamente dos resultados (comummente llamadas Exito y fallo respectivamente).
5. APENDICE

En este apendice mostraremos que, dado un Universal ss la minima colección de subconjuntos A posible para lograr un algebra de Boole esta formada por dos conjuntos $\{\{\phi, \mathcal{S}\}$.

Recordemos las dos propiedades basicas del algebra de Goole, si $\mathbb{B} \in A_{0} y \quad \mathbb{C} \in A_{0}$ entonces tenemos que :

$$
\begin{aligned}
& 1-\mathbb{B} \cup \mathbb{C} \in A_{0} \\
& 2-\mathbb{B}=\mathbb{S}-\mathbb{B} \in A_{0} .
\end{aligned}
$$

i) Demostremos que si As es un algebra de Boole, entonces el conjunto vacio pertenece a $A{ }_{o}$.

De la teoria de conjuntos tememos que:

$$
\begin{aligned}
& \Xi-\mathbb{B} \cap \mathbb{C}=\left(\mathbb{B}^{\prime} \cup \mathbb{C}^{\prime}\right)^{\prime} \\
& 4-\mathbb{B}-\mathbb{C}=\mathbb{B} \cap \mathbb{C}^{\prime}
\end{aligned}
$$

Como la clase A es no vacia, elijiendo un conjunto cualquiera \mathbb{B} que pertenezca a A, se tiene que :

$$
\begin{aligned}
& 5-\mathbb{B}^{\prime} \in A_{0}: \\
& B-\phi=\mathbb{B}-\mathbb{B}=\mathbb{B} \cap \mathbb{B}^{\circ}=\left(\mathbb{B}^{\prime} \cup \mathbb{B}^{\cdots}\right)^{\prime}=\left(\mathbb{B}^{\prime} \cup \mathbb{B}^{\circ}\right)^{\prime} .
\end{aligned}
$$

Entonces por la propiedad 1 , se tiene que $(\mathbb{B} \cdot \cup B)^{\prime}=\phi \in A_{0}$.
ii) For la propiedad 2 se tiene que $s i \phi \in A$ complemento $\phi^{\prime}=\{-\phi=\$$ tambien pertenece a la colección ${ }^{A}{ }_{0}$:

De esto podemos concluir que: dado un conjunto Universal S: la menor de las algebras de Eoole que se pueden construir $\mathrm{es} \mathcal{A}_{0}=\{\phi, 5\}$.

Desde yas la mayor sera la clase A_{i}, que contiene a todos 10s subconjuntos de $\$$.

Todas 1 as algebras Eooleanas A que se pueden construir coin subconjuntas de 5 satistacen $: A_{0} \subseteq A \subseteq A A_{1}$.
6. BIEL IOGRAFIA

1 -Apostol, T. M., Calculus, $2^{\text {da }}$ edicion, Fieverte, S.A.s Buenos Aires, 1984.

2 - Feller, W., Introduccion a la teoria de probabilidades y sus aplicaciones, $2^{\text {da edición, LIMUSA, Mexico, D.F. }}$, 1978.

I-LeLionnais, $F=$ Las grandes corrientes del pensamiento matematico. $2^{\text {da }}$ edicion, EUDEEA, Buenos Aires, 1955.
4 - Meyer, F. L., Probabilidad y Aplicaciones Estadisticas, Sistemas Ténicos de Edición, S.A. de C.V., Méxica, D.F: 1986.

[^0]: - El espacio muestral \mathbb{E}, sera un subconjunto no numerable del eje real \mathbb{R}.

[^1]: ${ }^{4}$ A veces 11 amada variable aleatoria unidimensional.
 ${ }^{5}$ Notar que la función para definir esta variable aleatoria no es unc a uno.

[^2]: © Vale la pena recordar ques tanto los números Enteros como los Racionales son infinitos numerables, mientras que los Irracionales $\%$ en conceruencia los Feales son infinitos no numerables.
 ${ }^{7}$ Al ser X una funcions su recorrido es el conjunto de valores que toma la función.

[^3]: ${ }^{8}$ La cantidad de valores posibles de X.

[^4]: 11 Lease "la probabilidad de E dado A ". 12 Considerando al par ordenado (a,b) diferente de (b,a) si $b \neq a$.

