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[1] Cluster data from many different intervals in the magnetospheric plasmas sheet and
the solar wind are employed to determine the magnetic Taylor microscale from
simultaneous multiple point measurements. For this study we define the Taylor scale as the
square root of the ratio of the mean square magnetic field (or velocity) fluctuations to
the mean square spatial derivatives of their fluctuations. The Taylor scale may be used, in
the assumption of a classical Ohmic dissipation function, to estimate effective magnetic
Reynolds numbers, as well as other properties of the small scale turbulence. Using solar
wind magnetic field data, we have determined a Taylor scale value of 2400 ± 100 km,
which is used to obtain an effective magnetic Reynolds number of about 260,000 ±
20,000, and in the plasma sheet we calculated a Taylor scale of 1900 ± 100 km, which
allowed us to obtain effective magnetic Reynolds numbers in the range of about 7 to 110.
The present determination makes use of a novel extrapolation technique to derive a
statistically stable estimate from a range of small scale measurements. These results may
be useful in magnetohydrodynamic modeling of the solar wind and the magnetosphere
and may provide constraints on kinetic theories of dissipation in space plasmas.
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1. Introduction

[2] In the cascade picture of broad band turbulence,
energy resides mainly at large scales, but is transferred
across scales by nonlinear processes, eventually reaching
small scales where dissipation mechanisms of kinetic origin
limit the transfer, dissipate the fluid motions, and deposit
heat. This general picture is expected in hydrodynamics and
in fluid plasma models such as magnetohydrodynamics
(MHD) when the associated Reynolds number and magnetic
Reynolds number are large compared to unity. This signifies
that the nonlinear couplings are very much stronger than the
dissipation processes at the large scales and that, therefore,
structures having a wide range of spatial scales will be
involved in the dynamics. This broad-band character is
found in observations of fluctuations of the magnetic field
(and other quantities such as velocity and density) in the
solar wind and in the plasma sheet. Many studies of
turbulence in these systems [Borovsky et al., 1997; Tu and
Marsch, 1995; Goldstein et al., 1995] analyze the cascade
process through spectral analysis or through analysis of

structure functions at various orders. This emphasizes the
self-similar range of scale properties that give rise to
descriptions such as the famous power law of Kolmogorov
theory [Kolmogorov, 1941], and its variants [Kraichnan,
1965]. The self-similar range is typically defined as extend-
ing from an energy-containing scale (correlation scale)
down to a Kolmogorov dissipation scale, – thus the two
most studied length scales in turbulence studies are simply
those that define the long wavelength and short wavelength
ends, respectively, of the power law inertial spectral range.
However, provided that the spectral distribution of energy is
suitably well behaved in both the inertial and dissipative
range, the mean square spatial derivatives of the turbulent
magnetic or velocity field will be well defined, and in
particular will attain definite values relative to the mean
energy density. This implies the existence of a third char-
acteristic scale of turbulence, determined by the ratio of
mean square fluctuations to a measure of the mean square
spatial derivatives of the fluctuations. The corresponding
length is the Taylor microscale. This scale has been almost
completely ignored in space plasma turbulence prior to this
time, mainly due to instrumental limitations. Here, using the
accurate magnetic field data at relatively close separations
that is afforded by the Cluster mission, we are able to
develop a methodology for extracting accurate values of the
Taylor scale. We apply this technique to derive measure-
ment of the Taylor scale in both the solar wind and in the
plasma sheet. This will permit, under assumption of a
standard resistive or Ohmic dissipation function, an evalu-
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ation of an effective magnetic Reynolds number of the
turbulence.
[3] Turbulence in the solar wind is thought to originate at

least in part in the source regions of the solar wind, where it
is the product of coronal dynamical processes. Solar wind
turbulence may also be driven by stream interactions,
including compressions and shears, which are almost cer-
tainly responsible for augmentation of turbulence seen at
1 AU and beyond, as well as the disappearance of Alfvénic
correlations with increasing heliocentric distance [Roberts
et al., 1987], and the heating that underlies the observed
highly nonadiabatic temperature profile that extends from
inside 1 AU to beyond 60 AU as observed by Voyager and
Pioneer [Gazis et al., 1994; Richardson et al., 1995;
Williams et al., 1995; Smith et al., 2001].
[4] The magnetospheric plasma sheet also displays prop-

erties associated with turbulence. Electromagnetic energy is
stored in the magnetotail lobes and transferred to the plasma
sheet and the dominant mechanism for this transport is most
likely reconnection. As a consequence, fluctuations in the
flow that are produced in the plasma sheet have a very
turbulent appearance [Borovsky et al., 1997; Weygand et al.,
2005]. Understanding of these fluctuations is important for
understanding the physics of this transport of lobe electro-
magnetic energy and mass to the plasma sheet. However,
measurements to ascertain the role of plasma sheet turbu-
lence in energy transport remain incomplete. Some of the
key turbulent characteristics that have not yet been thor-
oughly studied are the scale sizes of the boundaries of the
turbulent energy cascade in the inertial range from the
driving scale (i.e., the energy containing scales) down to
the energy dissipation scales. Assuming a mapping between
wave vectors and frequencies, those boundaries are often
evident in power spectral density plots as breaks in the

spectral index. A schematic example of a power spectrum
with breaks is shown in Figure 1.
[5] Moving toward longer wavelengths beyond the typ-

ical inertial range of the power spectrum, one encounters the
scales that typically contain most of the energy in a
turbulent flow. In some cases the peak of the omnidirec-
tional spectrum [Batchelor, 1970] is defined as the ‘‘energy
containing scale.’’ One can also compute using standard
methods a correlation scale and this will frequently be of the
same order as the energy-containing scale. Another similar,
and in many cases almost equivalent, scale is that which
demarcates the lower wave number limit of the inertial
range – this can be thought of as a ‘‘bendover scale’’ of the
spectrum. For purposes of the present work, we identify
these variations of the turbulence outer scale as the corre-
lation scale, which we physically associate with the size of
the energetically dominant large scale turbulent eddies
[Weygand et al., 2006].
[6] At the opposite end of the inertial range (i.e., small

scales) is the Kolmogorov or dissipation scale (see Figure 1).
Dissipative processes in hydrodynamics or collisional MHD
are important in describing the evolution of eddies at scales
smaller than the Kolmogorov scale. The situation is less
clear in low collisionality plasmas, where dispersion and
dissipation may set in when the inertial range terminates,
but also at the same scales new or different modes of plasma
motion can appear. Here we will continue to denote the high
wave number end of the inertial range as the (reciprocal)
dissipation scale. A standard means of identifying the
dissipation wave number is to associate it with the break-
point at the high wave number end of the inertial range
above which the spectral index of the power spectral density
becomes steeper [Denskat et al., 1983; Goldstein et al.,
1994; Leamon et al., 1998].
[7] The magnetic Taylor microscale can be defined as

lT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2h i= r� bð Þ2

D Er
ð1Þ

where b is the fluctuation of the total magnetic field, which
can be written as B = B0 + b, for a suitably defined
averaging procedure h. . .i that defines the mean field B0 =
hBi. It is clear from this definition that lT is a length
associated with the mean square spatial derivatives of b. An
analogous microscale for the turbulent velocity field can be
defined and differs from similar definitions in the hydro-
dynamics turbulence literature by constant factors that are
unimportant in the present context [see, e.g., Batchelor,
1970].
[8] An equivalent formulation of the Taylor scale in terms

of the spectrum is

ð1=lT Þ2 ¼
Z1
0

d3k k2EðkÞ=
Z1
0

d3k EðkÞ ð2Þ

where the denominator on the right hand side is the total
fluctuation energy. This form makes the sensitivity of the
Taylor scale to the steepness of the spectrum particularly
evident, since k2E(k) must fall off faster than 1/k for the

Figure 1. Schematic and power spectral density plot for
turbulence solar wind. At the lowest frequencies is the
energy containing scale. At the highest frequencies is the
dissipation range. The correlative scale separates the energy
containing scales and the inertial range and the Kolmogorov
scale separates the inertial range and the dissipation range.
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integral to exist. The Taylor scale can also be defined in
terms of the correlation function

RðrÞ ¼ bðxÞ 	 bðxþ rÞh i ð3Þ

which is the standard trace correlation function (i.e., the sum
of the vector component correlations) for the zero mean
fluctuation vector b(x,t). In homogeneous turbulence R does
not depend on the absolute position x, but only on the
separation vector r. In general, for anisotropic turbulence (as
expected in the solar wind) R(r) depends on the vector
separation r [Matthaeus et al., 1990; Milano et al., 2005;
Dasso et al., 1983], but in isotropic turbulence, or upon
averaging over direction, it depends on the magnitude r. For
the remainder of the present paper we will assume we are
dealing with direction-averaged correlation functions, un-
less we specify otherwise. It is straightforward to show that
the Taylor scale appears explicitly in the small |r| expansion
of the correlation function, assuming isotropy or direction
averaging, through the relation,

RðrÞ � b2
� �

1� r2

2l2
T

 !
þ . . . ð4Þ

where. . . represents higher order terms in a power series in
r. Consequently, in principle a direct evaluation of the
correlation function for small separations r can be employed
to determine the Taylor scale. Note that the second order
structure function can be written in terms of the same
asymptotic relation

SðrÞ ¼ bðxÞ � bðxþ rÞj j2
D E

� b2
� �

ðr2=l2
T þ . . .Þ ð5Þ

We can combine equations (4) and (5) to reconstruct the
correlation function as R(r) = hb2i � S(r)/2 . Now we have a
function that relates the magnetic field fluctuations across
space with the Taylor scale. Below we will show how to
implement the identification of the Taylor scale with
multispaceraft data.
[9] Previously we presented preliminary results on com-

puting the correlation scale and Taylor scale in solar wind
turbulence using simultaneous two point measurements
employing pairs of interplanetary spacecraft observations
[Matthaeus et al., 2005]. Here we focus on the methodology
for determining the Taylor scale using a stable extrapolation
technique and derive an interplanetary magnetic Taylor
scale at 1 AU that is more accurately determined, yet is
found to agree well with previous estimates Matthaeus et al.
[2005]. We also apply the new methodology to determine
the Taylor scale in plasma sheet turbulence. In both cases,
interplanetary and plasma sheet, we employ the results of
our Taylor scale estimate and correlation scale determined
from previous studies to derive quantitative estimates of the
effective magnetic Reynolds number

Reff ¼
lCS

lT


 �2

ð6Þ

where lCS is the correlation scale and lT is the Taylor scale
[Batchelor, 1970]. Finally, we compare the present results

with previously published estimates based on single space-
craft observations of the associated scales, and theoretical
estimates of the Reynolds numbers based on collisional
resistivity formulations.

2. Instrumentation

[10] For this study the magnetic field measurements taken
within the plasma sheet and solar wind were obtained from
the Cluster spacecraft. The Cluster mission, supported
jointly by the European Space Agency (ESA) and National
Aeronautics and Space Administration (NASA), consists of
four identical spacecraft, optimally in a tetrahedral config-
uration, with a perigee of 4 RE, an apogee of 19.6 RE, and a
spin period of about 4 s. These four spacecraft provide the
first three-dimensional measurements of large- and small-
scale phenomena in the near-Earth environment [Escoubet
et al., 1997]. Each Cluster spacecraft carries 11 instruments.
This study uses data from the magnetometer (FGM)
[Balogh et al., 1997] and the ion spectrometer (CIS) [Rème
et al., 1997]. The Cluster spacecraft orbital plane precesses
around the Earth annually. From 2001 to 2004, between
July and October the Cluster spacecraft apogees were in the
magnetotail and between January and April they were
potentially in the solar wind. At apogee the spacecraft were
located at the vertices of nearly regular tetrahedrons. In the
magnetotail seasons of 2001 and 2004 the tetrahedron’s
scale was about 1000 km. During the 2002 season the scale
was 5000 km (i.e., on the order of the inertial range for
turbulence within the plasma sheet). The latter spacing is
ideal for examining turbulent eddy scale sizes that are on the
order of 5000 km [Neagu et al., 2002; Weygand et al.,
2005]. From July to October 2003, Cluster obtained another
series of plasma sheet crossings at an inter-spacecraft
spacing of about 100 km (i.e., on the order of dissipation
range).
[11] Each Cluster spacecraft carries a boom-mounted

triaxial fluxgate magnetometer [Balogh et al., 1997]. Mag-
netic field vectors routinely are available at 22 Hz resolution
(nominal mode). Both pre-flight and in-flight calibrations of
the two magnetometers have been performed to produce
carefully calibrated (and inter-calibrated) magnetic field
data. The relative uncertainty in the data after calibration
is at most 0.1 nT, an estimate determined by examining the
drift in the offset after calibration (K.K. Khurana and
H. Schwarzl, private communication, 2004). The digital
resolution of the magnetometer is on the order of 8 pT
[Balogh et al., 1997].
[12] The CIS instrument [Rème et al., 1997] along with

the magnetic field data are essential in identifying periods
when Cluster enters the plasma sheet and when it is in the
solar wind. CIS also provides fundamental plasma param-
eters such as density, velocity vectors, the pressure tensor,
and heat flux. The uncertainties in most of these quantities
are not significant for this study. To help identify the plasma
sheet periods we need only to know when the density and
ion temperature values significantly increase or decrease so
that we can determine when Cluster enters and exits the
plasma sheet. Although plasma data are available from only
2 or 3 spacecraft, this is not a problem for identifying the
solar wind and plasma sheet regions because the spacecraft

A10201 WEYGAND ET AL.: TAYLOR SCALES AND REYNOLDS NUMBERS

3 of 12

A10201



are close to one another and we conservatively estimate the
boundaries of the region of interest.

3. Procedure and Observations

[13] The intervals used in this study are obtained from
two distinct regions: the solar wind and the plasma sheet.
For each plasma region, data selection criteria are specified.
The solar wind data intervals are selected visually from
plotted data and bow shock or magnetosheath data are
excluded. The solar wind is identified from the magnetic
field data, which had typical magnitudes of around 5 to
10 nT, the plasma density, which was of the order of several
particles per cm�3, and the solar wind speed, which was of
the order of 400 km s�1. We do not use solar wind data that
shows sharp rotations in the IMF Bx and By components to
avoid sector boundary crossings. We also avoid solar wind

shocks and we include intervals only if magnetic field data
are continuous for more than an hour. Because the Cluster
orbit remained in relatively close proximity to the magne-
tosphere, even when in the solar wind, we include some
measurements in which foreshock waves were present in the
solar wind. To reduce the contribution of these waves to our
analysis, the solar wind magnetic field measurements are
averaged to 30-s resolution, which is approximately the
longest period for ion foreshock waves. As an additional
check we have examined a subset of solar wind intervals
when there are no foreshock waves or shocklets and we
obtained very similar results. Figure 2 shows a typical
example of Cluster solar wind observations, these being
from 25 February 2003.
[14] Data selection for the plasma sheet is similarly

restrictive. Entries and exits from the plasma sheet corre-
spond to times when the ion temperature significantly
increases or decreases, and within the plasma sheet we
require the ion density be greater than 0.1 cm�3 and that the
magnetic field Bx component have values between -10 and
10 nT. Intervals where the spacecraft appear to enter lobe
regions due to magnetotail flapping or other phenomena are
eliminated. A minimum of 1 hour’s worth of 4 s average
magnetic field data are needed. For the plasma sheet data
analysis we remove a background magnetic field deter-
mined with a cubic fit to the entire data interval. This step
is necessary because we are interested in the turbulent
magnetic fluctuations and the large scale structure of the
magnetotail field influences the cross correlation values.
Figure 3 displays magnetic field data from a typical Cluster
plasma sheet crossing on 9 September 2002. Not shown in
Figure 3 are the velocity vectors. For this interval the speed
rapidly fluctuates between 0430 and 0510 UT and reaches
values as high as 300 km/s. After 0510 UT the flow speeds
drop below 50 km/s and the fluctuation amplitude
decreases. We combine many different plasma sheet inter-
vals with a variety of plasma and flow conditions to
calculate an average Taylor scale value. Our data set was
not large enough to subdivide into statistically usable
subsets in different ranges of flow speed.

3.1. Solar Wind Procedure

[15] For each selected data interval we calculate the time-
averaged cross correlation of the vector magnetic field for
each of the spacecraft pairs (six in total for each interval
assuming all four spacecraft record measurements). We then
compute the trace correlation, or sum of the vector compo-
nent correlations. This correlation value is assigned a
separation distance, which is the time average of the
corresponding spacecraft separation distances for that inter-
val. Each correlation estimate is normalized by the vector
variance of the magnetic field fluctuation in the respective
interval [Matthaeus et al., 2005]. By collecting normalized
correlation values from a large number of suitable solar
wind intervals, we find estimates of the trace correlation
function as it varies with spatial separation r.
[16] Figure 4 displays the correlation values versus the

spacecraft separation in the solar wind. This figure demon-
strates that, as the spacecraft separation increases, the
correlation decreases, as expected in a turbulent plasma.
[17] In determining a value of the Taylor scale from the

data, we must confront several issues: the asymptotic nature

Figure 2. Cluster solar wind observations from 25
February 2003. The black portion of the curve displays
the 30-s averaged magnetic field data used in the study. The
gray portion of the curve displays 4 s resolution data. The
gray data shown before and after the black curve did not
meet the criteria for this study.
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of equation (4), limitations inherent in the analysis of data
from closely separated spacecraft, and the possible depar-
tures of plasma structure at small scales from expectations
based on viscous hydrodyamics and collisional gasdynam-
ics. We discuss these issues in turn.
[18] First, equation (4) becomes a good approximation

only for small values of separation. In fact, we expect that it
will become accurate asymptotically only for very small jrj,
on the order of the dissipation scale, by which we mean the
scale corresponding to the break point in the solar wind
spectrum that separates the inertial range from the steeper
kinetic-dominated range. The dissipation scale in the solar
wind is generally near the ion inertial scale, approximately
500–1000 km at 1 AU [Leamon et al., 1998]. Assuming
that the behavior of the second order structure function, S �
r2, sets in at some scales smaller than the dissipation scale, it
is clear that even with the wide range of separations
available in the Cluster mission, only a small percentage
of possible two spacecraft correlation estimates fall into the
range where one might, even in principle, see the asymp-
totic r2 dependence. The second order structure function for

this study examines the ensemble average of the square of
the fluctuations in the magnetic field as a function of the
spacecraft spatial separation. In order to gain statistical
weight, and to make optimal use of available data, one
would like a method that does not rely on fitting the data
with a quadratic equation only in the asymptotic range of
separations.
[19] Intervals with small spacecraft spatial separation

occur infrequently in the Cluster data and, therefore, esti-
mates obtained from them have low statistical weight. In
addition, small separation implies small differences in
measured fields. For well calibrated magnetometers on
two spacecraft separated by a few hundred kilometers, the
associated structure functions, according to our error esti-
mates, remain above the likely noise threshold (which we
estimate as that associated with 0.1 nT error). However, the
margin is not great and we must allow for possible addi-
tional noise in the measured structure function in this
regime of small separation.
[20] Finally, from hydrodynamics with a viscous dissipa-

tion function we expect that the S(r) � r2 regime will set in
at scales smaller than the dissipation scale that marks the
end of the inertial range. That is, in hydrodynamics the
radius of curvature of the structure function at the origin is
larger than the dissipation scale, but this behavior becomes
evident only from measurements made at separations
smaller than the dissipation scale. Furthermore, in a colli-
sionless plasma, there may be scales that mark the onset of
several different types of dissipation, such as resonant
absorption, Landau damping, excitation of nonlinear elec-
tron effects, reconnection, lower hybrid turbulence, and so
on. Consequently there is no a priori way to estimate when
the asymptotic regime is entered. In particular, our ensemble
of correlation estimates is likely to contain intervals of
diverse nature. For example, anisotropic dissipation mech-
anisms are characteristic of space plasmas. Some affect
fluctuations observed for spacecraft separations along the
local mean magnetic field (resonance) whereas others can
affect fluctuations observed at oblique angles (e.g., Landau
damping). However, in the present ensemble, in order to
maximize the number of correlation estimates, we have
gathered all the intervals together without regard to mean
field direction.
[21] For the above reasons, we assume that the very short

separation regime sets in at a scale controlled by the spectral
break near 1000 km that has been identified elsewhere
[Leamon et al., 1998]. By using extrapolation techniques
(see below) we derive a stable answer based upon this
assumption. In future work we will examine a larger
ensemble of measurements in order to identify anisotropy
effects and other plasma effects that will give insight into
multiple scales relevant to the asymptotic behavior of the
structure function at small distances.
[22] The implication of the above discussion is that we

assume that the experimental determination of the value of
the Taylor scale in a magnetized plasma confronts only
those difficulties that arise in hydrodynamics. This is
already a subtle issue. We seek a method that recognizes
that the quadratic behavior sets in at some small |r|, which
we can estimate but which is not known exactly. Our
estimate for the transition scale is the dissipation scale at
distances of the order of the ion gyroradius, so we focus on

Figure 3. Cluster plasma sheet crossing on 9 September
2002. This figure has the same format as Figure 2.
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fits to the radius of curvature at approximately that range of
separations. However, it has been found that the maximum
separation distance in the data influences the inferred Taylor
scale value. The smaller the maximum separation, the
smaller the inferred Taylor scale in hydrodynamic studies
[Belmabrouk and Michard, 1998; Belmabrouk, 2000].
[23] In order to overcome the problem of an inferred

Taylor scale that changes with separation distance, we apply
a method that we call Richardson extrapolation after similar
methods in the numerical analysis literature [Press et al.,
1999]. This method consists of two parts, which will be
discussed in more detail in the next two paragraphs. In the
first part we determine an array of tentative estimates of the
Taylor scale for a range of spacecraft separations; each of

these is a parabolic fit of the form of equation (4). In the
second part we use the first array of Taylor scales to
estimate a second set of improved Taylor scale values,
which are obtained by extrapolation of the first set of fits
to zero separation.
[24] To determine the first array of Taylor scale values we

start with N values of the estimated correlation, each of
which is associated with a nominal spacecraft separation.
We order these from smallest to largest separations. Using
the first three smallest spacecraft separations we fit those
data points with equation (4) to get a single Taylor scale
value. This is the first element of our array of estimates. The
next Taylor scale value in the array is then calculated by
adding the next larger spacecraft separation data point to the

Figure 4. Solar wind correlation values versus Cluster spacecraft separation. This plot shows the
decrease in the correlation coefficient for the magnetic field vectors with increasing spacecraft separation.
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fitting procedure. We continue this process until we have N-
2 Taylor scale values calculated from N-2 fits to the
correlation versus spacecraft separation. The top panel of
Figure 5 is a plot of the N-2 Taylor scale values determined
from a robust fit of equation (4) to an increasing number of
points for each fit. The top panel of Figure 5 also shows that
as we increase the number of points in the robust fit, the
calculated value for the Taylor scale increases and no stable
Taylor scale value can be found from this step alone. This is
because additional points, while providing increased statis-
tical weight, also move the fit away from the asymptotic
regime of zero separation (y intercept).
[25] In the next step of the Richardson extrapolation we use

the first array of Taylor scale values to extrapolate the

estimates back to zero spacecraft separation, where the
expansion in equation (3) takes on physical significance.
To estimate the radius of curvature at zero spacecraft sepa-
ration we extrapolate the value from a linear fit to data points
in the top panel of Figure 5. However, just like the first stage
of this extrapolation, it is unclear how many points to include
in the linear fit. We will see, however, that the second array of
Taylor scale values appears to plateau to a stable value.
[26] Specifically, in the second stage we begin by using a

linear fit to the first two data points of the top panel of
Figure 5 to determine a new Taylor scale value at the y
intercept. The next estimate is obtained by adding the next
larger spacecraft separation data point, carrying out a new
linear fit, and again extrapolating back to zero separation.

Figure 5. Solar wind Taylor scale determination. The top panel shows the steady increase in the value
of the Taylor scale as larger and larger spacecraft separations are included in the robust fit. The bottom
panel shows the Taylor scale values determined from a linear fits to the data points in the top panel.
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We continue this process until we have N-3 Taylor scale
estimates in the second array. The bottom panel of Figure 5
is a plot of the y intercepts, i.e., Taylor scale values,
obtained in this way, versus the maximum spacecraft
separations used in the linear fit. This figure shows that as
additional points are added to the linear fitting procedure,
the estimated value for the Taylor scale attains a stable value
of about 2400 ± 100 km for spacecraft separations between
2000 and 15,000 km, where the uncertainty is the standard
deviation.

3.2. Plasma Sheet Observations

[27] In this section we apply the procedure outlined in
section 3.1 to the plasma sheet data. Figure 6 displays the

correlation versus spacecraft separation for the Cluster
observations in the plasma sheet. The format of this plot
is the same as Figure 4 and the same relative decrease in the
correlation values with increasing separation is seen. Next
we apply the Richardson extrapolation method and obtain the
two plots shown in Figure 7. The distribution of the points in
Figures 7a and 7b is similar to Figures 5a and 5b and the
stable value of the Taylor scale is found to be 1900 ± 100 km.

4. Analysis

[28] Previous studies have determined the correlation
scales in the solar wind [Matthaeus et al., 2005] and the

Figure 6. Plasma sheet correlation values versus Cluster spacecraft separation. This figure has the same
format as Figure 5.
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plasma sheet [Borovsky et al., 1997; Neagu et al., 2002;
Weygand et al., 2005]. With the Taylor scale values for the
solar wind and the plasma sheet and those previously
determined the correlation scales, we can determine the
effective magnetic Reynolds number.

4.1. Solar Wind Effective Magnetic Reynolds Number

[29] Matthaeus et al. [2005] calculated a correlation scale
value of about 1.2�106 km for the solar wind near 1 AU
from an exponential fit to the correlations determined from
ACE-Wind pairs and Cluster spacecraft pairs versus space-
craft separations. With our Taylor scale value and the
Matthaeus et al. [2005] correlation scale, equation (6) gives
a Reynolds number of 260,000 ± 20,000. The uncertainty is
taken from the uncertainty in establishing the Taylor scale.

4.2. Plasma Sheet Effective Magnetic Reynolds
Number

[30] Recent studies have determined correlation scale
values within the plasma sheet from magnetic field data.
Values as low as 3800 km have been reported by Neagu et
al. [2002], a value of about 10,000 km was given in
Borovsky et al. [1997], and a range of values from about
5000 to 20,000 km was determined by Weygand et al.
[2005]. Using the highest and the lowest of these, we
calculate effective magnetic Reynolds numbers between
7 ± 1 and 111 ± 12.

5. Discussion

[31] As far as we are aware two other studies have
estimated the value of the Taylor scale in the solar wind.

Figure 7. Plasma sheet Taylor scale determination. These panels have the same format as Figure 4.
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Matthaeus and Goldstein [1982] used relatively coarse time
resolution Voyager 1 and 2 magnetic field data to arrive at a
Taylor scale value of about 3.2�105 km at 1 AU. This was a
single spacecraft determination employing the frozen-in
flow approximation to convert time lags to spatial lags.
This value is most likely incorrect because the time resolu-
tion of the data was most likely insufficient. More recently,
Matthaeus et al. [2005] employed basically the same
technique as that used here to study the correlation versus
spacecraft separation. However, in that earlier report, we
used Cluster data only from April, 2003 and mid-January to
early February 2004 and used a simple fit to extract the
Taylor scale. The present determination improves on this
value by using additional Cluster data from the solar wind
seasons in the years 2001 to 2005, providing a larger range
of spacecraft separations. The present analysis uses 1200
2-spacecraft data intervals with spacecraft separations rang-
ing from about 100 km to just over 10,000 km. This range
covers scales starting at distances smaller than the thermal
ion gyroradius (about 100 km), which is generally thought
of as the dissipation scale boundary, and extends to many
times the ion gyroradius, which is well within the inertial
region. The greatest improvement in the present study,
however, is methodological, in that we use Richardson
extrapolation to obtain a stable Taylor scale value.Matthaeus
et al. [1990] fit equation (4) directly to the available data to
obtain a Taylor scale value of about 2500 ± 700 km, a value
that agrees with the present estimate of 2400 ± 100 kmwithin
the uncertainty of the estimates.
[32] With the Taylor scale determined from the solar wind

and the correlation scale given from Matthaeus et al. [1990]
we calculate an effective magnetic Reynolds number of
260,000 ± 20,000 using equation (6), which is again similar
to the value of 230,000 given in Matthaeus et al. [1990]. As
far as we are aware these are the only published estimates of
the effective magnetic Reynolds number of the solar wind.
[33] Using the Richardson extrapolation technique for the

plasma sheet, we have found the Taylor scale to be 1900 ±
100 km and the Reynolds number to be 7 to 110. We cannot
compare our results to earlier studies because these quan-
tities have not previously been determined. However, we
believe that the values we have obtained make physical
sense. In hydrodynamic fluid turbulence it is believed that
the Taylor scale is several times larger than the dissipation
scale. In the plasma sheet, dissipation is thought to occur on
the scale of the ion gyroradius. The ion gyroradius in the
center of the plasma sheet is approximately 400 km for mean
ion energies of about 5 keV [Borovsky et al., 1997], which is
about 5 times smaller than our inferred Taylor scale.
[34] These values that we have inferred for the effective

magnetic Reynolds number of the plasma sheet are consid-
erably smaller than the magnetic Reynolds number of about
1013 reported by Borovsky et al. [1997] and Borovsky and
Funsten [2003], and the value of 1600 calculated by Vörös
et al. [2006] from plasma sheet flow data. However, a direct
comparison of these different Reynolds numbers is not
meaningful. The magnetic Reynolds numbers calculated
by Borovsky et al. [1997] and Borovsky and Funsten
[2003] were determined by measuring the root mean square
flow speed and the correlation scale and using the Spitzer
conductivity. Both papers assume that the plasma sheet
turbulence is fully developed, but Weygand et al. [2005,

2006], Vörös et al. [2006], and Lui [1998, 2001] suggest that
the plasma sheet turbulence at the inertial scale and at the
kinetic scale is most likely not fully developed. Similarly
the flow Reynolds number given in Vörös et al. [2006]
cannot be directly compared with the effective magnetic
Reynolds number of this study because Vörös et al. [2004]
limited their data set to ‘‘bursty bulk flows’’ with plasma
flow speeds of the order of about 300 km s�1.
[35] The value that we find for the effective magnetic

Reynolds number suggests that the plasma sheet plasma is
fairly viscous and does not readily response to driving.
Although it is possible that we have not determined the true
effective magnetic Reynolds number, rough calculations
suggest that our value is reasonable. We believe that
correlation scales as large as about 20,000 km [Weygand
et al., 2005] are reasonable because the correlation scale
represents the size of the largest eddies that can develop in
the plasma sheet. The smallest dimension of the plasma
sheet is in the z direction. According to Thompson et al.
[2005] the thickness of the plasma sheet can be as large as
50,000 km under extremely quiet conditions, but is typically
around 25,000 km. Thus a correlation scale of the order of
tens of thousands of km is reasonable. The measured Taylor
scale is several times larger than the dissipation scale, which
is on the order of the ion gyroradius, about 400 km in the
central part of the plasma sheet [Borovsky et al., 1997]. If
we were to use about twice the ion gyroradius as the Taylor
scale and 20,000 km as the correlation scale, then with
equation (6) we would obtain an effective magnetic Rey-
nolds number of about 600, which differs by less than an
order of magnitude from our maximum value of 110.
[36] In order to obtain the plasma sheet Taylor scale and

Reynolds number, we have combined many plasma sheet
intervals. These intervals include both low and high speed
flows, which range from typically tens of km/s to hundreds
of km/s. A distribution demonstrating the full range of
possible plasma sheet flows can be found in Borovsky et
al. [1997]. We have assumed that combining all these
intervals will produce an average Taylor scale and Reynolds
number in the plasma sheet. Vörös et al. [2004, 2005] and
Weygand et al. [2005] have shown that the Taylor scale, the
correlative scale, the dissipative scale, and the Reynolds
number are velocity dependent. Continuing acquisition of
plasma sheet data will allow us in the future to subdivide the
data into different flow regimes in order to examine the
velocity dependence of these characteristic quantities.
[37] As a final means of verifying our values for the

Taylor scale and effective magnetic Reynolds number we
can determine the Kolmogorov dissipation scale value from
our measurements and compare the result to the expected
value for the Kolmogorov scale, which we expect to be on
the order of the ion gyroradius. From Batchelor [1970], the
Kolmogorov scale is calculated from lKS = lT(Reff)

�1/4.
Using the Taylor scales and effective magnetic Reynolds
numbers we obtained from the solar wind and the plasma
sheet we obtained a Kolmogorov scale of about 100 km and
700 km, respectively. These values are within a factor of 2
of the ion gyroradius values given for the solar wind in
Kivelson and Russell [1995], which is 80 km, and for the
plasma sheet in Borovsky et al. [1997], which is 400 km.
[38] The effective magnetic Reynolds number is an im-

portant parameter in computational MHD models. We
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compared our range of effective magnetic Reynolds numb-
ers with the Reynolds numbers obtained from coupled
magnetosphere-ionosphere, three-dimensional global MHD
models of the terrestrial magnetosphere and its interaction
with the solar wind [Raeder et al., 1995, 1998, 2001; El-
Alaoui, 2001]. Part of this simulation code is an ionospheric
model that includes three sources of ionospheric conduc-
tance for closure of field-aligned currents. The model solves
the ideal MHD equations for the magnetosphere and a
potential equation for the ionosphere. Numerical effects,
such as diffusion, viscosity, and resistivity are necessarily
introduced by the numerical methods, which are discussed
in detail by Raeder et al. [1995, 1998, 2001] and El-Alaoui
[2001]. The MHD simulation has previously been used
successfully to model the magnetotail’s particle sources
[Ashour-Abdalla et al., 1997, 2000], substorm dynamics,
localized reconnection [Ashour-Abdalla et al., 1999, 2002],
and the global dynamics of magnetic storms [Berchem et al.,
2001]. From their MHD model, Reynolds numbers are
calculated from the equation R = movLs where v is the
plasma flow speed, L is the correlation scale length, and s is
the conductivity. In the plasma sheet the Reynolds numbers
vary from about 50 to 1000 [El-Alaoui, Private communi-
cation, 2007] and depend on the value used for the corre-
lation scale, flow speed, and conductivity. The lower end of
the range of values is closest to our effective magnetic
Reynolds numbers. The higher values obtained from their
model were commonly obtained in high speed flow regions.

6. Summary and Conclusions

[39] For this study we calculated Taylor scale values of
2400 ± 100 km for the solar wind and 1900 ± 100 km for
the plasma sheet from spatial correlation coefficients versus
spacecraft separations derived from magnetic field data. As
far as we are aware, this is the first study to use two point
spacecraft measurement to obtain Taylor scale values in the
plasma sheet. The value we obtained for the solar wind is
similar to that reported in previous work, although the
methodology is improved in the present study, and the
Taylor scale value is within the expected range of plausible
values. With the Taylor scale values and previously deter-
mined correlation scale lengths, we calculated effective
magnetic Reynolds numbers. Our effective magnetic Rey-
nolds number for the solar wind (260,000 ± 20,000) is close
to the effective magnetic Reynolds number from Matthaeus
et al. [2005]. The range of effective magnetic Reynolds
numbers between 7 ± 1 and 110 ± 12 obtained for the
plasma sheet is considerably smaller than the high speed
flow Reynolds number calculated by Vörös et al. [2006], but
our value is determined from magnetic field measurements
rather than from flow measurements in high speed flow
events. We believe that the small effective magnetic
Reynolds number obtained for the plasma sheet suggests
that the plasma is viscous and does not readily respond to
driving. When compared to a widely used MHD model
[Raeder et al., 1995, 1998, 2001; El-Alaoui, 2001] our values
were similar to those derived for the model plasma sheet.
[40] We close with a reminder that our methodology for

determining the Taylor microscale recognizes the well
known difficulties encountered in the analogous determina-
tion in hydrodynamics. We wish to determine an asymptotic

behavior of the structure function at small separations, but
any statistically significant sampling of our data covers a
finite and nonzero range of separation distances. We address
this difficulty with an extrapolation method that looks at the
trend in the fits as the separation distance shrinks, for a
sequence of fits that employs varying amounts of data.
Using this approach, we do identify a stable range of
estimated Taylor scale values and it is these values that
we report. However, the medium in this case is a plasma,
with the likelihood of distinctive dissipative and dispersive
effects setting in at scales smaller than the ion inertial scale.
Therefore as we move past the end of the power law inertial
range into the smaller scales to establish the Taylor scale
value associated with mean square spatial derivatives of the
magnetic field, we need to recognize that there may be a
much greater range of possible behavior in this plasma
‘‘dissipation range’’ than there is in hydrodynamics with a
simple viscosity. Future work needs to focus on this, and to
understand the distinctive dynamical plasma effects, includ-
ing anisotropy and variation of other plasma parameters,
that are influencing extremely small scale correlations.
Further studies of this type will be crucial in understanding
dissipation and transport at the small scales in the solar
wind, plasma sheet, and other space plasmas.
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