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Planck formulated the correspondence principle between quantum and classical mechanics as the
limit in which the Planck constant 4 goes to zero. Bohr formulated the correspondence principle
to be the limit of large quantum numbers. For three common quantum mechanical systems it is
shown that in order for eigenvalues of quantum mechanical observables to have meaningful
classical limits, it is necessary to take the double limit as both the Planck constant goes to zero and
the quantum number goes to infinity, subject to the constraint that their product is equal to an
appropriate classical action. This synthesis of the Bohr and Planck formulations of the
correspondence principle is also used to show that the quantum mechanical transition frequency
between adjacent levels approaches the corresponding classical frequency. The features these
systems have in common in their classical limit are explained by general considerations of the

classical limit of the Schrddinger equation.

L. INTRODUCTION

There are two different formulations of the correspon-
dence principle between quantum and classical physics.
One is Planck’s formulation' in which the Planck constant
h goes to zero.? Planck originally formulated this principle
to show that his energy density for blackbody radiation
approaches the correct classical Rayleigh-Jeans energy
density.' The other is Bohr’s formulation of the correspon-
dence principle, in which the limit of large quantum
numbers is used.>* Bohr first enunciated this formulation®
to show that in his model of the hydrogen atom the transi-
tion frequency between adjacent energy levels goes to the
classical frequency of an electron in a circular orbit. In a
series of papers, Liboff > emphasizes that these two for-
mulations are not universally equivalent.

In this article, we show, for some simple quantum me-
chanical systems, that to obtain a meaningful classical limit
of quantum mechanical eigenvalues, it is necessary to
synthesize the Planck and Bohr formulations of the corre-
spondence principle. Both formulations are used concur-
rently in the sense that the Planck constant goes to zero and
the appropriate quantum number goes to infinity, subject
to a constraint that their product be held fixed at the appro-
priate classical action. Meaningless results are obtained for
the classical limit of quantum mechanical eigenvalues if
one limit is taken without the other. The double limit as 4
goes to zero and the quantum number, say #, goes to infin-
ity is subject to the constraint that ns = J, where J is the
appropriate classical action. The correct value of the classi-
cal observable corresponding to the quantum mechanical
eigenvalue is obtained in this constrained double limit.

The quantum mechanical systems we consider are the
harmonic oscillator, the particle in abox, and the hydrogen
atom. In these systems, we identify the basic quantum ob-
servables and give their eigenvalues. We then use concur-
rently the Planck and Bohr formulations of the correspon-
dence principle subject to the constraint that the product of
the quantum number and the Planck constant is equal to
the appropriate classical action. The correct value of the
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classical observable is obtained. For the above systems, we
show that in the constrained double limit the quantum me-
chanical transition frequency between adjacent levels be-
comes the frequency of the classical system.

The common features of these examples are explained by
an analysis of the classical limit of the Schrodinger equa-
tion. The single-valuedness of the wavefunction leads to the
quantization of the classical action J = nk in the semiclas-
sical case. The transition frequency between adjacent ener-
gy levels is a difference quotient that becomes the deriva-
tive of the energy with respect to the action 9E /3J in the
classical limit. This derivative is the classical frequency.’

The synthesis of the Planck and Bohr formulations of the
correspondence principle we develop here has been used
prevrously in some contexts For the energy of the harmon-
ic oscillator, ter Haar'® mentions the necessity of taking
both the limits as the Planck constant goes to zero and the
quantum number goes to infinity, keeping their product
constant. Kubo'! uses a similar limit to show that the Bril-
louin function approaches the Langevin function for mag-
netism. Qian and Huang'? use the synthesized form of the
correspondence principle to show that the quantum me-
chanical probability density goes over to a classical proba-
bility density, which they call the homogeneous ensemble.
For the hydrogen atom, Messiah'> mentions that both
h—0 and n— « should be taken with their product held
fixed. In the general case, ter Haar' states that for a given
value of the action J = nh the classical limit A—0 corre-
sponds to the limit » — oo, which is another way of express-
ing the synthesized form of the correspondence principle.
In a private conversation, Borowrtz mentioned the con-
strained double limit to Liboff.® An interesting discussion
of the correspondence prmcrple prior to the new quantum
mechanics is given by several authors.'®

In Sec. I1, the harmonic oscillator is examined. The par-
ticle in a one-dimensional box is considered in Sec. II1. The
hydrogen atom is treated in Sec. IV. In Sec. V, it is shown
that the common features in the three examples are in fact
general manifestations of the classical limit of the Schro-
dinger equation. Finally, the conclusion is given in Sec. VI.
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II. HARMONIC OSCILLATOR

The simplest quantum mechanical system to examine is
the one-dimensional harmonic oscillator, for which the en-
ergy is the basic observable. For an oscillator of angular
frequency @ the Schrodinger equation gives the energy
eigenvalues

E,=(n+Dfw, n=0123,.., (1)

where # = h /27. In contrast, the energy of the classical
harmonic oscillator E is a continuous variable from zero to
arbitrarily large values. When only the Planck formulation
of the correspondence principle in which the Planck con-
stant A goes to zero is applied to Eq. (1), the result is zero
for all n. On the other hand, when only the Bohr formula-
tion of the correspondence principle in which n goes to
infinity is applied to Eq. (1), the result is infinity. There-
fore, neither the Planck nor the Bohr formulation of the
correspondence principle alone gives the correct classical
energy.

If, however, the Planck and Bohr formulations are ap-
plied concurrently, so that #~0 and n— «, but with the
constraint that their product nk is held fixed,' then E,
goes 1o its classical value E. The constant value at which
the product #n#k is held fixed is the classical action J,°

nh=J=rmwA?, 2)

where A is the amplitude of the oscillator. Thus the con-
strained double limit of Eq. (1) gives

E,~E=1mw’4? as n-w, h-0, nh=J, (3)

where E is the correct energy of a classical harmonic oscil-
lator of angular frequency @ and amplitude 4. The zero-
point energy #iw in Eq. (1), which is obtained from the
Schrodinger equation, goes to zero in the constrained dou-
ble limit. The old quantum theory, in which Eq. (2) is used
to quantize the system, does not give the zero-point energy.
A general feature of the classical limit of quantum mechan-

ics is that the part of the Schrodinger eigenvalue that is

different from the eigenvalue of the old quantum theory
goes to zero. ‘
The transition frequency between adjacent states is

Opu1 = (E, —E,_)/fi=w 4)

from Eq. (1), which is the classical frequency. That the
transition frequency is the classical frequency is a special
feature of the simple harmonic oscillator. "’

The transition frequency in Eq. (4) can be written as

@pp_ =2m(E, —E,_)/[nh—(n—-1)h]
=27 —, 5
AJ (5
where J = nh is the classical action. In the constrained
double limit, the difference quotient in Eq. (5) becomes®'®

as h—-0, n-w, nh=J, (6)

where o is the classical angular frequency. The classical
energy Ein Eq. (3) can be written in terms of the action Jin
Eq. (2) as

E=owJ /2. : (7)

When Eq. (7) is used in Eq. (6), the classical angular fre-
quency @ is indeed obtained. This behavior is a general
feature of the synthesized form of the correspondence prin-
ciple, which is discussed further in Sec. V.
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II1. PARTICLE IN A BOX

We now consider the classical limit of a quantum me-
chanical particle of mass m confined to a one-dimensional
box of length d. The basic quantum mechanical observable
of this system is the energy, for which a solution of the
Schrodinger equation gives the eigenvalues

E, = #mn*/2md?, n=123,... (8)

The Planck correspondence principle alone applied to Eq.
(8) gives zero in the limit as #—0. The Bohr correspon-
dence principle alone applied to Eq. (8) gives infinity in the
limit as 7 — 0. In neither case is the correct classical value
of the energy obtained. The synthesis of the Planck and
Bohr formulations of the correspondence principle is the
double limit 4 -0 and n— o, with the constraint that nk is
equal to the classical action J,

nh =J = p2d, 9

where p is the magnitude of the linear momentum. This
constrained double limit of Eq. (8) gives

E,~E=p’/2m, as h—0, n—>c, nh=1J,

where E is the classical energy.
The transition frequency between adjacent states is

©Opp_y = (E, —E,_)/fi=#r"(2n —1)/2md* (11)

from Eq. (8). The separate limits of #—-0 and n- o give
zero and infinity, respectively, for the transition frequency
in Eq. (12). Therefore, the Planck and Bohr formulations
of the correspondence principle applied alone do not give
the correct classical angular frequency. When the synthesis
of the Planck and Bohr formulations of the correspondence
principle in which nk = J is used, the classical action in
Eqgs. (9) and (11) gives the classical angular frequency

—o = 2m7(p/m2d),

(10)

as n— o0, >0, nh=J.
(12)

The classical angular frequency  in this problem is 27
times the speed p/m of the particle divided by the distance
2d it travels in a complete cycle.

Equation (11) for the transition frequency is the differ-
ence quotient given in Eq. (5). In the constrained double
limit, the transition frequency becomes'®

JE

@yn 1 -»217'—5 =,

@

nn—1

as h—0, n- o, nh=J, (13)

where o is the classical angular frequency. The classical
energy in Eq. (10) can be written in terms of the action in
Eq. (9) as

E=J%*8md>. (14)

When Eq. (14) isused in Eq. (13) and Eq. (9) is used for J,
the angular frequency in Eq. (12) is obtained.

IV. HYDROGEN ATOM

Bohr first formulated his correspondence principle in
connection with his model of the hydrogen atom to ensure
that for large quantum numbers the transition frequency
between two adjacent states equals the classical orbital fre-
quency of the electron. In this section, we generalize Bohr’s
work by applying the synthesis of the Bohr and Planck
formulations of the correspondence principle to the eigen-
values of the hydrogen atom obtained from the Schro-
dinger equation. The energy and angular momentum of
elliptical orbits are obtained.
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The basic quantum mechanical observables for the hy-
drogen atom are the energy, the square of the angular mo-
mentum L? and the z component of the angular momentum
L. The Schrddinger equation gives the eigenvalues of the
energy operator as'’

E, = —pé'/2(4me) #n?, n=123,., (15)

where n is the principal quantum number, 4 is the reduced
mass of the electron, — e is the charge on the electron, and
€, is the permittivity of the vacuum. The eigenvalues of the
square of the angular momentum operator are

Li=Il(I+1)#, 1=012,., n—1, (16)

where [ is the orbital angular momentum quantum num-
ber. The eigenvalues of the z component of the angular
momentum are

L, =mh m=0, 1, +2,., +1, (17)

where m is the magnetic quantum number. If only the
Planck constant goes to zero, the energy in Eq. (15) goesto
infinity, while Eqs. (16) and (17) go to zero. If only the
quantum numbers 1, /, and |m| go to infinity, the energy in
Eq. (15) goes to zero, while Egs. (16) and (17) go to infin-
ity. In these cases, the limits do not correspond to the val-
ues of the classical variables. Therefore, neither the Planck
nor the Bohr formulation of the correspondence principle
alone gives the correct classical values. If a synthesis of the
Planck and Bohr formulations of the correspondence prin-
ciple is used, in which the Planck constant goes to zero and
the quantum numbers #, /, and |m| go to infinity, subject to
the constraint that nh, /h, and mh are held fixed at the
appropriate classical actions, then the limits of Egs. (15)-
(17) give the correct classical values of E, L Zand L,.

The constraints on the product of the quantum number
and the Planck constant are obtained by setting the prod-
uct equal to the appropriate classical action. The product
of n and 4 is constrained to be the action'’

nh =J, = (mue’a/e,)"’?, - (18)

where a is the semimajor axis of the ellipse. The product of
the angular momentum quantum number / and the Planck
constant is constrained to be the action'®

h=J,=J(1—e)"? (19)

where 0<e< 1 is the eccentricity of the ellipse. The product
of the magnetic quantum number m and the Planck con-
stant is also equal to the appropriate classical action '°

mh=J, =J,cos 6, (20)

where 8is the polar angle of the angular momentum vector
and the action J, is defined in Eq. (19).
The constrained double limit of the energy in Eq. (15) is

E,~E= —é*/8meqa, as h—0, n—w, nh=J,,
(21)

where E is the classical energy. The constrained double
limit of the square of the angular momentum in Eq. (16) is

L,—L = [pe*a(l — €)/4me,]"?,
as h-0, |-, h=J, (22)

where L is the classical angular momentum and J, is given
in Eq. (19). Finally, the constrained double limit of Eq.
(17) is

L,,—Lcosb,
from Eqgs. (20) and (19).

as h-0, |m|— o0, mh=J, (23)
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The transition frequency between adjacent states is
wn,n——l = (En _En——l)/ﬁ
=pue*(2n — 1)/2(4mey)*An*(n — 1) (24)

from Eq. (15). The separate limits 40 and n— o are
infinity and zero, respectively, which do not correspond to
the classical frequency. The constrained double limit, in
contrast, gives the classical angular frequency o,

® o = (/drequa®)'’?,

nn—1\

(25)

Equation (25) implies Kepler’s third law, which states that
7 « &®, where 7 = 277/w is the period and a is the semima-
jor axis of the ellipse.

The transition angular frequency in Eq. (25) is a differ-
ence quotient, as in Eq. (5). In the constrained double lim-
it, the transition angular frequency becomes

JE
an—17" 2r—= W,
’ oJ,
where o is the classical angular frequency. The classical
energy Ein Eq. (21) can be expressed in terms of the action

J,in Eq. (18) as'®
E= —pue'/8eJ3.

as h—0, n— e, nh=J,.

w as h—-0, n—ow, nh=J5(26)

(27)

When Eq. (27) is used in Eq. (26) and the action in Eq.
(18) is used, Eq. (25) for the classical frequency is ob-
tained.

V. GENERAL FORMULATION OF THE
CLASSICAL LIMIT

A common theme exists in the previous examples. It is
therefore appropriate to consider the general approach to
the classical limit of energy eignevalues obtained from the
Schrodinger equation.?*?!

For the sake of simplicity, a system with only one degree
of freedom x is considered. The stationary state Schro-
dinger equation for this system is

7 dy

T 2m dx?

+ V(x)¢ = Ey, (28)

where m is the mass of the particle and V(x) is the potential
energy.

The complex wavefunction #(x) in Eq. (28) can be
written in terms of a modulus p'/? and a phase ¢/# as

¥ =p'"? explig/#),

where p = *1 is the probability density of the particle.
When Eq. (29) is substituted into the Schrodinger equa-
tion in Eq. (28), the result can he written as

g Fdlnp  F(dinpy, (db)

(29)

2 dx’? 4\ dx dx
2
_iﬁ_‘i_‘ﬁ_ﬂﬂﬂ_iﬁd_ﬂ, (30)
dx dx dx?
The magnitude of the momentum p is
p=[2m(E—-WN]"% (31)

If the imaginary part of Eq. (30) is equated to zero, the
result gives probability current conservation. If the real
parts of each side of Eq. (30) are equated and the square
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root taken, the result is
2 2 2 27172
db_f\ E L g F (o))
dx 2p* dx 2p* \ dx
If the system is periodic, Eq. (32) can be integrated over
one cycle to give

# d’lnp hz(dlnp)z]‘/2
dé = 14— — d.
§¢ §p[ +2p2 dx? +4p2 dx x
(33)

Since ¢/# is the phase of the wavefunction in Eq. (29), the
change A¢ of ¢ over a complete cycle is

(32)

A¢=§d¢=27rnﬁ=nh, (34)
where n is an integer. If the logarithm of the probability
density p varies slowly over a de Broglie wavelength A = 4 /
p, then Eq. (33) becomes

§pdx=nh, (35)

which is the Bohr-Sommerfeld condition.*' The left-hand
side of Eq. (35) is the classical action J. Thus it is not
surprising that in Secs. II-IV the product nA had to be set
equal to the value of the classical action. Furthermore, to
ensure that the classical action does not collapse to zero as
h—0 alone, or become infinite as 7— o alone, it is neces-
sary to take the combined limit

ﬁpdx:], as h-0, n— o, nh=J. (36)

Since p is defined in Eq. (31) in terms of the energy E,
Eq. (36) gives the action J as a function of the energy E. In
Secs. II-1V the energy E as a function of J was obtained. A
glance at Egs. (7), (14), and (27) shows that to allow J to
become zero or infinity would yield either a zero or infinite
energy.

The classical frequency v = w/2w of the system can be
obtained from the period 7 of the system. The period is

¢=§dt=v", 37

where the element of time df = dx/v and the speed v = p/
m. If Eq. (36) is differentiated with respect to J and use is
made of Eq. (31), the result is

_1\(9FE
dxm ')(————) =1 38
(é 7 Nar 8
The factor multiplying JE /3/J is the period 7, so
9E _ (39)

= ‘V’
aJ

which is equivalent to Eq. (6). Equation (39) is a general
feature of classical mechanics'® and shows why it is satis-
fied in Secs. II-1V.

VL. CONCLUSION

When Planck' obtained the classical Rayleigh-Jeans en-
ergy density for blackbody radiation by taking the limit as
h—0 alone, he was applying the correspondence principle
to a statistical average of the energy eigenvalues over a ca-
nonical probability distribution. There were, therefore, no
quantum numbers to consider, since a sum over them had
already been performed. When Bohr? applied his formula-
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tion of the correspondence principle to the transition fre-
quency in his model of the hydrogen atom, he obtained the
correct classical orbital frequency because he did not take
the mathematical limit as the quantum number goes to in-
finity. Instead, Bohr considered that for large quantum
numbers the quantum result was very nearly the classical
result. Thus the quantum number 7, say, was n> 1, but was
not infinite. Otherwise, the transition frequencies in the
hydrogen atom would collapse to zero, as Eq. (24) shows.

The correspondence principle that connects quantum
mechanics to classical mechanics has often been thought to
be imprecise because of Bohr’s use of large, but not infinite,
quantum numbers. However, when the Bohr and Planck
formulations are synthesized, as shown in this article, the
correspondence principle has a precise mathematical form.

An examination of a number of modern physics text-
books?? shows that Bohr’s formulation in which the quan-
tum number is large, but finite, is used for the hydrogen
atom. Planck’s formulation is often used in the discussion
of blackbody radiation. The synthesized formulation of the
correspondence principle discussed in this article ends this
dualistic approach. The synthesis of the Planck and Bohr
formulations of the correspondence principle discussed
here could be used in an undergraduate course to give stu-
dents a deeper appreciation of the classical limit of quan-
tum mechanics.
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