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Spectral Distribution of the Cross Helicity in the Solar Wind

L. J. Milano,1 S. Dasso,2,3 W. H. Matthaeus,1 and C.W. Smith4

1Bartol Research Institute, University of Delaware, Newark, Delaware 19716, USA
2Instituto de Astronomı́a y Fı́sica del Espacio (IAFE), Buenos Aires, Argentina

3Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
4Institute for Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824, USA

(Received 1 August 2003; revised manuscript received 7 June 2004; published 8 October 2004)
155005-1
There are a variety of theoretical and observational indications that fluctuation energy in astrophys-
ical and space plasma turbulence is distributed anisotropically in space relative to the magnetic field
direction. The cross helicity, represented by correlations between velocity and magnetic field fluctua-
tions, enters a magnetohydrodynamic description on equal footing with the energy, but its anisotropy
has not been examined in the same degree of detail. Here we employ Advanced Coronal Explorer data to
examine the rotational symmetry of the cross helicity. We find that the normalized cross helicity is
associated more or less equally with all angular components of the fluctuations. This favors turbulence
models that allow for cross communication between parallel and perpendicular wave numbers,
suggesting that ‘‘wavelike’’ and ‘‘turbulencelike’’ fluctuations are strongly coupled.
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The magnetic field induces a preferred direction that
influences the evolution and spatial correlations in mag-
netohydrodynamic plasma turbulence. This effect has
important implications for the basic physics of the turbu-
lent plasma, including heating, instabilities, wave parti-
cle interactions, energetic particle (cosmic ray)
scattering, and thermal conduction. Significant observa-
tional constraints regarding turbulence have been pro-
vided by more than three decades [1–3] of spacecraft
data, making solar wind fluctuations the most completely
studied case of astrophysical magnetohydrodynamic
(MHD) turbulence, and the only one extensively studied
using in situ methods. Two paradigms have arisen. In the
first, fluctuations are described as noninteracting Alfvén
waves propagating away from sources near the Sun [2].
These fluctuations have a distinctive correlation between
velocity and magnetic fluctuations, or cross helicity, that
signifies dominance of outward propagation and that de-
creases with increasing heliocentric distance [4–6]. In
the second perspective, the fluctuations represent an ac-
tive, evolving turbulent medium, displaying properties
similar to Kolmogoroff hydrodynamic turbulence, along
with MHD features such as the quasiequipartition of
kinetic and magnetic energy [1,5,7,8]. The decrease in
Alfvénic correlation is often attributed to the effects of
driving by large scale shear, which injects zero cross
helicity turbulence [9]. In this way shear driving by
turbulence leads to a general reduction of cross helicity
with increasing heliocentric distance, although there are
observations that suggest the sporadic presence of
Alfvénic correlations in highly oblique wave vectors at
about 8 AU (astronomical units) [10]. In spite of the
dissimilarity of these descriptions, certain classes of
composite spectral models in which both wave and tur-
bulence properties are embodied seem to reconcile the
two viewpoints [11–13], and explain many observed fea-
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tures that cannot be accounted for by either waves or
turbulence alone [14,15]. While models based on ‘‘two
components’’ of these types are used in simplified kine-
matic descriptions, there are a number of studies that
indicate that wavelike and turbulencelike fluctuations
cannot evolve independently (e.g., [16–18]). Thus it is
entirely unclear on theoretical grounds where one antici-
pates cross helicity to reside in the spectrum. Are the
parallel wave vectors more Alfvénic because they are
more wavelike? Is the low frequency, more turbulent
part of the spectrum necessarily less Alfvénic? Or, alter-
natively, do couplings between high and low frequency
spectral components blur this distinction? Here we exam-
ine these questions through systematic observational
analysis, using a direction-sensitive correlation method
[19]. We conclude that the normalized cross helicity, and
its characteristic Alfvénic correlation, is about equally
present in all the analyzed spectral components at 1 AU.

In MHD there are two interacting dynamic vector
fields (velocity v and magnetic field b). The correlation
between v and b, the cross helicity, written here as the
mean value Hc � hv � bi, plays an important role in MHD
theory. In linear and in nonlinear Alfvén wave theory
[20] cross helicity is a signature of propagation effects.
The total cross helicity is a ‘‘rugged invariant’’ of ideal
MHD for suitable boundary conditions, surviving arbi-
trary cutoffs of the representation in Fourier modes
[21,22], and therefore has been employed in minimum
energy calculations of stable MHD configurations
[23,24]. Various studies found [25–27] that cross helicity
often grows in time relative to energy, leading ultimately
to a purely correlated ‘‘Alfvénic’’ state. However, this
dynamic alignment process is not observed in the solar
wind; instead [6] the degree of correlation is seen to
decrease as the turbulence ages. This cannot be accounted
for by wave based ‘‘WKB’’ theory [28]. The resolution
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FIG. 1 (color). Magnetic field self-correlation function
Rbb	r
, computed at different angles � between the direction
of the mean magnetic field and the displacement vector r. Error
bars are shown beside the legends. They represent the statistical
error, evaluated at a separation r equal to the correlation length.
The largest scale shown corresponds to �0:1 AU.
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appears to be related to the fact that dynamic alignment is
not universal [29] and, in particular, that a strongly
sheared velocity field can drive the turbulence towards
other asymptotic states. Thus, in the solar wind, shear
associated with high speed stream interfaces [9] may
drive the turbulence away from Alfvénic states, consis-
tent with observations.

Paralleling the development of MHD theory of cross
helicity, there has been an evolution on thinking about the
characteristics of energy spectra in MHD turbulence and
in the solar wind. The observation of preferential excita-
tion of gradients perpendicular to the applied magnetic
field in laboratory devices [30] led to the theoretical
suggestion that turbulence operates mainly in a low fre-
quency ‘‘reduced MHD’’ mode in the presence of a strong
guide field [31,32] and that the associated preferential
excitation of perpendicular wave vectors is generated
naturally by MHD turbulence [33,34]. In response to
this, multicomponent models were implemented for solar
wind studies [12,19] where it has been found that neither
quasi-2D nor parallel-wave spectral components by
themselves are sufficient to explain, for example, both
energetic particle scattering [14] and proton heating [15].
Astrophysical adaptations of these ideas have focused on
the steady state quasi-2D component [35] and ignored the
wavelike component, with sometimes puzzling conse-
quences, as in cosmic rays scattering [36]. In any case it
is completely clear that the solar wind cannot be de-
scribed by a model with a single simple symmetry
[13,19,37] and that therefore the issue of where in wave
vector space one finds the cross helicity, usually taken as
an indicator of wave effects, is crucial in the advancement
of models of astrophysical turbulence. It is this question
that we address here.

We analyze magnetic and bulk velocity fields measured
by the Advanced Composition Explorer (ACE) space-
craft, from January 23, 1998, to June 30, 2002. The
data have been analyzed with a cadence of 1 min. A
preliminary report on the technique and goals of our
research efforts has been presented elsewhere [38]. The
solar wind observations we analyze here correspond to a
distance of �1 AU from the Sun, and essentially on the
ecliptic plane. The data are grouped in four-day intervals,
thus obtaining N subseries (or intervals). Intervals show-
ing sector crossings are identified by visual inspection
and removed. We then shift our data set by two days and
repeat the procedure, thus maximizing the data utiliza-
tion. For every interval I, from the observed magnetic
(BI) and velocity (VI) fields we define the fluctuation
fields bI, vI, and the Elsässer variables zI;� � vI � bI,
as follows: vI � VI � UI

0, b
I � BI �BI

0. Here, UI
0 and

BI
0 denote linear fits (except for the highly structured

radial component of V, for which we employ a cubic) to
V and B (respectively) in the interval I, intended to
remove coherent trends in the data [5]. Magnetic fields
are in velocity units: BI ! BI=

������������
4��I

p
, using the mean
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mass density for the interval I, �I. Our main goal is to
compute two-point correlations of the form Rvv	r
 �
hv	x
 � v	x� r
i. Analogous definitions hold for Rbb, for
Rvb, and for the correlations in the Elsässer variables:
R�� and R��.

The single spacecraft ACE data that we employ provide
two-time single-point correlations. However, because of
the super-Alfvénic and supersonic character of the solar
wind, we construct spatial correlation functions in the
usual way [5] by making use of the MHD analogues of
the Taylor ‘‘frozen-in-flow’’ hypothesis [39]. For a given
interval I, the mean solar wind velocity VI

sw � hVIi gives
the associated spatial lag r � VI

swt at time t; this is almost
along the heliocentric radial direction. In this way we
employ a ‘‘Blackman-Tukey’’ technique [40] to compute
the correlation functions RI	r
. The maximum computed
lag corresponds to two days. In order to analyze the
anisotropy of the fluctuations, we label each interval
according to the value of the angle �I between the direc-
tion of the mean field VI

A � hBIi and VI
sw, and study

variations in several statistical quantities as a function
of �. More specifically, we define five ranges for �, as
shown in Fig. 1. The number of data intervals in each
angular range (ordered by increasing �) is 30, 106, 111,
122, and 89. Thus, from the correlation functions of every
interval, RI	r
, we carry out conditional averages consid-
ering only those intervals that correspond to a given
range of � values obtaining R	r
.

It has been established that different data intervals
spanning a few days in the solar wind have similar
statistics, but when comparing one interval to any other
there is usually a scaling factor relating the amplitude of
the fluctuation in one with respect to the other (see, for
instance, [41,42] and references therein). Thus, we choose
155005-2
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FIG. 2 (color). Cross-helicity correlation function Rvb �
	Rout � Rin
=4, computed at different ranges of � as in Fig. 1.
Error bars have the same meaning as in Fig. 1.
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FIG. 3 (color). Reduced power spectrum of the normalized
cross helicity [�c	k
], for different values of �, as in Fig. 1.
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a normalization scheme that takes this effect into ac-
count. We simply compute, in each data interval, normal-
ized correlation functions of the form Rnorm;I

fg 	r
 �
�IhfI	x
 � gI	x� r
i, where �I � hf � gi=hfI � gIi, and f
and g represent any of the fluctuating fields defined above.
Note that the chosen normalization implies Rnorm;I

fg 	0
 �

hf � gi for all intervals I. For simplicity in the notation, we
omit the ‘‘norm’’ label hereafter.

To give physical meaning to our analysis, we have
grouped the fluctuations according to whether they are
traveling outwards from the Sun (‘‘out’’), or towards the
Sun (‘‘in’’), and consistently relabeled the Elsässer vari-
ables as zout and zin in each interval. The reduced energy
spectra for kinetic and magnetic energy [Ev	k
 and
Eb	k
], and for the Alfvénic fluctuations [Eout	k
 and
Ein	k
], are obtained by means of a fast Fourier transform
of the corresponding correlation functions [8]. From
these energy spectra, the reduced cross helicity spectrum
(in the direction of the mean wind velocity) can be
obtained from Hc	k
 � 
Eout	k
 � Ein	k
�=2, and the
normalized cross helicity from �c	k
 � 
Eout	k
 �
Ein	k
�=
Eout	k
 � Ein	k
�. Unidirectionally propagating
Alfvén waves have maximum j�cj, with �c � �1, de-
pending on the sense of propagation relative to the mean
magnetic field. The structure of the incompressible MHD
equations is such that the nonlinear terms vanish when
the cross helicity is maximum. High levels of turbulence
in the solar wind are usually accompanied by a value of
�c close to zero (e.g., see [8] and references therein).

Figure 1 shows the conditional average of the magnetic
field self-correlation function according to �. It is evident
that for r < 107 km, the curves with more extended cor-
relations correspond to the quasiparallel (0 � � < 25)
and quasiperpendicular (65 � � < 90) directions, in full
consistency with Fig. 3 of [5]. In this regard, the results
shown in this figure support the ‘‘Maltese cross’’ aniso-
tropic structure for magnetic correlations. The angular
dependence of the two-point cross helicity correlation
Rvb	r
 in turn is shown in Fig. 2. The figure shows that
the cross correlation between v and b has the same
anisotropic structure as the magnetic self-correlation.
This is a new important result regarding the three-
dimensional structure of solar wind turbulence. As a
corollary, one would expect that a normalized quantity
such as �c would be nearly isotropic. This is indeed the
case. Figure 3 shows the (reduced) normalized cross
helicity power spectrum �c	k
 along different directions.
The behavior displayed by the figure is essentially iso-
tropic. Note that the values for �c are similar to the ones
reported in Table III of Ref. [8] (see also Ref. [6]). The
Alfvén ratio spectrum rA	k
 � Ev	k
=Eb	k
 (not shown
here for brevity) is also essentially isotropic.

We have presented a study of anisotropy in the velocity,
magnetic, and cross helicity correlation functions and
power spectra. The magnetic self-correlations are consis-
tent with previously published results [11] that show
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distinct lobes aligned with the parallel and perpendicular
axes. (This Maltese cross pattern motivates the identifi-
cation of two idealized populations: a ‘‘slab’’ population
with wave vectors aligned with the main magnetic field
and a ‘‘quasi-2D’’ population with almost perpendicular
wave vectors.) The present observations show that the
cross helicity too is highly anisotropic, and in almost
exactly the same sense as the anisotropy of the energy.
Thus, somewhat remarkably, the normalized Alfvénic
correlation is about equally present in all the analyzed
spectral components. This observational result rules out
any model in which the Alfvénic correlation is concen-
trated in a particular angular part of the spectrum—such
as either the wavelike or the quasi-2D component sepa-
rately. Sometimes Alfvénicity is traced to propagation of
outward (pure cross helicity) waves away from the source
region of the super-Alfvénic wind [2]. On the other hand,
(high perpendicular wave number) turbulence is viewed
sometimes as driven and of low cross helicity [43].
Adopting this perspective, some multicomponent models
[12] take the slab component to be Alfvénic and the
155005-3
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quasi-two-dimensional part to be non-Alfvénic or even
static magnetic pressure-balanced ‘‘structures.’’ Such in-
terpretations are extreme and, in fact, unrealizable. For
example, if we take the normalized cross helicity to be
�c � 0:6 at 1 AU, then it is impossible to account for all
of the cross helicity in slab modes if the latter comprise
only 20%–30% of the energy as various models suggest
[13,14,44]. Now we also see that such assumptions are
inconsistent with direct observations. Clearly, if the slab-
like modes are in some sense the source of cross helicity,
there must be strong transfer of cross helicity to account
for the current observations. This implies a strong cou-
pling between parallel (‘‘wave’’) and perpendicular
(‘‘turbulence’’) components. A candidate for such a cou-
pling is the presence of inhomogeneities in the solar wind
velocity. It has recently been shown [18], by means of
numerical solutions of the MHD equations in a solar
windlike scenario, how an initial configuration of ‘‘par-
allel waves’’ can be perturbed by small-scale shear from
wind irregularities to produce perpendicular wave num-
bers, thus transferring high cross helicity from one com-
ponent to the other. While a component description may
be useful for some applications, it seems clear that at a
fundamental level solar wind turbulence is acting like a
single entity.
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