Termo 2

TERMODINAMICA 2

ley 2

Hay varios posibles enunciados:

Sea eel formulado por W. Thompson en 1851-1852, basado en los trabajos de Sadi Carnot en 1824

Es imposible hacer una transformacion termodinamica cuyo unico resultado final es el intercambio de una cantidad ± 0 de calor con menos de 2 reservorios de calor y la aparicion de trabajo positivo en el ambiente

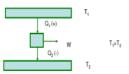
Es imposible hacer una transformacion termodinamica cuyo <u>unico</u> <u>resultado final</u> es el intercambio de una cantidad ± 0 de calor con menos de 2 reservorios de calor y la aparicion de <u>trabajo positivo</u> en el ambiente

Si nos fijamos en esta definicion

 \Rightarrow

- a) "unico resultado final..." el sistema debe sobrellevar un ciclo (empieza y termina en el mismo estado)
 - b) "2 reservorios de calor" a distintas temperaturas
- c) reservorio de calor, que no varia su temperatura, pero no es esencial.
 - d) "trabajo positivo en el ambiente"

Diagrama de un ciclo



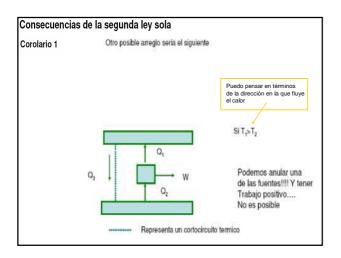
En este caso:

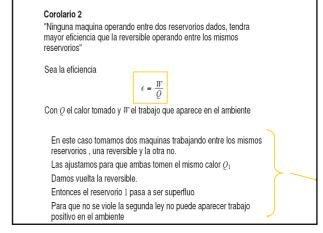
El calor se toma a T_1

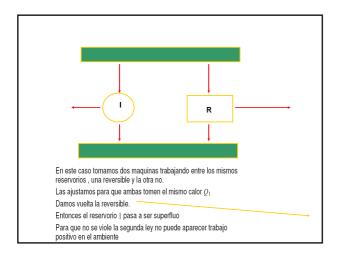
El calor se expulsa a T₂

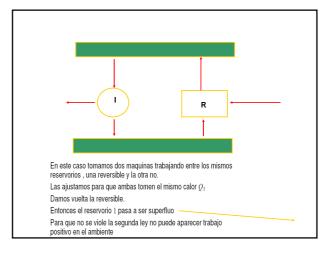
Se realiza un trabajo W (aparece en el ambiente)

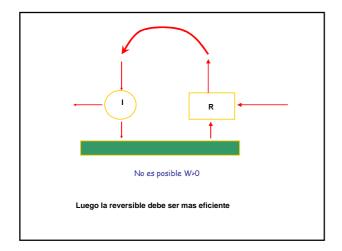
El calor total absorvido es $Q_1 + Q_2$

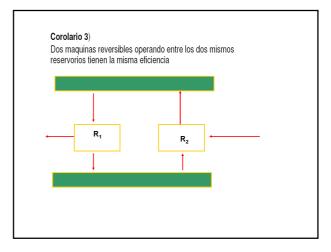




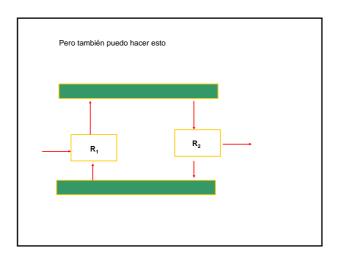


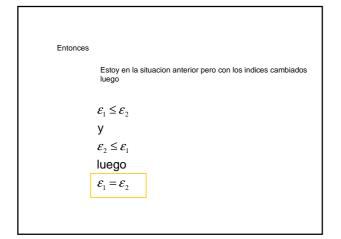


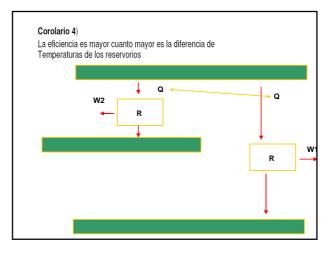


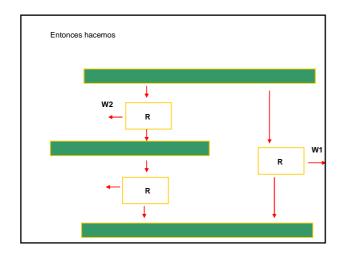


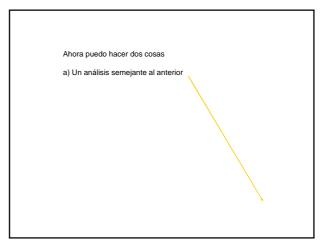
Si la eficiencia de la 2 es mayor que la de la 1
Se ajustan las cosas y se viola la segunda ley
Entonces $\epsilon_2 \leq \epsilon_1$
Pero si esto es asi....

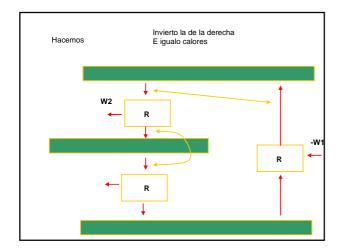


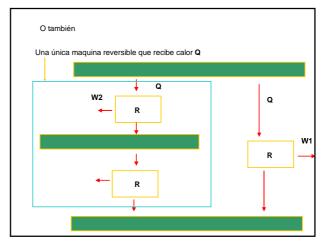










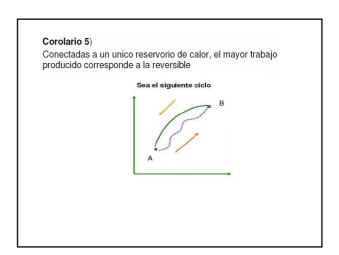


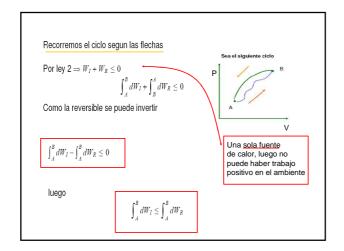
Pero entonces

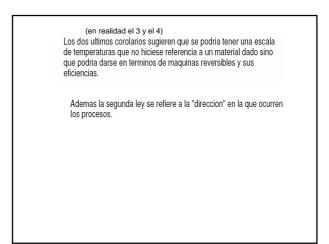
$$\varepsilon_1 = \varepsilon_2 \Rightarrow \frac{W_1 + W_x}{Q} = \frac{W_2}{Q}$$

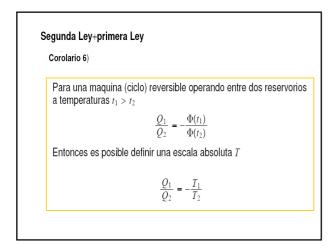
Pero $W_x > 0$

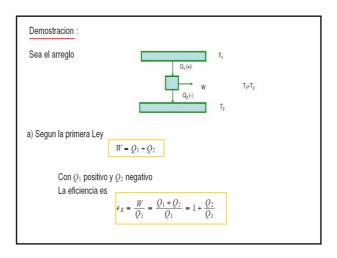
Luego

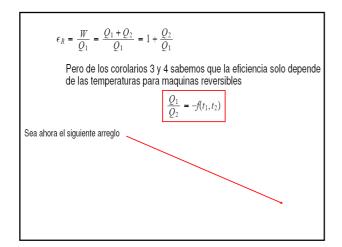


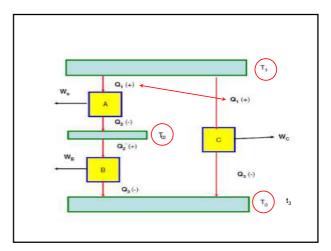


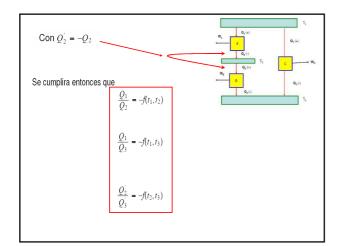














O sea

$$f(t_1, t_2) = \frac{f(t_1, t_3)}{f(t_2, t_3)}$$

Si $f(t_1, t_2) = \phi(t_1)/\phi(t_2)$ entonces

$$-\frac{Q_1}{Q_2} = f(t_1,t_2) = \frac{f(t_1,t_3)}{f(t_2,t_3)} = \frac{\phi(t_1)/\phi(t_3)}{\phi(t_2)/\phi(t_3)} = \frac{\phi(t_1)}{\phi(t_2)}$$

Ahora tenemos que elegir la forma de $\phi(t_1)$, si elegimos la proporcionalidad obtendremos la (no simetrica) escala de temperaturas

 $-\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$

One of the first temperature scales proposed but not widely used is due to W. Thomson (Lord Kelvin) and is called the *Thomson scale* [9]. It has the form

$$\frac{\Delta Q_{43}}{\Delta Q_{*2}} = \frac{e^{\tau_{\epsilon}^{\circ}}}{e^{\tau_{\epsilon}^{\circ}}}$$
(2.38)

The Thomson scale is defined so that a given unit of heat ΔQ_{12} flowing between temperatures $\tau^{o} = (\tau^{o} - 1)$ always produces the same amount of work, regardless of the value of τ^{o} .