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Abstract
Simple correlated wavefunctions considering two K-shell active electrons
of neutral atoms from He to Xe are presented in this paper, describing a
variational method subject to a local Hartree potential representing the presence
of outer shell electrons. Three kinds of electron–electron correlation functions
have been studied with rigorous observation of the exact behaviour of the
wavefunctions at the electron–electron and electron–nucleus coalescence points
(Kato cusp conditions). Global properties, such as the energies and virial
coefficients, as well as local properties, such as spatial mean values, together
with scaling laws with the nuclear charge for the variational parameters, are
also analysed. We calculated the expansion of the functions in terms of bipolar
spherical harmonics. Finally, comparisons are made with a more rigorous, fully
quantal close-coupling method, which also includes the same Hartree potential
for the outer electrons.

1. Introduction

Much effort has been invested since the beginning of quantum theory, to solve the bound
three-body Coulombic systems. In particular, the non-relativistic helium atom ground state
can be calculated today within a precision better than 19 significant figures (see [1] and
references therein). For most practical purposes, simple approximated wavefunctions have
been proposed, fulfilling the required global and local properties of the He ground state with
the optimization of only a few variational parameters. Some instances are the widely used
functions presented by Bonham and Khol [2], Le Sech [3] and Patil [4, 5], applicable to
the helium atom and to helium-like systems. Simple variational representations for the low-
lying excited states are also available for these systems (see, for example, [6, 7]). However,
scientific literature lacks such simple correlated wavefunctions for the two electrons subject
to the influence of outer-shell electrons.

New experimental techniques could offer deeper understanding by providing information
about the average separation between two electrons in the initial state. Recent measurements
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of double ionization of He and Ne by Schultz et al [8] confirmed that the correlation function
depends sensitively on the correlation introduced by the initial state. Experiments in proton-
helium transfer ionization by Mergel et al [9] show a particular transfer ionization mechanism
which can only be interpreted as a result of strong correlations in the initial He ground-
state wavefunction. New experiments involving double photoionization of K- and L-shell
electrons of neutral atoms [10, 11] demand knowledge of appropriate functions which account
not only for correlation but also for the influence of the passive-shell electrons. Therefore,
we intend here to develop fully correlated two-electron wavefunctions of atoms to deal with
double processes in a way analogous to how the Hartree–Fock method tackled single transition
processes. For these functions, we require acceptable values for the bound energies and other
global properties such as the virial coefficient, together with local properties such as mean
radii values to ensure the proper behaviour in all regions.

These functions can specially be useful in the calculation of double photoionization
[12–14], dielectronic capture [15] or double ionization of inner shell [16] electrons, where
correlation plays a leading role. The wavefunctions must also satisfy the exact behaviour at
the electron–electron and electron–nucleus coalescence points (Kato cusp conditions) [17].
For instance, the double photoionization at very high incident energies is extremely sensitive
to the electron–nucleus cusp conditions. As is discussed by Åberg [18], the matrix element
of this process involves the Fourier transform of the gradient (in velocity gauge) of the initial
wavefunction. Thus, the proper limit is obtained only if the cusp condition at the nucleus (see
equation (11)) is satisfied. Furthermore, at very-high photon energies, another mechanism, the
so-called quasi-free double photoionization, dominates the central part of the single differential
electron energy spectrum [19]. In the quasi-free mechanism, both electrons share the energy
and are ejected in nearly opposite directions, with no participation of the atomic nucleus
[19, 20]. In this case, its matrix element maps the derivative of the ground-state wavefunction
at small electron–electron distances. Therefore, the fulfilment of the electron–electron cusp
condition (also known as the correlation cusp—see equation (12)) is the relevant criteria in
the description of the equal sharing energy region.

Calculations of these processes put severe limitations on the sophistication of the
wavefunctions, even when powerful computational facilities are available. Therefore, we are
resorted to tractable wavefunctions which allow us to solve these transition matrix elements
in the context of simple Nordsieck-type integrals [12].

As a first step, we want to propose simple correlated K-shell wavefunctions which
account for the influence of the passive electrons, for many neutral atoms. We compare
these functions with a fully quantal close-coupling (CC) calculation, which also includes the
same outer-shell influence. The comparison between both methods is performed not only for
the total wavefunction, but also for every term in the partial channel expansion in terms of
bipolar spherical harmonics. Having established that both calculations are compatible, the CC
functions may then be used to provide the necessary constraints for further development of
variational methods in the calculation of excited and continuum wavefunctions.

Atomic units are used throughout this paper unless otherwise specified.

2. Theory

2.1. The K-shell model Hamiltonian

Let us consider a system composed of two interacting electrons described by the non-relativistic
Hamiltonian
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As usual, r1 and r2 represent the distance of the electrons to the nucleus, and 1/r12 is the
electron–electron repulsion. In general, the central potential V (r) for electrons in the K-shell
can be written as

V (r) = −2

r
+

ZK(r)

r
→




−Z

r
as r → 0,

−2

r
as r → ∞,

(2)

where Z is the nuclear charge. In particular, for helium-like ions ZK(r) = Z − 2. For neutral
atoms, ZK(r)/r accounts for the static potential created by the rest of the electrons in the
upper shells. In this paper, we will consider the local Hartree potential given by

ZK(r)

r
= (2 − Z)

r
+

∑
nl �=1s2

∫
dx

|ϕnl(x)|2
|r − x| , (3)

where ϕnl represents the upper shell wavefunctions (the K-shell electrons are removed from
the sum). For the calculation of the static potential (equation (3)), we use Roothaan–Hartree–
Fock functions, tabulated by Bunge et al [21]. These functions satisfy the electron–nucleus
cusp condition required by our purposes. To make the calculation tractable, we have fitted
ZK(r) as a combination of simple exponentials

ZK(r) � −
3∑

j=1

Zj e−µj r . (4)

The asymptotic conditions at r → 0 (equation (2)) imposes

3∑
j=1

Zj = Z − 2. (5)

A list of the parameters Zj and µj for atoms from Li to Xe are shown in table 1. As a function
of Z, the coefficients follow a simple behaviour. In general, for 5 � Z � 10, two exponentials
are enough to represent ZK(r) within acceptable relative errors (note the similarities between
µ1 and µ2 from B to Ne).

The potential introduced to account for the influence of the outer electrons is local, and
does not include exchange with these electrons. This exchange, however, is not large since
the innermost K-shell is well separated, both in energy and coordinate space, from the outer
shells. We explicitly calculated the exchange for several atoms and found its contribution
negligible. For example, for the Ne atom, the exchange (at the mean ratio of the K-shell orbit)
is less than 0.3% of the direct potential at this distance. This is not the case for the subvalence
2s2 subshell, where the exchange with the 2p2 electrons is very important. In the Ne atom
case, an explicit calculation of the exchange potential results in a contribution of about 20%
to the total potential, around the L-shell radius. Therefore, the exchange cannot be neglected
while considering these wavefunctions calculations.

2.2. The trial wavefunction

The K-shell ground-state electrons will be described here by the following trial wavefunction,

�x

1s2 = �12(r1, r2)�
x
3(r12), (6)
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Table 1. Best values of the parameters Zj and µj for the fitting of ZK(r) (equation (3)), as given
in equation (4).

Z Atom Z1 µ1 Z2 µ2 Z3 µ3

3 Li 4.324 0.872 0.815 2.010 −4.139 1.216
4 Be 8.057 1.256 1.333 3.067 −7.389 1.768
5 B 14.276 1.414 0.990 1.438 −12.266 1.618
6 C 20.351 1.773 1.359 1.788 −17.710 2.007
7 N 25.005 2.129 1.678 2.148 −21.683 2.413
8 O 29.165 2.448 2.502 2.489 −25.668 2.776
9 F 33.197 2.777 2.460 2.804 −28.657 3.160

10 Ne 31.964 3.080 2.297 3.092 −26.261 3.599
11 Na 33.126 3.482 0.847 0.426 −24.973 4.099
12 Mg 32.638 4.016 2.064 0.634 −24.703 4.723
13 Al 31.919 4.547 3.228 0.722 −24.147 5.354
14 Si 28.996 5.170 4.721 0.897 −21.717 6.144
15 Ph 29.166 5.863 6.206 1.056 −22.372 6.888
16 S 28.319 6.564 7.645 1.192 −21.965 7.679
17 Cl 27.633 7.335 9.121 1.335 −21.754 8.530
18 Ar 17.499 7.837 10.612 1.480 −12.110 9.939
30 Zn 15.268 4.793 13.009 1.711 −0.278 59.768
36 Kr 19.719 5.419 14.654 1.531 −0.373 58.854
54 Xe 34.238 6.114 17.818 0.795 −0.057 84.286

where

�12 = N�1s(r1) cosh(αr1)�1s(r2) cosh(αr2), (7)

and

�1s(r) =
√

Z3/π exp[−Zr]

is the hydrogenic 1s state. The factor cosh(αr1) (cosh(αr2)) accounts for the shielding of
electron 2 (1) on 1 (2). The main modification introduced in this work is that the two-electron
function �12 consists of a product function rather than a sum of one-electron functions. Thus,
we can no longer assume that as r1 → ∞ electron 2 is represented by �1s(r2), as posed in the
model of Patil [5] to treat two electrons in a pure Coulomb field.

Three types of electron–electron (e–e) correlation functions �x
3 (x = a , b and c) will be

considered in this work. The first correlation function studied here, �a
3,

�a
3 = 1 − 1

1 + 2λa

e−λar12 , (8)

is a generalization of those studied by Bonham and Kohl [2] and Kleinekathöfer et al [22].
It is the simplest of the three functions, but there is a setback. As we are interested in using
these wavefunctions in double processes, analytical calculations of transition amplitudes are
generally demanded. To calculate the matrix elements by means of Nordsieck-type integrals,
a Fourier transform is required on the variable r12. This term should be L2 integrable, and
it is built by multiplying the integrand by exp(−εr12) and afterwards producing the limit as
ε → 0 [12, 13]. This procedure is clearly very cumbersome. A better strategy is to build the
exponential directly in the wavefunction as suggested by Otranto et al [23],

�b
3 = e−εr12 − 1 + 2ε

1 + 2λb

e−λbr12 . (9)
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A third type of correlation term was introduced by LeSech [3],

�c
3 = 1 +

r12

2
e−λcr12 , (10)

This function has largely been used in the case of helium-like ions. However, the use of �c
3

in the calculation of double photoionization processes introduces additional terms containing
derivatives of the Nordsieck integral respect to λc.

Since the three types of functions described above have the following properties,

1

�12

d�12

drj

∣∣∣∣
rj =0

= −Z j = 1, 2, (11)

1

�x
3

d�x
3

dr12

∣∣∣∣
r12=0

= 1

2
x = a, b, c, (12)

then, �x

1s2 satisfies the three Kato cusp conditions as a starting condition. At the very end, our
wavefunction �1s2 can be expressed in terms of a simple sum of products of exponentials of
the type

�
a,b

1s2 =
∑

j

Nj (e
−β1j r1 e−β2j r2 e−β3j r12), (13)

where the terms βij and Nj can easily be derived from the definition of the wavefunctions.
In this way, all calculations in the context of double processes become easier and faster. An
additional factor r12 emerges if �c

1s2 is used instead.

3. Results

The matrix elements involved in the variational expression,

E1s2 = 〈�1s2 |HK|�1s2〉
〈�1s2 |�1s2〉 , (14)

can then be cast in terms of simple integrals of the type solved by Bonham and Kohl [2], which
have closed forms. It is also important to consider the virial coefficient V , no longer given by
the ratio of the mean values of the total potential and the kinetics energies but by

V = −〈�1s2 |W − Z′
K(r1) − Z′

K(r2)|�1s2〉
〈�1s2 |K|�1s2〉 , (15)

where

W = V (r1) + V (r2) +
1

r12
, (16)

and

K = −∇2
r1

2
− ∇2

r2

2
, (17)

are the total potential and kinetics energies, respectively and Z′
K(r) is the derivative of ZK

defined in equation (3), and approximated as in equation (4), i.e.,

Z′
K(r) =

3∑
j=1

−µjZj e−µj r . (18)

In table 2, we present the variational values of the parameters α and λa , along with
the variational energy E1s2 , the normalization factor N, and the mean values of 〈r12〉 =
〈�1s2 |r12|�1s2〉, and 〈1/r12〉 = 〈�1s2 |1/r12|�1s2〉, for the wavefunction �a

1s2 . For the case of
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Table 2. Variational values obtained for �a

1s2 (equation (8)), for neutral atoms.

Z Atom E1s2
α√
Z

λa
Z

N 〈Zr12〉
〈 1
Zr12

〉
Virial

2 He −2.899 88 0.3406 0.1900 1.298 2.817 0.4780 2.0081
3 Li −6.631 44 0.3457 0.2439 1.153 2.587 0.5234 2.0028
4 Be −11.731 2 0.3537 0.2701 1.100 2.486 0.5463 2.0008
5 B −18.304 3 0.3446 0.2951 1.074 2.412 0.5636 2.0026
6 C −26.144 8 0.3500 0.3083 1.056 2.375 0.5730 2.0025
7 N −35.319 6 0.3558 0.3185 1.044 2.350 0.5797 2.0024
8 O −45.946 4 0.3627 0.3261 1.035 2.331 0.5846 2.0023
9 F −57.907 1 0.3696 0.3325 1.029 2.317 0.5885 2.0023

10 Ne −71.206 2 0.3764 0.3380 1.023 2.306 0.5916 2.0023
11 Na −87.068 1 0.3870 0.3412 1.019 2.299 0.5938 2.0021
12 Mg −104.655 0.3938 0.3451 1.015 2.291 0.5959 2.0021
13 Al −124.059 0.4003 0.3482 1.013 2.285 0.5977 2.0021
14 Si −145.158 0.4055 0.3513 1.010 2.279 0.5993 2.0020
15 Ph −167.937 0.4108 0.3539 1.009 2.274 0.6007 2.0020
16 S −192.451 0.4160 0.3561 1.007 2.270 0.6019 2.0020
17 Cl −218.656 0.4206 0.3582 1.006 2.266 0.6030 2.0019
18 Ar −246.547 0.4251 0.3628 1.005 2.262 0.6040 2.0019
30 Zn −720.815 0.4673 0.3601 0.9993 2.238 0.6109 2.0011
36 Kr −1057.27 0.4721 0.3635 0.9989 2.230 0.6131 2.0009
54 Xe −2473.27 0.5408 0.3469 0.9966 2.222 0.6155 2.0000

helium, we obtain a ground-state energy E1s2 = −2.89988, which means that our calculation
takes into account 88.3% of the correlation energy (Eexact = −2.9037, EHF = −2.8617). In
all the cases, V differs from 2 (exact value) only in the fourth significant figure.

The stability of the variational parameters α and λ is worth noting when they are scaled
with Z. Since Zri is the Coulomb (natural) scaling, then we can write λr12 = (λ/Z)(Zr12),
and that is why (λ/Z) is a quasi-universal parameter. The scaling of α with

√
Z was rather

unexpected but it is a consequence of the solution of the Bonham and Kohl integrals [2]. We
can attribute the slight increase of α/

√
Z as Z increases, to the effect of the passive electrons

of the upper shells that shield the nucleus, relaxing the ground state. Such an influence affects
the electron–nucleus interaction but not the electron–electron interaction; therefore, (λ/Z)

remains almost unaffected. It is interesting that this scaling seems to be general, and probably
holds for several types of trial wavefunctions. For example, we have found that the results
reported by LeSech in [3] also follow this scheme; λ and a in table 1 of this paper can be scaled
quite well with λ/

√
Z and a/Z, respectively. Moreover, λ and a in table 2 of [23] follow the

same scaling pattern as well.
To evaluate the influence of the upper shells along the isoelectronic sequence, in

table 3, we have reported the parameter values for the helium-like ions, from H− to Xe52+,
with the use of the �a

3 approximate function. As we are dealing with pure Coulomb potentials
(ZK(r) = Z − 2), the virial coefficients can be calculated as the ratio of the mean values of
the total potential and the kinetics energies. The values closely approach 2. The values of
〈Zr12〉 and

〈
1

Zr12

〉
are the indicator of accuracy of the level of correlation in the wavefunctions.

For helium, we have from table 3 〈Zr12〉a = 2.817 and
〈

1
Zr12

〉
a

= 0.4780, closely approaching

the values reported by Pekeris [24], which are 〈Zr12〉a = 2.844 and
〈

1
Zr12

〉
a

= 0.4729. This
prediction improves as Z increases [25]. The values of α and λ scale very well with Z. The
variational parameter α, when scaled with

√
Z, is nearly a constant for the three correlation

functions. The impressive stability of α is due to the lack of passive electrons, therefore, the
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Table 3. Variational values obtained for �a

1s2 (equation (8)), for helium-like ions.

Z Ion E1s2
α√
Z

λa
Z

N 〈Zr12〉
〈 1
Zr12

〉
Virial

1 H− −0.518 48 0.3364 0.0313 4.782 3.747 0.6876 2.0294
2 He −2.899 88 0.3406 0.1900 1.298 2.817 0.4780 2.0081
3 Li+ −7.276 67 0.3400 0.2453 1.156 2.579 0.5250 2.0034
4 Be2+ −13.652 5 0.3394 0.2732 1.106 2.471 0.5493 2.0018
5 B3+ −22.028 0 0.3389 0.2900 1.081 2.409 0.5641 2.0011
6 C4+ −32.403 3 0.3386 0.3013 1.065 2.370 0.5741 2.0007
7 N5+ −44.778 6 0.3383 0.3093 1.055 2.342 0.5812 2.0005
8 O6+ −59.153 7 0.3381 0.3154 1.047 2.322 0.5866 2.0004
9 F7+ −75.528 9 0.3379 0.3201 1.042 2.306 0.5908 2.0003

10 Ne8+ −93.904 0 0.3378 0.3238 1.037 2.294 0.5942 2.0002
18 Ar16+ −312.904 0.3372 0.3390 1.020 2.246 0.6078 2.0000
36 Kr34+ −1273.65 0.3367 0.3484 1.009 2.216 0.6164 2.0000
54 Xe52+ −2882.40 0.3366 0.3513 1.006 2.207 0.6193 2.0000

Table 4. Variational values obtained for �b

1s2 (equation (9)), for neutral atoms.

Z Atom 100ε
Z

α√
Z

λb
Z

N

2 He 0.633 0.3410 0.1760 1.406
3 Li 0.813 0.3466 0.2183 1.253
4 Be 0.900 0.3550 0.2342 1.198
5 B 0.987 0.3462 0.2457 1.175
6 C 1.025 0.3518 0.2482 1.157
7 N 1.062 0.3579 0.2476 1.147
8 O 1.087 0.3649 0.2451 1.140
9 F 1.109 0.3719 0.2418 1.135

10 Ne 1.128 0.3788 0.2379 1.131
11 Na 1.137 0.3895 0.2333 1.128
12 Mg 1.150 0.3964 0.2288 1.126
13 Al 1.165 0.4029 0.2238 1.126
14 Si 1.176 0.4082 0.2192 1.126
15 Ph 1.186 0.4135 0.2145 1.126
16 S 1.194 0.4187 0.2098 1.126
17 Cl 1.202 0.4233 0.2053 1.127
18 Ar 1.209 0.4279 0.2008 1.128
30 Zn 1.225 0.4700 0.1570 1.145
36 Kr 1.237 0.4744 0.1410 1.158
54 Xe 1.167 0.5407 0.1074 1.182

Coulomb scaling applies naturally, leading to the conclusion that the method is very robust, and
the wavefunctions have an appropriate structure. The influence of the passive outer shells in
the atoms considered here is generally very small, as can be seen by comparing the parameters
of the neutral atoms and the corresponding positive ions. This is clearly seen comparing
tables 2 and 3. For instance, the difference between the mean separation 〈Zr12〉 in neutral
Ne and in the Ne8+ ion is only 0.5%. The same similarity holds for

〈
1

Zr12

〉
. However, the value

of α, which is directly related to the energy, differs by about 11%.
In the case of the function �b

1s2 , the best variational values for the parameter ε, α, λb and
N are given in table 4. There is no need to display E1s2 ,V , 〈r12〉 and 〈1/r12〉, since there is no



3332 D M Mitnik and J E Miraglia

Table 5. Variational values obtained for �c

1s2 (equation (10)), for neutral atoms.

Z Atom E1s2
α√
Z

λc
Z

N Virial

2 He −2.899 91 0.3421 0.0884 0.5589 2.0085
3 Li −6.631 49 0.3480 0.1117 0.6827 2.0034
4 Be −11.731 2 0.3563 0.1229 0.7501 2.0014
5 B −18.304 2 0.3471 0.1326 0.8004 2.0031
6 C −26.144 7 0.3525 0.1379 0.8299 2.0029
7 N −35.319 5 0.3584 0.1419 0.8514 2.0029
8 O −45.946 3 0.3652 0.1449 0.8674 2.0027
9 F −57.906 9 0.3721 0.1474 0.8800 2.0027

10 Ne −71.206 0 0.3789 0.1495 0.8902 2.0026
18 Ar −246.547 0.4285 0.1599 0.9319 2.0021
36 Kr −1057.27 0.4747 0.1611 0.9620 2.0010
54 Xe −2473.27 0.5409 0.1502 0.9705 2.0000

noticeable change of these magnitudes from those displayed in table 2, except in the fourth
(for 〈r12〉 and 〈1/r12〉), fifth (for V) or sixth (for E1s2 ) figures.

In the case of the function �c

1s2 , we report the best values for α, λc and N in table 5. No
important improvement is observed in relation to the simplest case �a

1s2 to justify an additional
derivative of the Nordsieck integral. For helium, the correlation energy increases to 91%, but
the virial coefficient does not improve. The original LeSech function, as given by equation (2)
of [3], has a correlation energy of 96%, but its structure differs from ours as it contains the
sum of cosh’s instead of the product of cosh’s, as used here. Although it is more precise,
equation (3) of [3] complicates the calculation of the matrix elements even more.

4. Comparison with the close-coupling method

In this section, we will compare our variational functions �x

1s2 with a nonperturbative,
fully quantal close-coupling calculation of the exact wavefunctions of K-shell electrons in
a numerical lattice. The main purpose of the comparison between the variational �x

1s2 and
the nonperturbative functions �cc

1s2 is threefold. First, it tests the quality of the variational
functions, since an accurate energy value does not warrant that the function has the right spatial
behaviour. Second, it provides a good test to the convergence of the partial waves expansion
in the CC calculation. Since our variational functions contain all the cusp conditions, it is
useful to know how many partial waves are needed to fulfil these conditions. If we can
find a general agreement between both methods, a top-up procedure can be developed for a
complete extension of the close-coupling wavefunctions to higher partial waves. Third, if
both methods are compatible, we could be able to develop further variational methods for the
excited and continuum wavefunctions, constrained with the exact CC wavefunctions behaviour
(for example, imposing the zeros of the functions).

In [26], a complete description of the theoretical procedure used here was presented for
helium within a spherical symmetric model (also known as the Temkin–Poet model or the
S-wave model [27, 28]). The same method was also used before for real helium in a full
CC calculation by Mitnik et al [29], and the detailed description of the theory for this case
will appear in a forthcoming paper. The main difference with these previous calculations
resides in the fact that as we are dealing now with general atoms and ions, the influence of the
outer-shell electrons is taken into account here through the inclusion of the Hartree potential
(equation (2)) in the close-coupling equations.
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The CC ground-state wavefunction is calculated by relaxing the initial wavefunction (it
can be a simple product of one-electron wavefunctions) in a fictitious imaginary time τ = it
[30].

∂

∂τ
�cc

1s2( 
r1, 
r2, τ ) = −HK�cc
1s2( 
r1, 
r2, τ ). (19)

With no constraints, this imaginary time propagation will relax to the solution with
the smallest eigenvalue of HK. Thus, after many iterations (continuously renormalizing the
wavefunction), only the lowest level eigenvalue (i.e. the ground state, or the first metastable
level, according to the parity of the initial function) survives the relaxation. The computer
codes that implement this method are also adapted to run on parallel computers. In this case,
the wavefunctions are partitioned over many processors in such a way that the communications
between the processors are minimized and performed at every time step only for the partitioned
domain borders. This parallelization scheme is a standard procedure for many of the time-
dependent-close-coupling works (for example [31]).

4.1. Energy and mean values

In first place, we have tackled the energy of the ground state of helium, obtained by means
of this relaxation technique. For a numerical lattice having 500 points with a mesh spacing

r1 = 
r2 = 0.05, and for seven coupled channels (l1l2 = ss, pp, dd, ff, gg, hh, ii), we obtain
Ecc

1s2 = −2.896 which is no better than the energy of our variational wavefunctions. With this
numerical grid, the energy of the one-electron He+ ion is E1s = −1.9889, compared with the
exact value of E1s = −2. In order to improve these results, the CC method needs to decrease
the mesh step size, increasing the number of points. Convergence is demonstrated by using a
grid with 
r1 = 
r2 = 0.01, where E1s = −1.9998 and Ecc

1s2 = −2.9030, much better than
the variational predictions.

We have also considered the K-shell electrons of neon and argon as a benchmark to
illustrate neutral atoms. For neutral Ne, the total energy was calculated with the CC method,
by using a numerical grid of 500 points with 
r1 = 
r2 = 0.005 and including the same
seven channels in the calculation. We obtain Ecc

1s2 = −71.127, which reproduces the value
shown in table 2 with an agreement close to the 0.1%. Other parameters of interest are the
mean orbital radii. The CC method yields 〈r1〉cc = 0.154,

〈
r2

1

〉
cc = 0.032 and 〈1/r1〉cc = 9.78

while the use of �a

1s2 produces instead 〈r1〉a = 0.156,
〈
r2

1

〉
a

= 0.033 and 〈1/r1〉a = 9.66.
These values are similar to the Hartree–Fock values 〈r1〉HF = 0.1576,

〈
r2

1

〉
HF = 0.0335, and

〈1/r1〉HF = 9.618, as tabulated by Bunge et al [21]. As noted before, the close-coupling
results can be improved by using a better numerical lattice.

For neutral Ar, the CC calculation uses a 500-points numerical grid, with 
r1 = 
r2 =
0.001, and includes four channels (l1l2 = ss, pp, dd, ff). We obtain the following results:
Ecc

1s2 = −246.52, 〈r1〉cc = 0.085,
〈
r2

1

〉
cc = 0.0096 and 〈1/r1〉cc = 17.7 while the use of �a

1s2

produces 〈r1〉a = 0.086,
〈
r2

1

〉
a

= 0.0098 and 〈1/r1〉a = 17.6. The corresponding Hartree–
Fock values [21] are 〈r1〉HF = 0.0861,

〈
r2

1

〉
HF = 0.009 96 and 〈1/r1〉HF = 17.55. Therefore,

we conclude that our correlated wavefunctions describe the global parameters quiet well.

4.2. Coupled spherical harmonics expansion

In general, the total wavefunction �LM can be expanded in terms of coupled spherical
harmonics as follows:

�LM =
∑
l1,l2

P LM
l1l2

(r1, r2)

r1r2
×

∑
m1,m2

C
l1l2L
m1m2M

Y
m1
l1

(r̂1)Y
m2
l2

(r̂2), (20)



3334 D M Mitnik and J E Miraglia

(a) (b) (c)

Figure 1. (a) P a
00, the s–s radial part of �a

1s2 (the variational approximated wavefunction),

(b) P CC
00 , the s–s radial part of �cc

1s2 (the CC wavefunction) and (c) the difference between both
radial wavefunctions.

(a) (b) (c)

Figure 2. (a) P a
11, the p–p radial part of �a

1s2 (the variational approximated wavefunction),

(b) P CC
11 , the p–p radial part of �cc

1s2 (the CC wavefunction) and (c) the difference between both
radial wavefunctions.

where L and M are the total orbital and azimuthal angular momentum of the system, Ym
l (̂r)

are spherical harmonics, and C
l1l2L
m1m2M

are Clebsch–Gordan coefficients. In particular, for the
ground-state wavefunction �1s2 (in which L = 0 and M = 0) is reduced to

�1s2 = 1

r1r2

∑
lm

Pll(r1, r2)
(−1)l√
2l + 1

Ym∗
l (r̂1)Y

m
l (r̂2). (21)

The normalization of �1s2 imposes
∑

l Cll = 1, where

Cll =
∫

dr1 dr2|Pll(r1, r2)|2. (22)

The first term, C00, is the so-called s–s correlation, C11 is the p–p correlation, and so on.
In order to compare the variational wavefunctions with the CC wavefunctions, we

expanded both functions in terms of coupled spherical harmonics, and compared every term
in the partial expansion. Figure 1 shows (a) P a

00, the s–s radial part of �a

1s2 (the variational
approximated wavefunction), (b) P CC

00 , the s–s radial part of �cc
1s2 (the CC wavefunction), and

(c) the difference between both radial wavefunctions. As is shown in the figure, the difference
between both functions is very small (the amplitude of the differences is less than 0.01). The
figure shows a deeper zone along the diagonal r1 = r2, which is a clear demonstration that the
individual partial wave P CC

00 does not properly satisfy the electron–electron cusp condition.
The excellent agreement between the variational and the close-coupling radial

wavefunctions is not limited to the s–s term in the expansion. Figure 2 shows P a
11 and P CC

11 ,
and the difference between both radial wavefunctions. In this case, the overall agreement
is still very good, and the effect of the lack of the electron–electron cusp condition in the
CC wavefunction is less pronounced. It must be mentioned that the variational and the CC
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Figure 3. Correlation values Cll (equation (22)) for He, as a function of the l quantum number,
for the close-coupling expansion of �cc

1s2 , compared with the �a

1s2 approximated function.

functions are normalized in a completely separate calculation. So, it will be natural to find
such differences between the partial expansion terms.

The correlation terms Cll (equation (22)) can be calculated from the variational
wavefunctions by simply projecting �x

1s2 into the coupled spherical harmonic base. This
projection has been achieved here by numerical calculation. Alternatively, one may obtain
closed forms for the first l’s by using the technique derived by Swiatecki [32], as described in
the appendix.

Figure 3 shows the partial contribution of the different terms in the expansion (21), by
plotting the Cll values (equation (22)), as a function of the quantum number l, for neutral
He. The figure shows the expansion terms for both the CC calculations (full circles) and for
�a

1s2 (empty squares) connected with a solid line (�c

1s2 produces very similar values which
are undistinguishable in the present plot). Note that, by construction,

∑
l Cll = 1 in the

CC calculations. As we show in the figure, the agreement between the different methods is
excellent.

Two important dependences can be extracted from the expansion of �a

1s2 as discussed
next.

(i) From the closed forms displayed in the appendix, we have noted that for neutral atoms
the expansion of �a

1s2 in terms of the correlation terms Ca
ll (equation (22)) obeys a scaling

law with the nuclear charge. They can roughly be fitted for large Z, (Z � 4), as follows

Ca
11 ≈ 0.017

Z2
, Ca

22 ≈ 0.0012

Z2
(23)

This relation can be predicted by scaling the electron coordinates in the natural ones,
i.e. ρi = Zri . In this way the integral given by equation (22) reduces from

∫
dr1 dr2 to

Z−2
∫

dρ1 dρ2, given the so-called Coulomb or Schrödinger scaling.
(ii) It is also noticeable in figure 3 that beyond a certain l, the Ca

ll behaves as Ca
ll ≈ l−5.7,

which may be very important to estimate the importance of higher angular momentum in
the close-coupling method.

The interesting point to observe is that Cc
ll follows a similar scaling to equation (23) for

large Z. Even for neutral helium, we find similar correlation terms. For example, for �a

1s2 , we
find Ca

11 = 0.0044 and Ca
22 = 0.000 23, while for �c

1s2 , Cc
11 = 0.0044 and Cc

22 = 0.000 57.
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These results do not differ much from those obtained by using a nonperturbative CC method,
which produces Ccc

11 = 0.0040 and Ccc
22 = 0.000 18.

For larger Z, the correlation terms are also quite similar. For example, for neutral
Ne we find Ca

11 = 1.60 × 10−4 and Ca
22 = 1.2 × 10−5, which compares very well with

Cc
11 = 1.68 × 10−4 and Cc

22 = 1.4 × 10−5. They are in good agreement with the CC results
Ccc

11 = 1.39 × 10−4 and Ccc
22 = 4.0 × 10−5. It seems that the Kato cusp conditions impose an

appropriate decomposition in spherical harmonics.

5. Conclusions

We have introduced simple variational wavefunctions to describe the K-shell orbital electrons
of neutral atoms and helium-like ions. These functions are strongly correlated and satisfy the
Kato cusp conditions. Their structure makes them very tractable for atomic physics processes
involving two active electrons. They describe very well the global and local parameters
(energy, mean orbital radius, virial coefficient, etc). From the comparison with the rigorous
CC method, we find that our variational functions yields a good description when expanded
in coupled spherical harmonics. Compatibility between both methods will allow us to rely
on the exact CC functions, for imposing constraints to the variational calculation of excited
and continuum states. Summing up, the simple wavefunctions here proposed appear to be
excellent candidates for the calculation of double processes in atomic physics.
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Appendix. Analytical angular momentum expansion

In this appendix, we will show how to expand our simple wavefunctions in coupled spherical
harmonics, as in equation (21), though applying an analytical approach. The general technique
has been detailed by Swiatecki [32], and we will follow these procedures to obtain the P x

ll

terms for the approximated functions x = a and c. For the first kind of functions �a

1s2 , after
some algebra, we obtain

P a
ll (r1, r2) = (−1)l√

2l + 1
�12(r1, r2)

[
r1r2δl0 − T a

l (r1, r2)

2 + 4λa

]
, (A.1)

where

T a
l (r1, r2) =

l∑
j=0

j∑
k=0

Ll,j,kI (1 + 2j − 2k, λa, r0, R0), (A.2)

Ll,j,k =
(

j

k

)
(−l)j (l + 1)j

(j !)2(4r1r2)j

(
j

k

)
(−1)kr2k

0 , (A.3)

and

I (n, λ, r0, R0) =
∫ R0

r0

dx xn e−(λx) = 1

λn+1
[(n + 1, λr0) − (n + 1, λR0)] . (A.4)

In the last expressions, r0 ≡ |r1 − r2| and R0 ≡ r1 + r2.
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The first terms in equation (A.2) are

T a
0 = I1, T a

1 = I1Ya + I3Yb, T a
2 = I1Yc + I3Yd + I5Ye, (A.5)

where

Ya = 1 +
r2

0

2r1r2
, Yb = − 1

2r1r2
, Ye = 3

8r2
1 r2

2

,

(A.6)

Yc = 1 +
3r2

0

2r1r2
+

3r4
0

8r2
1 r2

2

, Yd = − 3

2r1r2
− 3r2

0

4r2
1 r2

2

,

and, for the sake of simplicity, we have denoted here In ≡ I (n, λ, r0, R0).
For �c

1s2 , we find an expansion similar to equation (A.1) but now

P c
ll (r1, r2) = (−1)l√

2l + 1
�12(r1r2)

[
r1r2δl0 +

1

4
T c

l (r1, r2)

]
, (A.7)

and

T c
l (r1, r2) =

l∑
j=0

j∑
k=0

Ll,j,kI (2 + 2j − 2k, λc, r0, R0). (A.8)

The first terms in equation (A.8) are

T c
0 = I2, T c

1 = I2Ya + I4Yb, T c
2 = I2Yc + I4Yd + I6Ye. (A.9)
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