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Formulation of subgrid stresses for large-scale fluid equations
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A formulation is presented based on a previously derived self-consistent procedure for obtaining subgrid
scale models for complex system of equations. Using linear stability analysis and numerical simulations of the
one-dimensional Burgers equation the formulation is shown to be very stable numerically and to reproduce
accurately the large-scale flow of a high-resolution, direct simulation. Moreover, the resulting equation has a
structure very similar to the viscous Camassa-Holm equation recently introduced in the modeling of turbulent
flows.
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I. INTRODUCTION

Very recently@1# an approach was introduced to deri
effective, large-scale equations for fluid systems direc
from the dynamical equations. The large-scale equations
fer from the original ones by the addition of new terms th
arise due to the nonlinear character of the fundamental e
tions and represent the effect of small scales on the dyna
of the large-scale flow. These terms are generically term
subgrid scale terms~SGST!. For quadratic or~integer!
higher-order nonlinearities, common to fluid equations,
introduced formalism manages to express these SGST’
functions of only the large-scale flow, at the price of maki
some approximations, which can be quantified in terms
the nondimensional parametere, roughly the ratio of the
smallest large scale resolved to the spatial scale of varia
of the large-scale flow. The formalism is exact in the lim
e→0, the error introduced being of ordere3. When applied
to the Navier-Stokes equations for an incompressible fl
the obtained SGST correspond to the differential version
the similarity model@2,3# which shows one of the highes
correlations with real SGST ina priori tests@3#. The corre-
sponding differential version is similar to that known in th
literature as the gradient model@4,3# and shares with the
self-similarity model a very high level of correlation in thos
tests~essentially equal!, but happens to lead to strong inst
bilities in actual numerical simulations@5#. A possible rem-
edy to ensure stability is to add a purely dissipative term
the Smagorinsky type@6# to the expression of the SGST o
better still to limit the energy backscatter@3,7#. Although
there exists a great deal of expertise in such an approac
applied to Navier-Stokes flows, in the spirit of deriving
formalism applicable to a variety of fluid systems, it is d
sirable to work out an expression that does not suffer fr
the above-mentioned instability.

The purpose of the present paper is to present a sim
extension of the original formalism that preserves simplic
in the application to complex systems, and at the same t
leads to much more stable equations. For the relative s
plicity of the phenomenology involved and the possibility
analytical stability studies and well-controlled numeric
simulations, we take Burgers equation as an example.
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II. FORMALISM

In this section we briefly summarize the main results
the original formalism@1# as applied to ad-dimensional Bur-
gers equation:

]v

]t
1~v•“ !v5n“2v, ~1!

wheren is the kinematic viscosity andv is the velocity field,
a d-component vector function of thed-dimensional space
coordinatex and of the timet.

The separation of scales in small and large is made wi
filter, the top-hat filter, defined by the volume average

A~X,t !5^a~x,t !&X5
1

nVE a~x,t !dV, ~2!

whereXÄ^x&X denotes the center of thed-volumenV, and
a(x,t) is a generic field variable. Fluctuations ofa(x,t)
around its average are defined as the difference

da~X,x,t !5a~x,t !2A~X,t !, ~3!

an approach originated by Schumann@8#, which has the ad-
vantage of avoiding the generation of Leonard and cr
terms@9,4#. In fact, definitions~2! and ~3! lead to averages
that satisfy Reynolds’ postulates,

^A~X!&X5A~X!, ^da~X,x,t !A~X!&X50, ~4!

which are valid with the fundamental proviso that the av
age should be performed around the sameX on which all
terms to be averaged depend. Moreover,

K ]a

]xL
X

5
]A

]X
. ~5!

Averaging of Eq.~1! is then very simple and leads to

]V

]t
1~V•“X!V5n“X

2V1S, ~6!
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where capital letters denote averages of the field represe
by the corresponding lower-case letters, and spatial der
tives are all with respect toX. The last term corresponds t
the SGST and is given by

S~X!52^dv~X,x!•“xdv~X,x!&X . ~7!

The ~approximate! expression ofS can be obtained con
sidering generic fields denoted by lower-case lettersa(x),
b(x), with top-hat average~2! about X represented by the
corresponding upper-case lettersA(X), B(X), and fluctua-
tions ~3! da(X,x), db(X,x). If the d volumenV is ad cube
of siden, andnV8 is anotherd cube, also centered atX, but
of side 2n, the following relations between averages innV
andnV8 are easily obtained from Germano’s identity@10,1#

A8~X!5A~X!1
n2

8
“X

2A1O~e4!, ~8!

and

^da~X,x!db~X,x!&X8

5^da~X,x!db~X,x!&X1
n2

8
“X

2 ^da~X,x!db~X,x!&X

1
n2

4
“XA“XB1O~e4!, ~9!

where e5n/LX , with LX the spatial scale of variation o
averaged quantities, and whereO(e4) represents the terms o
ordere4 and higher. For a generic relation of the form~9!

f 85 f 1
n2

8
“X

2 f 1n2q1O~e4!, ~10!

where f is the average of any fluctuating magnitude ov
nV, f 8 the average of the same magnitude overnV8, andq
any expression independent off containing averages ove
nV, the general result is thatf can be expressed as@1#

f 5
n2

6
q1O~e3!. ~11!

For reference purposes we will denote relation~11! as model
0.

Use of Eqs.~4! and ~5! shows immediately that, in Car
tesian components, Eq.~7! can be written as

Si52 K dv j~X,x!
]dv i~X,x!

]xj
L

X

, ~12!

where summation of repeated indices is assumed. From
~11!, ~9!, and~12! it then results

Si52
n2

24

]Vj

]Xk

]2Vi

]Xj]Xk
1O~e3!. ~13!

Equations~6! and ~13! constitute a closed system for th
large-scale fieldV(X,t) if the O(e3) are neglected. In wha
03630
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follows we will consider the one-dimensional version of th
system, which can be written as

]V

]t
1V

]V

]X
5n

]2V

]X2
1

]t

]X
, ~14!

where the subgrid stresst is expressed as

t52
n2

48 S ]V

]XD 2

. ~15!

The system~14!–~15! will be denoted as Burgers model
~BM0!. As neatly shown in Ref.@5#, the nonviscous version
of this equation is linearly unstable; in particular, severe
unstable as, in a Fourier mode stability analysis, the gro
rate of the instability increases rapidly with the number
Fourier modes taken into account.

III. EXTENDED FORMALISM

Consider Eq.~11! applied tof 8 in Eq. ~10!

f 85
n82

6
q81O~e3!5

4n2

6
q81O~e3!. ~16!

Since q8 is made up of magnitudes averaged overnV8,
denoted generically asAi8 , we can write

q8~Ai8!5q~Ai !1(
]q

]Ai
~Ai82Ai !1O@~Ai82Ai !

2#.

Use of Eq.~8! to expressAi82Ai in terms ofAi leads to

n2q85n2q1O~e4!,

which, together with Eq.~11!, allows to write Eq.~16! as

f 854 f 1O~e3!. ~17!

This relation manifests the particular kind of fluctuations a
averaging procedure employed. For instance, in the cas
very smooth fields, the more usual definition of fluctuatio
da(x,t)5a(x,t)2A(x,t) leads to anf of order e4. Instead,
fluctuations~3! lead to f proportional ton2, which verifies
Eq. ~17! for this special case.

When Eq.~17! is used in Eq.~10!, it results

f 2
n2

24
“X

2 f 5
n2

3
q1O~e3!. ~18!

Equation ~18! represents an alternative expression of
original model given by Eq.~11! that differs from the latter
in terms of ordere3; it will be denoted as model 1. It is
interesting to mention here that both expressions, altho
rather different, give very similar SGST in the simulatio
performed in this paper, as it should be expected if terms
ordere3 and higher remain small. However, expression~18!
leads to much more stable equations than Eq.~11! as shown
below.
6-2
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With Eq. ~18! the subgrid termS in Eq. ~6! is now deter-
mined by

Si2
n2

24
“X

2Si52
n2

12

]Vj

]Xk

]2Vi

]Xk]Xj
1O~e3!,

and the one-dimensional system expressed as

]V

]t
1V

]V

]X
5n

]2V

]X2
1

]t

]X
, ~19!

t2
n2

24

]2t

]X2
52

n2

24 S ]V

]XD 2

, ~20!

which we call Burgers model 1~BM1!.
This system can be worked out to obtain an equival

single equation forV:

]V

]t
1V

]V

]X
5n

]2V

]X2
1

n2

24 S ]3V

]t]X2
1

]V

]X

]2V

]X2

1V
]3V

]X3
2n

]4V

]X4D , ~21!

which bears a strong similarity to the Camassa-Holm eq
tion @11,12# if viscous terms are neglected and the ident
cation ofn2/24 with thea2 appearing in Eq.~1! in Ref. @12#
is made. Very recently, ann-dimensional, viscous version o
the Camassa-Holm equation was proposed to model tu
lent flow in channels and pipes with very good resu
@13,14#. In particular, the viscous terms in the visco
Camassa-Holm equation have exactly the same repres
tion as in Eq.~21!.

We now briefly consider the linear stability of the nonvi
cous version of system~19!–~20!, essentially repeating th
approach in Ref.@5#. For this we consider BM1 in a domai
of length 2p, with periodic boundary conditions, withn
50, and with a forcing term added to the right-hand side
Eq. ~19! that is chosen so thatV(X,t)5sin(X) is a stationary
solution, with a correspondingt whose explicit expression i
not needed for what follows. Writing for small deviation
from the stationary solution that

V~X,t !5sin~X!1w~X,t !,

w~X,t !5 (
k52`

`

vk~ t ! eikX,

with an analogous decomposition fort, the linearized system
reduces to the infinite set of ordinary differential equatio
for vk(t)

dvk

dt
5

C k

11C k2
@~k11!vk111~k21!vk21#

1
k

2
~vk112vk21!, ~22!
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whereC5n2/24. Following Ref.@5# we replace this infinite
system with a truncated one containingN11 Fourier modes,
that can be written in matrix notation as

dW

dt
5MW ,

whereW is the column vector containing the 2N11 Fourier
coefficientsvk , andM is a (2N11)3(2N11) tridiagonal
matrix with components easily deduced from Eq.~22!. The
problem is unstable if the maximum of the real part of t
eigenvalues ofM is positive. An upper bound for the rea
part of these eigenvalues can be easily determined from
coefficients ofM as detailed in Ref.@5#, given by

ulmaxu<
2C~N21!2

11C~N21!2
. ~23!

We were not able to determine a lower bound, but express
~23! is enough for our purposes. A similar derivation appli
to BM0 leads to

ulmaxu<C~N21!2,

while a lower bound can be estimated, which has the sa
power-law behavior withN. The severeness of the instabilit
is then apparent in the fast growth withN. This explosive
behavior is suppressed by the Laplacian term in Eq.~20!,
which is responsible for theC(N21)2 term in the denomi-
nator of Eq.~23!, thus ensuring that in the limitN→` the
bound is finite. Linear instability is not excluded by ou
analysis, but in any case it is mild.

IV. NUMERICAL SIMULATIONS

To test the behavior of the different versions of the fo
malism under well-controlled conditions, we have solved n
merically Eqs.~14! and ~15! ~BM0!, and Eqs.~19! and ~20!
~BM1!. The different results are compared to a fine reso
tion simulation of the one-dimensional version of Burge
equation~1!, the solution of which is filtered with filter~2! to
extract the large-scale fields. In all cases we have emplo
a fully spectral method in space, together with an Ada
Bashfort scheme of second order in time. Periodicity is i
posed at the spatial boundaries of the region of length 2p.
The fine resolution simulation evolves unforced from an i
tial condition of the form

v~x,t50!541cos~x!1cos~5x!1cos~10x!

1cos~15x!1
1

2
@cos~64x!1cos~512x!#

~24!

while the large-scale simulations start with the filtered v
sion of Eq.~24!. The viscosity isn551023, the number of
modes of the fine resolution simulation is 1024, and mos
the large-scale simulations were performed with 64 mod
D5p/8, and time stepDt51024. In principle, quite accept-
able solutions can be obtained with as few as 256 and
6-3
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FIG. 1. Instantaneous profiles of large-sca
velocity for time t50.2,1,1.5, and 4. Solid line
average of the fine scale simulation. Dots: mod
BM0. Dashed line: model BM1. Units are arb
trary.
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modes for the fine resolution and large-scale simulatio
respectively, but we have kept the accuracy of the code h
so that deviations from the exact solution are introduced
the large-scale models rather than by the numerical sche

Figure 1 shows the velocity profiles for fixed timest
50.2, 1, 1.5, and 4, obtained from the two large-scale sim
lations, BM0 and BM1, and from the filtered fine resolutio
simulation.

It is seen that the different solutions agree well, in p
ticular, the shock positions in both large-scale simulatio
are essentially the same than in the filtered fine simulatio
time evolves, indicating that no phase difference is int
duced by the models. Model BM1 shows a smoother a
03630
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more correct behavior than model BM0, that reflects itself
a better description of the smallest resolved scales of
flow, but not significantly in global quantities, as shown b
low.

Figure 2 shows the subgrid stresses of both models for
same times as in Fig. 1. It can be seen that the stresse
very similar, in spite of being defined by different expre
sions, even near the shocks where the subgrid stress an
higher order ine terms neglected are more important.

Figure 3 shows the temporal behavior of the total ene
for the three simulated cases. As can be seen, the deca
energy is very well represented by both models, with
scheme represented by BM1 a bit better than that represe
id
l
i-
FIG. 2. Instantaneous profiles of subgr
stresses for timet50.2,1,1.5, and 4. Dots: mode
BM0. Dashed line: model BM1. Units are arb
trary.
6-4
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FIG. 3. Total energy as a function of time
Solid line: average of the fine scale simulatio
Dots: model BM0. Dashed line: model BM1
Units are arbitrary.
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by BM0. It is important to mention that most of the ener
dissipation is due to the modeled SGST, as shown in Fig
In this figure we displayR, the ratio of total energy variation
due to the SGST, to the total energy decay due to visc
dissipation, for both models BM0 and BM1. This ratio
given by

R5E
0

2p

V
]t

]X
dX/E

0

2p

n V
]2V

]X2
dX,

which is positive when the subgrid stress globally extra
energy from the large-scale flow, a situation which we d
nominate as of direct cascade of kinetic energy. As can
seen in Fig. 4, there are two very noticeable negative pe
~each preceded by a strong positive peak! that indicate that at
03630
4.

us
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e

ks

the corresponding instants a global inverse cascade of en
~backscatter! occurs. Of course, the model allows local bac
scatter to exist at any time, but the global backscatter tu
out to exist only in very particular moments that we ha
identified with the merging of two shocks.

In order to emphasize the smallest resolved scales,
show in Fig. 5 a global quantity, which is proportional t
what could be considered the enstrophy, defined as

E
0

2pS ]V

]XD 2

dX.

For these small scales the ratioe has its largest value so tha
they are expected to be the worst described by the formal
This is actually so; with large percent errors both large-sc
o
ue
s:
FIG. 4. Ratio of total-energy variation due t
the subgrid stress, to the total-energy decay d
to viscous dissipation, as a function of time. Dot
model BM0. Dashed line: model BM1.
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FIG. 5. Total enstrophy as a function of time
Solid line: filtered fine scale simulation. Dots
model BM0. Dashed line: model BM1. Units ar
arbitrary.
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simulations follow the temporal behavior of the enstrophy
the filtered fine-scale velocity. BM1 is systematically clos
than BM0 to the enstrophy of the ‘‘exact’’ case and rep
duces better the different features; in particular, BM1 do
not overestimate the hump occurring aroundt51.5 as BM0
does.

An estimation of the error of the velocity in the larg
scale simulations BM0 and BM1, represented byV0(X) and
V1(X), respectively, is calculated as@expressing the filtered
fine-scale simulation byV(X)#

E0,15S E
0

2p

@V0,1~X!2V~X!#2dX

E
0

2p

V2~X! dX
D 1/2

.
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In Fig. 6~a! the error is shown forD5p/16 andp/8 in
model BM0, which turns out to be unstable forD5p/4.
Figure 6~b! shows the error forD5p/16, p/8, andp/4 in
model BM1. Not only is BM0 unstable forD5p/4, but also
its error is systematically larger than that of BM1, for corr
sponding values ofD. The best choice is for both beingD
5p/8, which corresponds to aD four times the smalles
scale resolved by the numerical scheme.

Finally, we have solved Eq.~1! without any subgrid
model using the same spatial resolution as in models B
and BM1, also starting from the average of Eq.~24!. A in-
stantaneous profile of the obtained velocity at timet51 is
shown in Fig. 7, along with the filtered fine resolution res
and that of model BM1. As can be seen, a strong oscillat
behavior appears at small scales when no model is u
c-
FIG. 6. Relative error of the large-scale velo
ity ~see main text for a proper definition! as func-
tion of time, for different choices of filter length
D. Solid line: D5p/8. Dashed line:D5p/16.
Dots: D5p/4. ~a! Model BM0. ~b! Model BM1.
6-6
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FIG. 7. Instantaneous profiles of large-sca
velocity for time t51. Thick-solid line: average
of the fine scale simulation. Thin-solid line: low
resolution Burgers equation. Dashed-dot lin
model BM1. Same units as in Fig. 1.
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which is evidenced in the very large values of the enstro
of this solution~not shown! which is at this time more than 8
times that of the ‘‘exact’’ value, while models BM0 an
BM1 are, respectively, 2.7 and 1.7 times larger than the r
value. This oscillatory behavior persists along the wh
simulation, with corresponding large values of the enstrop
~more than 10 times the right values most of the time, wh
model BM1 never exceeds a factor of 2 over the corr
solution!.

V. CONCLUSIONS

We have presented an improved formulation of a previ
model that preserves generality and is almost as simple
presents a much more stable behavior in numerical sim
tions than the original one. The new formulation also sho
a systematically better performance for cases in which
original formulation is stable. Although the stability analys
and simulations were performed for the simple case of B
gers equation in one dimension, it is expected that m
id

uid
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complex systems with similar nonlinear and diffusive beha
ior suffer from similar instabilities when the original formu
lation is used, and benefit from the alternative formulation
well. In principle, each fluid system requires a separate~in
general difficult! study, the presentation in this paper bei
indicative of possible problems and solutions. From a m
fundamental point of view, the numerical simulations ha
shown that both models reproduce well the large-scale fl
~when the original formulation is stable!, energy dissipation,
etc., a behavior expected from the theoretical derivation
both models~they differ in terms of ordere3) but not appar-
ent due to the difference of their final expressions. Finally
is remarkable that the new formulation leads to equati
that are very similar to the viscous Camassa-Holm equat
considering that the respective derivations proceed al
very different ways.
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