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Systematic study of the stopping power of the lanthanides
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In the last decade, lanthanides have become the subject of multiple studies due to their importance in
technological applications. This paper aims to systematically study the energy loss per unit length of protons on
the 15 lanthanides, from lanthanum to lutetium. We investigate the stopping power cross sections by considering
the influence of the relativistic atomic structure, namely the description of the 4 f electrons, the number of
electrons in the valence shells, and the electronic screening of the same or close subshells. The electronic
stopping model considers separate contributions from bound and valence electrons. We employ a many-electron
model for the former and a combination of perturbative and nonperturbative free-electron gas approaches for
the latter. Our stopping results for the lanthanide series cover an extended energy range from very low to the
MeV region. We compare them with measurements and other theoretical (DPASS, CASP) and semiempirical
(SRIM) methods. Our results agree with most experimental data, even the recent values around the maximum
for gadolinium. We implement Lindhard’s scaling for the stopping number for all the data available of the 15
targets. Lindhard scaling for the stopping number includes all the data for the 15 targets. The present paper cast
doubts on certain data sets, which should affect SRIM’s description of lanthanides, such as La, Nd, Dy, and Tb. We
call attention to the scarcity of measurements in the low and intermediate ranges, and we suggest experimental
efforts to shed light on the stopping power of these relevant targets.
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I. INTRODUCTION

Lanthanides, also known as rare-earth elements (REEs),
encompass 15 atoms: lanthanum, cerium, praseodymium,
neodymium, promethium, samarium, europium, gadolinium,
terbium, dysprosium, holmium, erbium, thulium, ytterbium,
and lutetium. These elements feature nuclear charges ranging
from 57 to 71 and have interesting properties, mainly related
to the filling of the 4 f subshell. Recent studies on REEs
and their alloys are driven by their practical applications,
such as high-tech devices, computer information storage,
energy-saving gadgets (green technology), superconductors,
and medicine [1–3]. For example, lutetium has essential
medical applications in cancer therapy [4]. On a side note,
promethium is the only one that is radioactive, being the
product of nuclear reactions (spontaneous fission of uranium
and alpha decay of 151Eu).

The energy loss or stopping power of lanthanides is still
an open subject. Regarding the theoretical description of the
atomic structure, solving such multielectronic targets poses a
real challenge. As demonstrated in previous works [5–8], fully
relativistic calculations are required for the inner electrons,
which also affect the description of the outer shells, such as
the 4 f . Moreover, we showed in Ref. [5] that stopping calcula-
tions based on nonrelativistic atomic structure underestimate
the values around the maximum.

On the experimental side, the stopping data of hydrogen in
some lanthanides (Ce, Pr, Sm, Ho, Er, Yb) are very scarce
(few data points in a narrow energy region). Moreover, in

*jpperalta@iafe.uba.ar

other cases (Pm, Eu, Tm), the data are nonexistent. In the case
of Nd, Tb, Dy, and Lu, the only experimental data are the mea-
surements by Krist and Mertens [9,10] from 1983. However,
in the same publications, the stopping data for other targets
(Al, Au, Ag, Ta, Pt) have been shown to disagree with most
experimental values [11]. The case of Gd is exceptional; there
are multiple data sets in an extended energy range. Recent
measurements [12] for this target differ from previous data
[13] and the SRIM predictions [14] at impact energies around
the stopping maximum and below.

In compounds, most lanthanides bond with valence +3,
but also +2 and +4 [2,15]. When dealing with metallic lan-
thanides, the question is whether this configuration remains in
the solid phase and how many electrons per atom are part of
the metallic conduction band.

This paper aims to study the stopping power of REEs
for protons systematically. We pay special attention to the
influence of the atomic structure on the cross sections, in-
cluding the number of valence electrons, the promotion of 4 f
electrons in the conduction band, and the screening among
electrons of the same or even close subshells. To this end, we
employed a free-electron gas (FEG) description for the va-
lence electrons and the shellwise local plasma approximation
(SLPA) [16] for the bound shells. The combination of these
formalisms proved to properly describe the energy loss in met-
als in an extended energy range [17]. Moreover, the very good
agreement with recent experimental data for postlanthanides,
Ta and Pt, encouraged us to extend the study to the lanthanide
series [6]. The whole picture given by this systematic study
not only helps improve the theoretical description but also
casts doubts on some experimental data sets.
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The paper is organized as follows: we present the atomic
structure approach in Sec. II and the stopping power models
employed in Sec. III. Theoretical results and comparisons
with the experimental data are included and discussed in
Sec. IV. Finally, Sec. V summarizes the conclusions of the
present paper. Atomic units are employed, except where oth-
erwise mentioned.

II. ATOMIC STRUCTURE MODEL

The single-particle Dirac equation for a potential V (r) is

hD ϕnl jm(r) = Enl j ϕnl jm(r), (1)

where hD = T D + V is the single-electron Dirac Hamiltonian,
and T D is the single-particle kinetic operator. In atomic units,
this operator is given by

T D = c α · p + β c2. (2)

The constant c is the speed of light, and the quantities α and β

are 4 × 4 Dirac matrices

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
, (3)

the 2 × 2 matrix σ is the Pauli spin matrix, I is the unitary
matrix of rank 2, and p = −i∇. The atomic fully relativistic
states are obtained from the many-electron Dirac Hamilto-
nian:

HD =
∑

i

[
T D

i − Z

ri

]
+

∑
i< j

1

ri j
, (4)

where the last terms are the nuclei-electron and the electron-
electron interactions.

In our paper, we solved the fully relativistic atomic struc-
ture using the HULLAC code package (for more details, see
Ref. [18] and references therein). In particular, from this suite,
the RELAC code was used to calculate first-order energies
and wave functions, implementing the relativistic parameter
potential. In this approach, the Dirac Hamiltonian is split into
a zeroth-order part and a perturbation:

HD = H0 + H1. (5)

The zeroth-order Hamiltonian contains a spherical potential
U (r) representing the screening of the charge distribution (av-
eraging the interaction between the electrons), and is written
as

H0 =
∑

i

[
T D

i + U (ri )
]
. (6)

The perturbation is

H1 =
∑

i

[
−Z

ri
− U (ri)

]
+

∑
i< j

1

ri j
. (7)

The key component of the parameter potential method resides
in the election of the spherical U (r) in such a way that the
perturbation H1 becomes small, minimizing the first-order
configuration averaged energies. The specific form of the po-
tential and the procedure for obtaining the solutions of the
many-electron states is discussed in Ref. [18].

The parametric potential method is implemented within
the configuration-interaction (CI) scheme, i.e., the potential is
minimized for different groups of configurations clustered by
similar energies and the same parity. The Hamiltonian HD is
then constructed based on the mixed configurations included
in the U (ri) calculation, allowing us to take into account
correlation effects.

Since we are dealing with a central potential, it is possible
to separate the radial and angular coordinates, expressing the
solutions as spinors:

ϕnl jm(r) = 1

r

(
i Pnl j (r) �l jm(r̂)
Qnl j (r) �−l jm(r̂)

)
, (8)

where Pnl j (r) and Qnl j (r) are the radial large and small spinor
components, respectively, and � are spherical spinors. The
normalization conditions for the orbitals∫

ϕ
†
nl jm(r) ϕnl jm(r) dr = 1 (9)

can be written as∫ ∞

0

[
P2

nl j (r) + Q2
nl j (r)

]
dr = 1. (10)

Similarly, the mean radius can be obtained by

〈r〉nl j =
∫ ∞

0
[P∗

nl j (r) r Pnl j (r) + Q∗
nl j (r) r Qnl j (r)] dr. (11)

For the relativistic orbitals, we use the notation nl±, which
means nl j, where the index j = l ± 1/2 is referred to as ±.
The N-electron zeroth-order solutions are constructed from
antisymmetrized products of orbitals.

Following Grant [19], the Breit interaction and QED
corrections are treated as second perturbations. The total
Hamiltonian is given by

H = HD + HBreit + HQED, (12)

where the Breit interaction

HBreit =
∑
i< j

−αi · α j
cos(ω ri j )

ri j

+ (αi · ∇i )(α j · ∇ j )
cos(ω ri j ) − 1

ω2 ri j
(13)

is produced by the emission of a virtual photon of energy
ω from electron i and its capture by another electron j. The
HQED represents the additional quantum electrodynamic cor-
rections given by the vacuum polarization and the self-energy.

Selecting the correct configurations included in the CI is
vital for the electron structure calculation of elements. In gen-
eral, configurations with the same parity are included. Then,
their respective energy levels mix, and important correlation
effects are accounted for. However, the lanthanides feature an
open 4 f subshell, which may lead to electronic structures of
hundreds of levels when including just one configuration. A
careful selection of mixing configurations is considered in this
paper, which is further discussed in Sec. IV A.
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III. THE ENERGY-LOSS MODELS

A. Stopping power of valence electrons

At low-impact energies, the electronic stopping power is
governed by the interaction of the projectile with the valence
electrons. In metals, the representation of the conduction elec-
trons as a FEG has been proven successful [20–22]. This FEG
is characterized by its density, which is usually expressed in
terms of the Wigner-Seitz radii per electron, rS .

Following previous works [6,17,23], we use two models
to describe the stopping for a projectile moving in a FEG:
(i) the screened potential with cusp condition (SPCC) model
[17], which is a nonlinear binary collisional approach, and (ii)
the Mermin-Lindhard dielectric formalism [24], which is a
linear-response approximation that includes binary and col-
lective excitations (plasmons). Consequently, we can model
the FEG contribution in an extensive energy range by using
the SPCC model at low to intermediate energies and the
Mermin-Lindhard formalism at intermediate- to high-energy
values, where plasmon excitations are important.

B. Stopping power of bound electrons

The energy loss due to the ionization of the bound electrons
is described using the SLPA [16]. This collective description
allows including electrons from the 4 f orbital down to the
K shell with the same level of complexity. This model has
been successfully used to describe the different moments of
the energy loss, i.e., stopping [6,23], straggling [25], and
ionization of different shells [26–28]. Noteworthily, the SLPA
verifies the f -sum rules and Bethe high-energy limit [6,16].

The stopping power for a bare ion with charge ZP, moving
at velocity v, in the SLPA is obtained by adding the indepen-
dent nl contributions defined as

Snl = 2

πv2

∫ ∞

0

Z2
P dk

k

∫ kv

0
ω Im

[ −1

εnl (k, ω)

]
dω. (14)

The imaginary part of the inverse dielectric function is ex-
pressed as

Im

[ −1

εnl (k, ω)

]
= ρa

∫
Im

[ −1

εSLPA(k, ω, ρnl (r))

]
dr, (15)

with ρa being the target atomic density and ρnl (r) being
the local density of electrons of the nl subshell. Note that
a local density implies a local plasmon frequency ωnl

p (r) =√
4π ρnl (r). Following Ref. [6], the dielectric function εSLPA

employed in Eq. (15) is that of Levine-Mermin (LM), which
allows including explicitly the energy gap of each subshell
and a local damping γ nl (r) = ωnl

p (r)/2. We call this proposal
SLPA-LM. It is essential to highlight that the only inputs of
the SLPA-LM model are the electronic structure solutions
described in Sec. II, i.e., orbital radial densities ρnl±(r) and
binding energies Enl±.

The relativistic binding energies present spin-orbit splits.
However, Heisenberg’s uncertainty, 	E 	t � h̄/2, makes
this split vanish for very short collisional times. We roughly
estimate 	t ≈ 2〈r〉nl/v, with 〈r〉nl and v being the mean
orbital radii and the ion velocity, respectively. Using this crite-
rion, the SLPA describes the nl± electrons together as a single
electronic density ρnl (r) with mean binding energy Enl . The

physical consequence of this approach is ensuring intrashell
screening among these electrons [7,8].

Analogously, above certain impact velocities, we consider
intershell screening among electrons belonging to different
orbitals but with very close binding energies. We successfully
implemented this criterion to the 5p and 4 f electrons of heavy
transition metals (Hf, Ta, W, and Pt) [5,6]. The case of the
REE is somewhat different because, although the 4 f electrons
are localized close to the 5p orbital, they are loosely bound.
We estimate a threshold velocity vp f ≈ 	Ep f 2〈r〉p f /(h̄/2),
where 	Ep f = |E4 f − E5p| is the energy gap between the 4 f
and 5p subshell, and 〈r〉p f is the mean r value of the combined
electron density of these shells. For impact velocities v > vp f ,
we consider these electrons to respond to the incoming projec-
tile as a single electronic cloud.

IV. RESULTS AND DISCUSSION

This section presents our full theoretical results of atomic
structure and electronic stopping power for protons on all
the elements from the lanthanide series. The present stopping
power calculations consider separate inner (bound) and outer
(valence) electronic contributions to the energy loss. Hence,
the proper bound-valence separation is crucial. We present the
results as follows: first, the atomic structure calculations to
describe the inner bound electrons; secondly, the discussion
about the valence electrons; and finally, the total stopping
power results.

A. Atomic structure calculations

The ground-state configuration of atomic lanthanides can
be generally expressed as [Xe] 4 f n+1 6s2 or [Xe] 4 f n 5d 6s2.
According to the n number of electrons in the 4 f subshell,
lanthanides can be light (La to Eu) or heavy (Gd to Lu).

As described in Sec. II, the atomic structure was computed
by introducing a CI scheme, which considers the ground con-
figuration and contributing excited states. We present these
ground configurations in Table I. The excited states included
in the CI were selected by considering the parity of the pro-
moted electrons and the closeness of the energy levels of said
excited electrons. For example, we included two electronic
configurations for Ce: the ground 4 f 5d 6s2 and the excited
4 f 5d3 states. Details about the CI included in the calculation
for Gd and Er can be found in Ref. [29]. A similar approach
was followed for the computation of the remaining atomic
systems.

The present binding energy results are shown in Figs. 1–6
with filled symbols. These values for atoms can be compared
to those in solid targets up to the subvalence shell. The outer
electrons in a solid are considered part of the FEG, as will be
discussed later in Sec. IV B.

The results for La are presented in Fig. 1, which is the
first in the lanthanide series and has no 4 f electrons. Figure 2
illustrates the values for Ce, Gd, and Lu. We grouped these
elements since they are the only REE with 5d electrons.
Another characteristic to bear in mind about this arrangement
is that Ce has one electron in the 4 f subshell, while Gd and
Lu feature a half-filled and completely filled subshell, respec-
tively. The binding energies for the rest of the lanthanides are
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TABLE I. Atomic structure and valence electrons data from La to Lu: Z , nuclear charge; electronic configuration; E exp
4 f ±, experimental

measurements (mean value) of the 4 f subshell; E4 f and 〈r〉4 f , present theoretical calculations for binding energy and mean radii of the 4 f
subshell; Ne, the number of valence electrons per atom; rS , the Wigner-Seitz radii; ωp, the plasmon frequency, γp, the half width of the plasmon
peak; EF , the Fermi energy; and Ep, the minimum proton energy to excite plasmons.

Z Electronic E exp
4 f ±

a E4 f 〈r〉4 f Ne rS ωp γ exp
p

b EF Ep

configuration (eV) (eV) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (keV)

La 57 [Xe] 5d 6s2 3 2.72 0.386 0.15 0.25 24
Ce 58 [Xe] 4 f 5d 6s2 0.1 ± 1.2 5.2 1.098 4 2.40 0.466 0.15 0.32 30
Pr 59 [Xe] 4 f 3 6s2 2.0 ± 0.6 2.6 1.176 3 2.66 0.398 0.15 0.26 25
Nd 60 [Xe] 4 f 4 6s2 1.5 ± 0.9 2.2 1.125 3 2.64 0.404 0.15 0.26 25
Pm 61 [Xe] 4 f 5 6s2 8.8 1.060 3 2.61 0.410 0.15 0.27 26
Sm 62 [Xe] 4 f 6 6s2 5.5 ± 1.1 11.4 0.925 3 2.61 0.410 0.15 0.27 26
Eu 63 [Xe] 4 f 7 6s2 0.0 ± 3.2 1.8 1.140 3 2.96 0.341 0.15 0.21 21
Gd 64 [Xe] 4 f 7 5d 6s2 8.3 ± 0.1c 10.7 0.926 3 2.61 0.411 0.15 0.27 26
Tb 65 [Xe] 4 f 9 6s2 2.6 ± 1.5 3.4 0.995 2 2.96 0.341 0.15 0.21 21
Dy 66 [Xe] 4 f 10 6s2 4.2 ± 1.6 5.0 0.870 2 2.94 0.344 0.15 0.21 21
Ho 67 [Xe] 4 f 11 6s2 3.7 ± 3.0 4.8 0.852 2 2.93 0.346 0.15 0.21 21
Er 68 [Xe] 4 f 12 6s2 4.3 ± 1.4 4.2 0.828 2 2.91 0.349 0.15 0.22 21
Tm 69 [Xe] 4 f 13 6s2 5.3 ± 1.9 2.9 0.825 2 2.89 0.352 0.15 0.22 22
Yb 70 [Xe] 4 f 14 6s2 6.3 ± 1.0 3.0 0.787 2 3.22 0.300 0.15 0.18 18
Lu 71 [Xe] 4 f 14 5d 6s2 6.9 ± 0.5 10.6 0.723 3 2.51 0.435 0.15 0.29 27

aValues extracted from Ref. [31] except for Gd.
bTaken from Ref. [35] for Tb and applied to all the REE.
cTaken from Ref. [34].

displayed in Figs. 3 (Nd, Pm, and Sm), 4 (Pr, Eu, and Tb), 5
(Dy, Ho, and Er), and 6 (Tm and Yb). The energy values for
some targets were multiplied by a factor of 10 or 100 to con-
trast overlapping results. We compared the present theoretical
calculations with the solid-state experimental measurements
compiled by Williams [30], which include data from Ref. [31].

Our calculations agree excellently with the experimental
values for the deepest electrons, i.e., K (< 1%), L (< 2%), and
M (< 4%) shells. For the N shell, our results are still good (<
7%), except for 4d electrons in Eu, Sm, and Pm (≈ 10%). The
subvalence shells are the orbitals with the most differences
and will be discussed below.

For the 5s and 5p orbitals, we find differences of up to
10% except for La, Ce, Tb, Dy, and Lu, which are less than

FIG. 1. Electron binding energies of La. Present relativistic
calculation (� symbols) and experimental values from Ref. [30]
(© symbols).

25%. Generally, these values rise due to the contrasting nature
of the experimental measurements (solid) versus our atomic
calculations, which may be considered gaseous. Larger dis-
crepancies in these subvalence orbitals are found for Gd and
Eu, of approximately 75% (Figs. 2 and 4). These differences
do not originate in the solid-atomic dissimilarities but are a
theoretical shortcoming due to the large number of quantum
states belonging to the partially filled f 7 subshell. For Pm,
there are no experimental values for the subvalence orbitals
5s, 5p, and 4 f . Data for Pm are generally scarce, which may
be related to its radioactive nature.

Given the importance of the 4 f subshell in lanthanides, we
included in Table I the present mean radii 〈r〉4 f , the binding
energy E4 f , and its corresponding experimental measurement

FIG. 2. Electron binding energies of Ce, Gd, and Lu. Present
relativistic calculation (� symbols) and experimental values from
Ref. [30] (© symbols).
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FIG. 3. Electron binding energies of Nd, Pm, and Sm. Present
relativistic calculation (� symbols) and experimental values from
Ref. [30] (© symbols).

E exp
4 f (and error). As the nuclear charge increases and the 4 f

orbital fills, we observe the well-known lanthanide radii con-
traction. This effect is mainly responsible for most of its
spectroscopic and magnetic properties [32]. The binding ener-
gies of 4 f electrons have been shown to change according to
the metal’s valence configuration [33]. So, the discrepancies
found may be related to the gas-solid differences mentioned
above. On a side note, the experimental 4 f ± binding energy
of Eu is E4 f ± = 0 ± 3.2 eV [31]. This value is not included
in Fig. 4, but the mean value of the corresponding theoreti-
cal prediction is contained within the experimental error, as
shown in Table I.

B. Lanthanide valence electrons

As previously described, the present stopping power cal-
culations are based on the separate inner and valence shell (or
FEG) contributions to the energy loss. Although the results
displayed in Figs. 1–6 are for gas atoms, we included a vertical
dashed line that illustrates the gas-solid difference; i.e., from
the vertical line to the right, the electrons belong to the FEG

FIG. 4. Electron binding energies of Pr, Eu, and Tb. Present
relativistic calculation (� symbols) and experimental values from
Ref. [30] (© symbols).

FIG. 5. Electron binding energies of Dy, Ho, and Er. Present
relativistic calculation (� symbols) and experimental values from
Ref. [30] (© symbols).

and the bound states in this region are not valid. The horizontal
dashed lines indicate the corresponding Fermi energy, EF .

For most elements in the periodic table, a straightforward
comparison between atomic binding energies and experimen-
tal measurements in solids would suggest the bound-valence
separation. Generally, valence shells with no experimental
measurements may indicate that their corresponding electrons
belong to the conduction band.

As shown in Fig. 1 for La, there are no experimental values
for the 5d and 6s2 orbitals; hence, it is reasonable to consider
the number of electrons in the FEG: Ne = 3. We can also note
that the band gap (0 < E < EF ) encompasses the atomic 5d
and 6s electrons. Moreover, the energy gap between the 5p
electrons and the valence shells unequivocally supports our
suggestion.

For the other elements in the lanthanide series, the dis-
cussion of the bound-valence separation is analogous to the
case of La, with a few exceptions. For Ce (Fig. 2), we pro-
pose Ne = 4 electrons in the FEG, which correspond to the
4 f 5d 6s2 configuration. Metallic cerium has been reported to
show spontaneous interconfiguration fluctuations between +3

FIG. 6. Electron binding energies of Tm and Yb. Present rel-
ativistic calculation (� symbols) and experimental values from
Ref. [30] (© symbols).
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and +4. The itinerant nature of the 4 f electron in metals has
been related to its chemical environment or pressure [36]. The
4 f electron promoted to the FEG is also suggested for the rest
of the light lanthanides: Pr, Nd, Pm, Sm, and Eu (Figs. 3 and
4) [33,36,37]. Thus, we considered for these targets Ne = 3,
i.e., one 4 f and two 6s electrons.

The case of Gd and Lu (Fig. 2) is different; their electronic
configuration includes one 5d electron (see Table I). We found
that the 4 f electrons are strongly correlated, which leads us to
consider Ne = 3, i.e., 5d 6s2 valence electrons in the conduc-
tion band and all 4 f electrons in the bound shells. Similarly,
for the rest of the heavy lanthanides (Tb, Dy, Ho, Er, Tm,
and Yb), shown in Figs. 4–6, we suggest Ne = 2, i.e., two
electrons from the 6s subshell in the FEG. Although the 4 f
electrons of these elements are still loosely bound, the mean
radii are smaller than 1 a.u., as can be seen in Table I. Our pro-
posal agrees with other ab initio studies, which conclude that
these metallic elements feature +2 electrons in their valence
configuration [37].

In summary, the present systematic analysis performed
led us to consider one 4 f electron in the FEG for the light
lanthanides (Z = 58–63) and none for the rest. The number of
electrons in the FEG inferred for the 15 REEs is presented in
Table I. We also include the corresponding FEG parameters in
Table I: the Wigner-Seitz radii rS , the plasmon frequency ωp,
and EF , which are computed from the value of Ne.

C. Stopping power calculations

The density of electrons in the FEG is the most critical
parameter for describing the stopping power in the low-energy
region. Both models employed here, SPCC and Mermin-
Lindhard, depend on the density or equivalent parameter, rS or
ωp. The Mermin-Lindhard dielectric function relies on the ωp

and γp values, with the latter being a finite value introduced by
Mermin [24] as the probability of collisions per unit of time.
When the momentum transferred tends to zero, this dielectric
function approaches a Lorentzian function centered on ωp

with half width at half maximum γp, experimentally observed
in the optical energy-loss functions (ELFs).

The theoretical plasmon frequencies ωp presented in
Table I were calculated using the proposed Ne values. Experi-
mental ELF data for lanthanides are very scarce and dispersed
[35,38]. Particularly, our computed ωp values are around 10 to
30% smaller than the experimental values reported by Colliex
et al. [35] (except for Sm that is only 5% smaller ); in general,
they agree very well with the calculated ELF peaks obtained
using the density-functional method [37].

Some studies [35,38] tabulate the experimental plasmon
energy ωp and not the whole shape of the ELF, which is a
predicament because knowing the energy-loss function allows
one to obtain the width of the peak and the value of γp. The
only exception we found in the literature is Tb [35] with
γp(Tb) 	 0.15 a.u. In the present calculations, we used this
value for the 15 REEs. We investigated the dependence of the
maximum stopping with the value of γp, which was found to
be small (� 5%).

Another parameter we considered is the minimum energy
for plasmon excitation, Ep. These values can be approached
following the work from Ref. [39], and they are included

FIG. 7. Stopping cross section of La for H. Solid curves: present
results using SLPA-LM—total (red solid line), bound electrons (1s-
4 f ) (orange short-dashed line), and FEG values with rS = 2.72
(Ne = 3) (blue squares-line). Discontinued curves: SRIM [14] (gray
dotted line) and DPASS21.06 [45] (gray dash-double-dotted line).
Symbols: experimental data from 
 [46], ◦ [9], � [10], and � [13].

in Table I for all the REEs. We employ the nonperturbative
SPCC model, which does not include collective excitations,
for energies below Ep, while for impact energies above Ep we
use the Mermin-Lindhard model.

In Figs. 7–21, we display our theoretical electronic stop-
ping power of REE for protons. It is worth mentioning that
we are considering hydrogen in metals as protons; no neutral
H or charge state effects are considered. The screening of the
hydrogen nucleus by the free-electron gas makes the bound
state of an electron to a proton very unlikely [39–41].

FIG. 8. Stopping cross section of Ce for H. Solid curves: present
results using SLPA-LM—total (red solid line), bound electrons (1s-
5p) (orange short-dashed line), and FEG with rS = 2.40 (Ne = 4)
(blue squares-line). Discontinued curves: SRIM [14] (gray-dotted
line), DPASS21.06 [45] (gray-dash-double-dotted line), and CASP6.0
with rS = 2.41 (Ne = 4) [42] (gray-dashed curve). Symbols: experi-
mental data from 
 [46] and � [47].
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FIG. 9. Stopping cross section of Pr for H. Solid curves: present
results using SLPA-LM—total (red solid line), bound electrons (1s-
4 f ) (orange short-dashed line), and FEG with rS = 2.66 (Ne = 3)
(blue squares-line). Bound electrons (4 f ) (orange dash-dotted line).
Discontinued curves: same as in Fig. 8, with rS = 2.23 (Ne = 5) in
CASP6.0. Symbols: experimental data from 
 [46].

Three solid curves are included in each figure: the con-
tribution of the FEG (blue line with squares), of the bound
electrons (orange short-dashed curve), and the total stopping
(red solid curve) resulting from adding the former two. We
compare the present results with the available experimental
data [11] and SRIM [14] predictions. In all the cases, we
include the 4 f and 5p intershell screening above the cor-
responding impact velocity vp f , detailed in Sec. III B. We
also include the results of two theoretical models: the con-
volution approximation for swift particles CASP version 6.0
by Schiwietz and Grande [42,43] and the binary theory of

FIG. 10. Stopping cross section of Nd for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.64
(Ne = 3) (blue squares-line). Bound electrons (4 f ) (orange dash-
dotted line). Discontinued curves: same as in Fig. 8, with rS = 2.09
(Ne = 6) in CASP6.0. Symbols: experimental data from ◦ [9] and �
[10].

FIG. 11. Stopping cross section of Pm for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.61
(Ne = 3) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 2.05 (Ne = 7) in CASP6.0. No experimental data available.

electronic stopping by Schinner and Sigmund [44], included
in the DPASS code version 21.06 [45]. Both models deal with
the valence electrons as a FEG, while the inner shells are
described using binary collisional approaches. In contrast to
the perturbative models, DPASS and CASP include Barkas cor-
rections and charge effects, and they can be applied to any
ion-target combination in a wide energy range.

1. Lanthanum

In Fig. 7, we show the electronic stopping power of La
for protons. For this target, the plasmon excitation threshold
is Ep = 24 eV, which separates the ranges of validity of the
SPCC and the Mermin-Lindhard models for the FEG. The

FIG. 12. Stopping cross section of Sm for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.61
(Ne = 3) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 1.88 (Ne = 8) in CASP6.0. Symbols: experimental data
from � [13].
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FIG. 13. Stopping cross section of Eu for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.96
(Ne = 3) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 2.13 (Ne = 8) in CASP6.0. No experimental data available.

contribution of the bound electrons is evident for impact en-
ergies as low as 8 keV. Our total stopping describes the data
from Refs. [13,46] (except for the value at 200 keV); however,
they disagree with the experiments from Refs. [9,10] around
the stopping maximum. As expected, SRIM [14] is semiempir-
ical and fits the data around the maximum. Instead, the DPASS

curve [45] is very close to ours, with the stopping maximum
shifted to lower energies. We will comment on these data later
in this paper when we present a scaling law valid for all the
lanthanide experimental data.

FIG. 14. Stopping cross section of Gd for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.61
(Ne = 3) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 1.88 (Ne = 8) in CASP6.0. Symbols: experimental data
from 
 [46], � [13], � [48], [49], and recent measurements from

[12].

FIG. 15. Stopping cross section of Tb for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.96
(Ne = 2) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 2.94 (Ne = 2) in CASP6.0. Symbols: experimental data
from ◦ [9], � [10], and equivalent values of He on Tb � [50].

2. Cerium

Cerium is the first REE with 4 f electrons. However, as dis-
cussed in Sec. IV B, we considered it part of the FEG (Ne = 4)
and the rest of the electrons (1s-5p) as bound. We display our
electronic stopping cross sections in Fig. 8. The separation
between the FEG and the total stopping curves evidences the
bound electron contribution for impact energies above 5 keV.
Our results agree well with the high-energy experiments by
Knudsen et al. [46]. The values by Ref. [47] are lower than
the expected high-energy limit of the stopping power. Further

FIG. 16. Stopping cross section of Dy for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.94
(Ne = 2) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 2.94 (Ne = 2) in CASP6.0. Symbols: experimental data
from 
 [46], ◦ [9] and � [10].
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FIG. 17. Stopping cross section of Ho for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.93
(Ne = 2) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 2.56 (Ne = 3) in CASP6.0. Symbols: experimental data
from 
 [46].

comments on this dataset [47] will be presented later in re-
lation to the scaling. All the theoretical curves for energies
above 400 keV agree quite well with the experimental values
from Ref. [46]. For lower energies, our curve is closer to SRIM

than to DPASS and CASP. However, the lack of data in this
energy range makes our results nonconclusive.

3. Praseodymium

In Fig. 9, the stopping results for protons in Pr are
displayed. In this case, the bound electrons contribute

FIG. 18. Stopping cross section of Er for H. Solid curves: present
results using SLPA-LM—total (red solid line), bound electrons (1s-
4 f ) (orange short-dashed line), and FEG with rS = 2.91 (Ne = 2)
(blue squares-line). Discontinued curves: same as in Fig. 8, with rS =
2.31 (Ne = 4) in CASP6.0. Symbols: experimental data from 
 [46],
 [51], and � [52].

FIG. 19. Stopping cross section of Tm for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.89
(Ne = 2) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 2.13 (Ne = 5) in CASP6.0. No experimental data available.

significantly to the total stopping power, even at impact en-
ergies as low as 1 keV. The small ionization gap of the 4 f
electrons (2.6 eV) is mainly responsible for this feature. To
emphasize our point, we illustrate in Fig. 9 the contribution of
the 4 f electrons with an orange dash-dotted curve. We recall
that the bound electron contribution was obtained with the
SLPA-LM, which is a perturbative model, so values below 20
keV may underestimate the bound electron stopping power.
The present results agree with the only set of experimental
values by Knudsen et al. [46] in the high-energy range. The
discrepancy among our results, SRIM, CASP, and DPASS, show

FIG. 20. Stopping cross section of Yb for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 3.22
(Ne = 2) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 2.23 (Ne = 6) in CASP6.0. Symbols: experimental data
from 
 [46], � [13], and � [47].
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FIG. 21. Stopping cross section of Lu for H. Solid curves:
present results using SLPA-LM—total (red solid line), bound elec-
trons (1s-4 f ) (orange short-dashed line), and FEG with rS = 2.51
(Ne = 3) (blue squares-line). Discontinued curves: same as in Fig. 8,
with rS = 1.89 (Ne = 7) in CASP6.0. Symbols: ◦ [9], � [10], and
equivalent values of He on Lu � [53].

the need for new experimental data, mainly for energies E <

200 keV.

4. Neodymium

The stopping power for Nd is shown in Fig. 10. As in the
case of Pr, bound electrons contribute significantly to the total
stopping power at very low impact energies due to the small
4 f binding energy. Our results overestimate the data from
Refs. [9,10]. As mentioned in Sec. I, these measurements have
been proven to disagree with most of the experimental values
for protons in other targets. The theoretical curves correspond-
ing to DPASS and CASP do not describe the experimental values
either.

5. Promethium

Figure 11 displays the present theoretical stopping results
for protons in Pm. The binding energy of the 4 f electrons is
8.8 eV, which is larger than for Pr and Nd. This feature shifts
the threshold of the bound electron stopping power (orange
short-dashed curve) to higher impact energies. Because of the
radioactive nature of Pm, there are no experimental data to
compare with. This lack of data could be solved by resorting
to scaling laws valid for all elements, as will be mentioned
later.

6. Samarium

The results obtained for Sm are shown in Fig. 12. Re-
markably, the present total stopping cross section agrees
excellently with the experimental data [13] in the whole en-
ergy range. As seen in the figure, all the theoretical models
(including SRIM) agree for energies below 10 keV and above
400 keV.

7. Europium

In Fig. 13, we represent the total stopping corresponding to
Eu. As in the case of Pr, no experimental data are available.
The present results are generally in good agreement with the
models analyzed thus far. We can note the difference with
CASP at low energies. This overestimation is related to the
number of electrons considered in the FEG. As presented in
the previous section, we use Ne = 3 while CASP considers
Ne = 8.

8. Gadolinium

The total stopping of Gd is presented in Fig. 14. Since
there are enough experimental data to cover the entire en-
ergy range, we consider this element a benchmark for our
model. These measurements can be separated into two groups,
the data previous to 1990 [13,46,48,49] and the recent ones
[12] (from 2017). Our results agree very well with the later
ones for energies greater than 10 keV. Around the stopping
maximum, the data by Sirotinin et al. [13] differ from these
recent values. Correspondingly, SRIM fits its prediction to the
data group published before 1990. Below 10 keV, all the
theoretical models underestimate the experimental data by
Roth et al. [12]. On a side note, the SPCC can describe these
low-energy values if rS = 1.75 (Ne = 10, i.e., the electrons
4 f 7 5d 6s2 in the FEG) as suggested in Ref. [29]. How-
ever, this value for Ne is inconsistent with the current paper.
Moreover, our total stopping power with Ne = 10 and 5p-1s
bound describes the low-energy data but overestimates the
rest.

9. Terbium

We show the results obtained for Tb in Fig. 15. As in the
case of Nd, the ionization gap of the 4 f electrons is very small.
This feature accounts for the large bound electron contribution
to the total stopping power at low energies. There are two
sets of data [9,10], which describe the stopping maximum.
Because no experimental data are available at high energies,
we include recent measurements for He impact from Ref. [50]
considering the Z2

P dependence. These data are represented
with filled symbols instead of hollow ones to remark they
are not for proton impact. Our total stopping power cross
sections agree with the experimental data above 90 keV. The
present stopping maximum is located at E 	 50 keV, which
agrees with DPASS; however, the DPASS and CASP curves are
much lower.

10. Dysprosium

The results for Dy are shown in Fig. 16. The present
stopping power agrees with the experimental values and SRIM

only for impact energies above 150 keV. The theoretical-
experimental comparison is very similar to Fig. 15 for Tb,
with the advantage that, in this case, there are high-energy
data available [46]. Our total stopping curve disagrees with
the other theoretical models in the medium- and low-energy
range.
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11. Holmium

In Fig. 17, we include the present results for protons in
Ho. Two comments can be raised: first, we describe all the
experimental values from Ref. [46], even at 200 keV. Sec-
ondly, our results are larger than the other theoretical models
around the stopping maximum and below. Evidently, mea-
surements in the low-energy range for this target are required
to solve the discrepancy of the stopping predictions in this
region.

12. Erbium

The results obtained for Er are shown in Fig. 18. Our
total stopping power agrees excellently with the experimental
data in a wide range of energies, from 200 to 2500 keV.
The medium- and low-energy regions are experimentally un-
explored; measurements would be necessary to improve the
knowledge of the stopping in this lanthanide.

13. Thulium

The total stopping of Tm for protons is displayed in
Fig. 19. Together with Pm and Eu, this target is experi-
mentally uninvestigated in the whole energy range. All the
theoretical curves are very different, highlighting the unpre-
dictability of the energy loss of protons in Tm. As mentioned
before, a scaling law for the experimental data of joining
experiments for all lanthanides could resolve this lack of
data.

14. Ytterbium

Figure 20 shows the stopping power cross section for
protons on Yb. Our calculations agree with measurements
from Refs. [13] and [46] for energies above 200 and
300 keV, respectively. However, our values are higher than the
other theoretical models in the intermediate- and low-energy
regions. As in the case of Ce, the data by Ref. [47] are clearly
outliers.

15. Lutetium

Finally, we present the stopping power of Lu in Fig. 21.
The 4 f subshell is filled for this element, and the 4 f electrons
are more tightly bound (E4 f = 10.6 eV). Hence, the contribu-
tion of these electrons to the energy loss is shifted to higher
energies. The comparison of our results with the experimental
data around the curve maximum is rather good but shifted
to lower energies. These data correspond to the Refs. [9,10]
already mentioned. Since no experimental data are available
for Lu in the high-energy range, we include recent He im-
pact stopping power from Ref. [53] with the corresponding
equivelocity conversion and normalized with Z2

P. These data
are represented with filled symbols.

The theoretical research carried out for the 15 solid lan-
thanides, the lack of data, and the doubts about many old
measurements can be analyzed together, resorting to scaling
laws. We consider the Lindhard scaling [54] of the dimen-
sionless stopping number L = S v2/(4π ZT ) as a function of
v2/ZT . These results are presented in Fig. 22. The validity of
the scaling is impressive; all the present curves for 15 targets
almost join in a single band. Moreover, all the experimental

FIG. 22. Scaling of the stopping number L = S v2/(4π ZT ) for
all the lanthanides. Solid curves: present results for total stopping
number (SLPA+FEG). Symbols: experimental data, notation as in
Figs. 7–21. Inset: the stopping number scaling for SRIM results.

data, together, cover almost the entire energy range. This
is very interesting and useful because it could be employed
to predict values for new measurements. The scaling also
makes outliers more evident. The data for Ce and Yb (∇ [47])
lay remarkably outside the general tendency. Also, the data
measured by Refs. [9,10] (◦ and �) do not fully follow the
scaling, in particular for lanthanum at intermediate energies.
To further analyze these discrepancies, we performed a similar
plot for the SRIM results, which is displayed in the inset. The
semiempirical nature of this approach leads SRIM to wrongly
follow these questioned experimental values.

V. CONCLUSIONS

We present in this paper a systematic study of the stopping
power of protons in the 15 lanthanides: from La (57) to Lu
(71). We aim to resolve certain open issues related to the 4 f
subshell. We compute the electronic structure of the atomic
targets (gaseous state). Understandably, we find discrepancies
for the valence and subvalence shells when comparing our
results with binding energies measured in solid lanthanides.
We analyze the valence shell as the conduction band of
metallic lanthanides. Based on the systematic study of the
atomic structure and the available literature, we consider the
FEG composed of the 6s2 electrons plus the 5d (if there are
any). For the light lanthanides (Ce to Eu), one 4 f electron is
promoted to the conduction band, while none for the heavy
lanthanides (Gd to Lu). The number of electrons proposed in
the FEG agrees, in some cases, with experimentally inferred
values and, in others, with theoretically derived ones.

The stopping power results are obtained from a combina-
tion of bound and valence electron contributions to the energy
loss. The electronic stopping of inner shells is modeled with
the SLPA-LM approach. In contrast, for the FEG, we use
the SPCC model for energies below the plasmon excitation
energy and the Mermin-Lindhard dielectric formalism above
this value.

In general, the stopping experimental measurements for
REEs are quite old (previous to 1990). Moreover, there are
only ten sources of data published for the 15 lanthanides, and

052809-11



PERALTA, MENDEZ, MITNIK, AND MONTANARI PHYSICAL REVIEW A 107, 052809 (2023)

they only cover the high-energy region except for Gd. Our
results describe rather well the experimental stopping cross
sections, except for the low-energy values in Gd and some
data sets around the maximum. Particularly, for La, Nd, and
Dy, the only data around the maximum are the ones included
in Refs. [9,10]. We draw attention to this publication since
measurements for well-known targets (Al, Au, Ag, Ta, and Pt)
have shown inconsistencies with many other values available
in the literature. It is worth mentioning that the semiempirical
SRIM describes these data as they are the only ones in some of
the lanthanides.

Even though most uses of lanthanide data involve alloys
and oxides, the energy loss in compounds is predominantly
approximated by adding individual atomic stopping powers.

Throughout this paper, we have shown that the predictive
capability of the atomic stopping in REEs is nonconclusive
due to the lack of experimental measurements, mainly in the
intermediate- (stopping maximum) and low-energy regions.
We stress the necessity of new experimental efforts sustained
by the importance of lanthanides.
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