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Formulation of subgrid stresses for large-scale fluid equations
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A formulation is presented based on a previously derived self-consistent procedure for obtaining subgrid
scale models for complex system of equations. Using linear stability analysis and numerical simulations of the
one-dimensional Burgers equation the formulation is shown to be very stable numerically and to reproduce
accurately the large-scale flow of a high-resolution, direct simulation. Moreover, the resulting equation has a
structure very similar to the viscous Camassa-Holm equation recently introduced in the modeling of turbulent
flows.
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I. INTRODUCTION Il. FORMALISM

In this section we briefly summarize the main results of

Very recently[1] an approach was introduced to derive the original formalisni1] as applied to @-dimensional Bur-
effective, large-scale equations for fluid systems directlygers equation:
from the dynamical equations. The large-scale equations dif-
fer from the original ones by the addition of new terms that
arise due to the nonlinear character of the fundamental equa-
tions and represent the effect of small scales on the dynamic
of the large-scale flow. These terms are generically termegiherew is the kinematic viscosity andis the velocity field,
subgrid scale termgSGST. For quadratic or(intege)  a d-component vector function of thé-dimensional space
higher-order nonlinearities, common to fluid equations, thecoordinatex and of the timet.
introduced formalism manages to express these SGST's as The separation of scales in small and large is made with a
functions of only the large-scale flow, at the price of makingfilter, the top-hat filter, defined by the volume average
some approximations, which can be quantified in terms of
the nondimensional parameter roughly the ratio of the 1
smallest large scale resolved to the spatial scale of variation A(X,t)z(a(x,t))xsz a(x,t)av, 2
of the large-scale flow. The formalism is exact in the limit

€—0, the error introduced being of ordet. When applied whereX=(x)y denotes the center of thievolume AV, and
to the Navier-Stokes equations for an incompressible fluich(x,t) is a generic field variable. Fluctuations afx,t)
the obtained SGST correspond to the differential version ofround its average are defined as the difference

the similarity model[2,3] which shows one of the highest

correlations with real SGST ia priori tests[3]. The corre- sa(X,x,t)=a(x,t)—A(X,t), (3
sponding differential version is similar to that known in the

literature as the gradient modp4,3] and shares with the an approach originated by Schumdi®j, which has the ad-
self-similarity model a very high level of correlation in those vantage of avoiding the generation of Leonard and cross

tests(essentially equal but happens to lead to strong insta- terms[9,4]. In fact, definitions(2) and (3) lead to averages
bilities in actual numerical simulatiori§]. A possible rem-  that satisfy Reynolds’ postulates,

edy to ensure stability is to add a purely dissipative term of

the Smagorinsky typg6] to the expression of the SGST or (A(X))x=A(X), ({da(X,x,1)A(X))x=0, (4)

better still to limit the energy backscattEB,7]. Although

there exists a great deal of expertise in such an approach &gich are valid with the fundamental proviso that the aver-

applied to Navier-Stokes flows, in the Spil’it of deriving aage should be performed around the saxhen which all

formalism applicable to a variety of fluid systems, it is de-terms to be averaged depend. Moreover,

sirable to work out an expression that does not suffer from

the above-mentioned instability. Jda oA
The purpose of the present paper is to present a simple <5> TOX )

extension of the original formalism that preserves simplicity X

in the application to complex systems, and at the same time . _ .

leads to much more stable equations. For the relative sinf-veraging of Eq.(1) is then very simple and leads to

plicity of the phenomenology involved and the possibility of

analytical stability studies and well-controlled numerical

simulations, we take Burgers equation as an example.

ov
E+(V~V)V= V2, (1)

Vv ,
T H(V-VV=1ViV+s, (6)
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where capital letters denote averages of the field representdallows we will consider the one-dimensional version of this
by the corresponding lower-case letters, and spatial derivasystem, which can be written as
tives are all with respect t¥. The last term corresponds to

the SGST and is given by oN N N Ir
E-ﬁ-VW:V—Z‘FR, (14
S(X) == (8V(X,X) - V(X X)) . Y] X

The (approximatg expression ofS can be obtained con- Where the subgrid stressis expressed as

sidering generic fields denoted by lower-case lettg(s), 2 2

b(x), with top-hat averag€2) aboutX represented by the —— A_ (ﬂ)

corresponding upper-case lettek$X), B(X), and fluctua- 48\ 9X

tions(3) da(X,x), sb(X,x). If the d volumeAV is ad cube )

of side/A, andAV' is anotherd cube, also centered Xt but ~ The system(14)—(15) will be denoted as Burgers model 0

of side 2, the following relations between averageiv ~ (BMO). As neatly shown in Ref5], the nonviscous version

and AV’ are easily obtained from Germano’s idenfip,1] ~ Of this equation is linearly unstable; in particular, severely
unstable as, in a Fourier mode stability analysis, the growth

(15

, A2 ) . rate of the instability increases rapidly with the number of
A" (X)=AX)+ 5~ VxA+O(e"), (8 Fourier modes taken into account.
and IIl. EXTENDED FORMALISM
(Sa(X,x)sb(X,x))x Consider Eq(11) applied tof’ in Eq. (10)
2 A 12 4A2
— 2 ’_ ’ 3\ _ ’ 3
—(5a(X,x)5b(X,x))X+?VX<5a(X,x)5b(X,x))x f =5 +0(e )—Tq +0(€°). (16)
+A—2V AV, B+0(e%) 9) Since q’ is made up of magnitudes averaged oveY’,
4 TXEX ' denoted generically a&/ , we can write

where e= A/Ly, with Ly the spatial scale of variation of aq
averaged quantities, and wheédée) represents the terms of q'(A)=a(A)+ 2 K(Ail —A)+O[(A] = A)?].
order €* and higher. For a generic relation of the fof@) !

2 Use of Eq.(8) to expressA —A; in terms ofA; leads to

f’=f+A—V2f+A2q+O(e4) (10)
) X , Azq/:A2q+o(€4)’

where f is the average of any fluctuating magnitude overyhich, together with Eq(11), allows to write Eq.(16) as
AV, f' the average of the same magnitude aér’, andq

any expression independent bfcontaining averages over f'=4f+0(€d). (17)
AV, the general result is thétcan be expressed %]
This relation manifests the particular kind of fluctuations and
averaging procedure employed. For instance, in the case of
very smooth fields, the more usual definition of fluctuations
da(x,t)=a(x,t)— A(x,t) leads to arf of order €*. Instead,
For reference purposes we will denote relatidf) as model fluctuations(3) lead tof proportional toA?, which verifies
0. Eq. (17) for this special case.

Use of Egs.(4) and (5) shows immediately that, in Car- When Eq.(17) is used in Eq(10), it results
tesian components, E¢7) can be written as

ﬁévi(X,X)
X x,

2
f=?q+0(e3). (11)

A2 A2
w2 3
f= g Vif=5a+0(e). (18)

Si:—<5v;(X,X) (12)

Equation (18) represents an alternative expression of the
where summation of repeated indices is assumed. From Eqstiginal model given by Eq(11) that differs from the latter
(12, (9), and(12) it then results in terms of ordere®; it will be denoted as model 1. It is
interesting to mention here that both expressions, although
rather different, give very similar SGST in the simulations
performed in this paper, as it should be expected if terms of
order e® and higher remain small. However, expressib8)
Equations(6) and (13) constitute a closed system for the leads to much more stable equations than (&d) as shown
large-scale field/(X,t) if the O(€®) are neglected. In what below.

ATV Y, O 13
5= 24 X, IX;9X, (€9). (13
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With Eq. (18) the subgrid tern8 in Eq. (6) is now deter- whereC= A?/24. Following Ref[5] we replace this infinite
mined by system with a truncated one containiNg- 1 Fourier modes,
that can be written in matrix notation as
szz ATV A, O
ST 24 VST 12 g axgax, T O aw
dt

=MW,

and the one-dimensional system expressed as

whereW is the column vector containing theéN2- 1 Fourier

N N PV ar coefficientsw,, andM is a (2N+1)x (2N+1) tridiagonal

EﬂLVR: VRJF X’ (19 matrix with components easily deduced from E22). The
problem is unstable if the maximum of the real part of the

A ) ) eigenvalues oM is positive. An upper bound for the real
_ A_ ﬂ A (ﬂ) (20) part of these eigenvalues can be easily determined from the
ax| "’

24 gx2 24 coefficients ofV as detailed in Ref[5], given by
which we call Burgers model (BM1). _ 2C(N—1)?
This system can be worked out to obtain an equivalent Nmad = 1+C(N-1)2 (23

single equation fol:
We were not able to determine a lower bound, but expression
PV IV PV (23) is enough for our purposes. A similar derivation applied

N N PV A?
ot Itax? + IX gx2 to BMO leads to

VX2t

IV Vv |)\maxl$C(N_1)2,

— ], 21
ax3  ax*4 @)

while a lower bound can be estimated, which has the same
power-law behavior wittN. The severeness of the instability
which bears a strong similarity to the Camassa-Holm equais then apparent in the fast growth witth This explosive
tion [11,17 if viscous terms are neglected and the identifi-behavior is suppressed by the Laplacian term in @4),
cation of A?/24 with thea? appearing in Eq(1) in Ref.[12]  which is responsible for th€(N—1)? term in the denomi-
is made. Very recently, an-dimensional, viscous version of nator of Eq.(23), thus ensuring that in the limN—co the
the Camassa-Holm equation was proposed to model turbuound is finite. Linear instability is not excluded by our
lent flow in channels and pipes with very good resultsanalysis, but in any case it is mild.

[13,14]. In particular, the viscous terms in the viscous

Camassa-Holm equation have exactly the same representa- IV. NUMERICAL SIMULATIONS

tion as in Eq.(21). ) ) .

We now briefly consider the linear stability of the nonvis- ~ T0 test the behavior of the different versions of the for-
cous version of systerfl9)—(20), essentially repeating the Malism under well-controlled conditions, we have solved nu-
approach in Ref[5]. For this we consider BM1 in a domain Merically Egs.(14) and(15) (BMO), and Eqs(19) and(20)
of length 27, with periodic boundary conditions, wite ~ (BM1). The different results are compared to a fine resolu-
=0, and with a forcing term added to the right-hand side oftion simulation of the one-dimensional version of Burgers
Eq. (19) that is chosen so that(X,t) =sin(X) is a stationary equation(1), the solut|on.of which is filtered with filte(2) to
solution, with a correspondingwhose explicit expression is €xtract the large-scale fields. In all cases we have employed
not needed for what follows. Writing for small deviations & fully spectral method in space, together with an Adam-

from the stationary solution that Bashfort scheme of second order in time. Periodicity is im-
posed at the spatial boundaries of the region of length 2
V(X,t)=sin(X)+w(X,t), The fine resolution simulation evolves unforced from an ini-

tial condition of the form

©

w(X,t)= kE wi(t) X, v(x,t=0)=4+cogx)+ cog5x)+cog 10x)

1
with an analogous decomposition farthe linearized system +C0g15x) + 5[ cog64x) + cog51X) |

reduces to the infinite set of ordinary differential equations

for w,(t) (24)
q Ck while the large-scale simulations start with the filtered ver-
Wk _ sion of Eq.(24). The viscosity isv=510 2, the number of
—_—= k+1 +(k—1D o, '
dt  1+4cC kz[( Joreat( Jor-1l modes of the fine resolution simulation is 1024, and most of

the large-scale simulations were performed with 64 modes,
+E(w ~or_y) 22) A=/8, and time step\t=10"*. In principle, quite accept-
2 kil Tk able solutions can be obtained with as few as 256 and 16
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0 i i i : ; 0 i i i : ; FIG. 1. Instantaneous profiles of large-scale
velocity for timet=0.2,1,1.5, and 4. Solid line:
average of the fine scale simulation. Dots: model

=1.5 t= BMO. Dashed line: model BM1. Units are arbi-
: : : : : : : : trary.

0 0.2 04 0.6 08 1 0 0.2 04 0.6 08 1
X2r X2n

modes for the fine resolution and large-scale simulationsmore correct behavior than model BMO, that reflects itself in
respectively, but we have kept the accuracy of the code high better description of the smallest resolved scales of the
so that deviations from the exact solution are introduced bylow, but not significantly in global quantities, as shown be-
the large-scale models rather than by the numerical schemiaw.

Figure 1 shows the velocity profiles for fixed timés Figure 2 shows the subgrid stresses of both models for the
=0.2, 1, 1.5, and 4, obtained from the two large-scale simusame times as in Fig. 1. It can be seen that the stresses are
lations, BMO and BM1, and from the filtered fine resolution very similar, in spite of being defined by different expres-
simulation. sions, even near the shocks where the subgrid stress and the

It is seen that the different solutions agree well, in par-higher order ine terms neglected are more important.
ticular, the shock positions in both large-scale simulations Figure 3 shows the temporal behavior of the total energy
are essentially the same than in the filtered fine simulation afor the three simulated cases. As can be seen, the decay of
time evolves, indicating that no phase difference is intro-energy is very well represented by both models, with the
duced by the models. Model BM1 shows a smoother andcheme represented by BM1 a bit better than that represented
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0 02 04 06 08 1 FIG. 2. Instantaneous profiles of subgrid

stresses for timeé=0.2,1,1.5, and 4. Dots: model
t=15 =4 BMO. Dashed line: model BM1. Units are arbi-
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535 : :
53 : f
525 : f
% FIG. 3. Total energy as a function of time.
g 52 ; : Solid line: average of the fine scale simulation.
w § : Dots: model BMO. Dashed line: model BML.
: : Units are arbitrary.
515
51 f :
w0 ; ; ; . ; ; . :
0 05 1 15 2 25 3 35 4
time

by BMO. It is important to mention that most of the energy the corresponding instants a global inverse cascade of energy
dissipation is due to the modeled SGST, as shown in Fig. 4backscatteroccurs. Of course, the model allows local back-
In this figure we display, the ratio of total energy variation scatter to exist at any time, but the global backscatter turns
due to the SGST, to the total energy decay due to viscousut to exist only in very particular moments that we have
dissipation, for both models BMO and BM1. This ratio is identified with the merging of two shocks.

given by In order to emphasize the smallest resolved scales, we
show in Fig 5 a global quantity, which is proportional to
2 g1 2 9?2V what could be considered the enstrophy, defined as
R—f WdX/ VV—de,
0 X J.Zﬂ_ aV) ix
which is positive when the subgrid stress globally extracts o \dX

energy from the large-scale flow, a situation which we de-

nominate as of direct cascade of kinetic energy. As can b&or these small scales the ratidas its largest value so that
seen in Fig. 4, there are two very noticeable negative peakbey are expected to be the worst described by the formalism.
(each preceded by a strong positive pehlat indicate that at  This is actually so; with large percent errors both large-scale

D0 e R R EEERTE RS P R PR RRRREE

FIG. 4. Ratio of total-energy variation due to
the subgrid stress, to the total-energy decay due
to viscous dissipation, as a function of time. Dots:
model BMO. Dashed line: model BM1.
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FIG. 5. Total enstrophy as a function of time.
Solid line: filtered fine scale simulation. Dots:
model BMO. Dashed line: model BM1. Units are
arbitrary.

time

simulations follow the temporal behavior of the enstrophy of In Fig. 6@a) the error is shown foA =#7/16 and#/8 in
the filtered fine-scale velocity. BM1 is systematically closermodel BMO, which turns out to be unstable far= /4.
than BMO to the enstrophy of the “exact” case and repro-Figure @b) shows the error fol\=7/16, 7/8, and /4 in
duces better the different features; in particular, BM1 doesnodel BM1. Not only is BMO unstable fak = 7/4, but also

not overestimate the hump occurring arourdl.5 as BMO

does.

An estimation of the error of the velocity in the large-
scale simulations BMO and BM1, represented\ly X) and
V1(X), respectively, is calculated @expressing the filtered

fine-scale simulation by/(X)]

27
fo [Vo.1(X) = V(X)]2dX

f V20%) dX
0

1/2

its error is systematically larger than that of BM1, for corre-
sponding values ofA. The best choice is for both beink
=/8, which corresponds to A four times the smallest
scale resolved by the numerical scheme.

Finally, we have solved Eq(1) without any subgrid
model using the same spatial resolution as in models BMO
and BM1, also starting from the average of E&4). A in-
stantaneous profile of the obtained velocity at titael is
shown in Fig. 7, along with the filtered fine resolution result
and that of model BM1. As can be seen, a strong oscillatory
behavior appears at small scales when no model is used,

0.08

0.06

w0.04

0.02

FIG. 6. Relative error of the large-scale veloc-
ity (see main text for a proper definitipas func-
tion of time, for different choices of filter length

........... A. Solid line: A= /8. Dashed line:A = #/16.

~

L R S R -
. ‘h«,,wu‘\s—,w'

ARG

Dots: A= /4. (a) Model BMO. (b) Model BM1.

I T
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55

4.5

FIG. 7. Instantaneous profiles of large-scale
velocity for timet=1. Thick-solid line: average
of the fine scale simulation. Thin-solid line: low-
resolution Burgers equation. Dashed-dot line:

model BM1. Same units as in Fig. 1.
35

25 ; ; i i ; i ; ; i
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x2n

which is evidenced in the very large values of the enstrophyomplex systems with similar nonlinear and diffusive behav-
of this solution(not shown which is at this time more than 8 ior suffer from similar instabilities when the original formu-
times that of the “exact” value, while models BMO and lation is used, and benefit from the alternative formulation as
BML1 are, respectively, 2.7 and 1.7 times larger than the righwell. In principle, each fluid system requires a sepafate
value. This oscillatory behavior persists along the wholegeneral difficuli study, the presentation in this paper being
simulation, with corresponding large values of the enstrophyndicative of possible problems and solutions. From a more
(more than 10 times the right values most of the time, whilundamental point of view, the numerical simulations have
model BM1 never exceeds a factor of 2 over the correchown that both models reproduce well the large-scale flow
solution). (when the original formulation is stab)leenergy dissipation,
etc., a behavior expected from the theoretical derivation of
both modelgthey differ in terms of ordee®) but not appar-
V. CONCLUSIONS ent due to the difference of their final expressions. Finally, it

We have presented an improved formulation of a previou_i,S remarkable .thf"‘t the new formulation leads to equatiqns
model that preserves generality and is almost as simple bﬁ'?at are very similar to the viscous Cgme}ssa-HoIm equation,
presents a much more stable behavior in humerical simulaqons'd.erlng that the respective derivations proceed along
tions than the original one. The new formulation also shows’®"Y different ways.
a systematically better performance for cases in which the
original formulation is stable. Although the stability analysis
and simulations were performed for the simple case of Bur- This work was supported by the University of Buenos

gers equation in one dimension, it is expected that mordires (Grant UBACYT Ax38 and CONICET.
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