Phase Waves of Louis deBroglie

This article 1s a translation of the first chapter of Louis
deBroglie’s PhD thesis, “Recherches sur la lhéorie des
Quanta” (Unmv. of Paris, 1924). The translation is by
Jared W. Haslett of the Physics Department of the
University of Chicago and is published with the kind
permission, of Louis deBroglie. The help in translation
given by Mr. J. A. Kotzman and Mr. M. A. Lipson is
gratefully acknowledged.

Two factors suggest the desirability of con-
sidering Louis deBroglie’s dissertation. Both
recent renewed interest (¥. Kubli, “Louis
deBroglie und die Entdeckung der Materiewelle,”
doctoral dissertation ETH, Zurich 1970) and the
fact that it has never appeared in the English
language suggests that there are very likely
readers who will note with interest not only the
results of deBroglie’s work but also the method by
which he arrived at his conclusions. It is curious
that virtually all physics texts in English refer to
the results of deBroglie’s investigations but do not
touch upon the technique by which he arrived at
this widely accepted conclusion (A=h/mv). The
great computational success of Schrodinger and
Born in connection with wave mechanics and
especially the emphagis on probability considera-
tions tended to divert the attention of physicists
from the fundamental hypothesis of deBroglie.
Recently deBroglie has diplomatically recalled
attention to his original emphasis by way of what
he calls his “double solution.” That is, normaliza-
tion may follow along the usual lines of probability
or along the lines of matter—energy density. It is
hoped that publication of this classic of physics,
or rather one chapter of it, will fill in a long
standing gap.

JARED W. HASLETT

September 1972

I. THE RELATIONSHIP BETWEEN THE
QUANTUM AND RELATIVITY

One of the most important new concepts
introduced by relativity is that of the inertia of
energy. According to Einstein, energy ought to be
considered as having mass, and all mass exhibits
some energy. Mass and energy are always con-
nected with each other by the general relationship

energy =mass X ¢?,

¢ being the constant called “the speed of light,”
but we prefer to call it “the limiting speed of
energy”’ for reasons brought out further on.
Since there is always a fixed ratio between mass
and energy, matter and energy should be con-
sidered as two synonymous terms designating the
same physical reality. At first the atomic theory,
and later the electron theory, taught us to con-
sider matter as essentially discontinuous, and this
leads us to affirm that all forms of energy (con-
trary to old ideas about light) if not entirely
concentrated in small regions of space, are at the
very least condensed around certain singular
points.

The principle of inertia of energy attributes to a
body whose rest mass is m, (i.e., as measured by
an observer who is at rest with respect to it) a
proper energy, moc®. If the body is in uniform
motion with a velocity v=g¢ in relation to an
observer whom we will call for simplicity the fixed
observer, its mass will have for him the value
mo/ (1 ~B%Y? according to a well known result of
relativistic dynamics, and consequently, its energy
will be moe?/(1—B%) Y2 As kinetic energy can be
defined as the augmentation which the energy of a
body undergoes for the fixed observer, when it
passes from a state of rest to the velocity v =8¢, its
value is found by the following expression:

Blyinetio=moc?/ (1 —B2) 12— e

=moc?[ (1—p%)~12—17],
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which, in the event of small values of 8, naturally
leads to the classical formula

1 b
Ekinetic = im(ﬂ)z-

Having reviewed this, let us find a form in
which we can introduce the quantum into the
dynamies of relativity. It seems to us that the
fundamental idea of the theory of the quantum
is the impossibility of depicting an isolated
quantity of energy that is not accompanied by a
certain frequency. This connection is expressed
by what we shall call the relation of the quantum,

energy = h Xfrequency,

h being Planck’s constant.

The progressive development of the theory of
the quantum has focused attention on mechanical
action several times, and there have been many
attempts to express the relationship of the
quantum where action is substituted for energy.
Certainly the constant i has the dimensions of an
action known as MIL2T-!, and this is not due to
chance, since the theory of relativity teaches us to
classify action with the chief constants of physies.
But action is a quantity of a very abstract char-
acter, and after numerous speculations on the
quanta of light and the photoelectric effect, we
have re-established as our base the energy ex-
pression, thereafter freed from the search as to
why action plays such a great role in a number of
questions.

The relationship of the quantum undoubtedly
would not make as much sense if energy could be
distributed in a continuous fashion in space, but
we have come to see that it is certainly not so.
Hence, it can be conceived, according to an im-
portant law of nature, that to each bit of energy
of the proper mass m, there is connected a periodic
phenomenon of the frequency »o, stated thus,

Ao =mc?,

o being measured, of course, in a system which is
at rest with respect to a certain amount of energy.
This hypothesis is the base of our system, and it is
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worth, as are all hypotheses, what the conclusions
which can be drawn from it are worth.

Should we assume that the periodic phenomenon
is localized in the interior of a particle of energy?
Not necessarily. It will be seen in Sec. III that
undoubtedly it is distributed throughout an
extended region of space. Besides, what do we
mean when we speak of the interior of a particle
of energy? For us the electron is the arehetype of
the isolated particle of energy which we believe,
perhaps wrongly, that we know best. But ac-
cording to our customary ideas, the energy of the
electron spreads throughout all space with a very
high concentration in a region of very small
dimensions whose properties, moreover, are not at
all well known. What characterizes the electron
as a particle of energy is not the small place it
oceupies in space, and I repeat that it occupies it
entirely, but the fact that it is insecable, in-
divisible, that it forms one unity.

Having admitted the existence of a frequency
that is connected with a particle of energy, let us
try to discover how this frequency is manifested
to the fixed observer mentioned above. The
Lorentz—Einstein transformation of time teaches
us that a periodic phenomenon connected with a
body in motion appears to the fixed observer to
be slowed down by the factor of 1 divided by
1— 42, which is the famous slowing down of clocks.
Then the frequency observed by the fixed ob-
server will be

n=re(1—p2%)12= (moct/h) (1—pB2)V2.

On the other hand, since the energy of the moving
body is equal to mec?/(1—p%)"? for the same
observer, the corresponding frequency according
to the relationship of the quantum is

y=h"myc?/ (1—F%)V2].

The two frequencies » and » are essentially
different since the factor (1—8%)Y2is not involved
in the same way. This is a difficulty that has
intrigued me for a long time; I have succeeded in
eliminating it by demonstrating the following
theorem that I shall call the theorem of the



harmony of phases: The periodic phenomenon
connected with a moving body whose frequency is
for the fixed observer equal to

vy = h—lmoc2 ( 1 —“62) 1/2

appears to him to be constantly in phase with a
wave of frequency

v =h"Imec? (1--52)"12

emitted in the same direction as the moving body
with the velocity V =¢/B.

The demonstration is very simple. Let us sup-
pose that at the time ¢=0, the periodic phe-
nomenon connected with the moving body and the
wave defined above are in phase with each other.
At the time ¢, the moving body after the first
instant travels a distance equal to =8¢t and the
phases of the periodic phenomenon has varied by

vt = (moc®/h) (1—B%)1*(z/Bc).

The phase of the portion of the wave that overlays
the moving body has varied by

o[t—(Bz/c) 1= (moc*/h) (1—3%) "
X[(z/Be)— (Bz/c) ]
= (moc®/h) (1 —52) Y2 (x/Bc).

As we have stated, the agreement of phases
persists.

It is possible to give another demonstration of
this theorem, basically identical to the above, but
perhaps more impressive. If { represents time for
an observer at rest with respect to the moving
body (the proper time for the moving body),
Lorentz’s transformation gives

fo=(1—%)"[1— (Bz/c) .

The periodic phenomenon that we are picturing
is represented for the same observer by a sine-
shaped funetion »efy. For the fixed observer, it is
represented by the same sine shaped funection
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vo{1—BH) Y t— (Bx/c) ], which function repre-
sents a wave of frequency »o/(1—8%)12 traveling
with the speed ¢/8 in the same direction as the
moving body.

It is quite necessary now to reflect on the nature
of the wave whose existence we have been led to
conceive. The fact that its speed V=¢/B is neces-
sarily greater than c¢(g always being less than 1,
otherwise its mass would be infinite or imaginary)
shows us that it cannot be a question of a wave
carrying energy. Our theorem reveals to us,
moreover, that it represents the distribution in
space of the phases of a phenomenon; it is a
“phage wave.”

To be more precise on this last point, we shall
employ a mechanical comparison that is a bit
erude, but one that will catech the imagination.
Let us picture a horizontal circular disk with a
very great radius; from this disk are suspended
identical systems, each made up of a spiral spring
to which a weight is attached. The number of the
systems thus suspended per unit area of the disk,
or their density, diminishes very rapidly as we get
farther from the center of the disk so that there is
a condensation of the systems around the center.
All these spring-weight systems, being identical,
having the same period; let us have them oscillate
with the same amplitude and the same phase. The
surface passing through the centers of gravity of
all the weights will be a plane that rises and falls
in alternating movement. The total effect thus
obtained forms a very rough analogy to the isolated
particle of energy such as we conceive it.

The description that we have been giving
coneerns an observer at rest with respect to a disk.
If another observer sees the disk move in straight
line motion with the speed v=gec, each weight
would appear to him like a little clock undergoing
the slowing-down of Einstein; moreover, the disk
and its distribution of oscillating systems would
no longer be as isotropes around the center by
reason of Lorentz contraction. But for us the
fundamental fact (Sec. IIT will make this better
understood) is the dephasing of the movements
of the various weights. If at a given moment of
his time, our fixed observer considers the geo-
position of the centers of gravity of the various
weights, he observes a cylindrical surface in the
horizontal direction whose vertical sections,
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parallel to the velocity of the disk are sine-shaped.
It corresponds, in the particular case under
consideration, to our phase wave; according to
the general theorem, the surface has a speed ¢/8
parallel to that of the disk, and the frequency of
vibration of a point fixed on the abscissa and
constantly at rest on it is equal to the proper
frequency of the oscillation multiplied by
1/(1—p2)Y2, With this example we see clearly
(and this is our excuse for such protracted in-
sistence on it) how the phase wave corresponds to
the transport of the phase and not at all to that of
the energy.

The preceding results seem to us to be of extreme
importance, because, with the aid of a hypothesis
strongly suggested by the very notion of quantum,
they establish a connection between the movement
of a moving body and the propagation of a wave,
and thus let us glimpse the possibility of a synthesis
of the conflicting theories concerning the nature of
radiations. Already we can note that the recti-
linear propagation of the phase wave is connected
with the rectilinear movement of the moving
body; Fermat’s principle applied to the phase
wave determines the form of those rays which are
vertical, whereas Maupertuis’s principle applied
to the moving body determines its rectilinear
trajectory which is one of the rays of the wave.
In Chap. II we will try generalizing on this co-
incidence.

II. PHASE VELOCITY AND GROUP VELOCITY

It is now necessary for us to demonstrate an
important relationship existing between the
speed of the moving particle and that of the
phase wave. If the waves of nearly the same
frequencies are propagated in the same direction
Ox with velocities V which we call velocities of
phase propagation, these waves will give by their
superposition, heterodyning phenomena, if the
velocity V varies with the frequency ». These
phenomena have been studied notably by Lord
Rayleigh for the case of dispersive media.

Let us consider two waves of nearly the same
frequencies » and »" =»+4&v and the velocities V
and V'=V+(dV/dv)ér; their superposition is
expressed analytically by the following equation
obtained by neglecting the second order term in
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v which is év:

sin2r[vt— (va/V)+¢]

+ sin2#['t— ('z/V') +¢']

=2 sin2n[vt— (vz/ V) +¢]

a@/V)
d

X cos 27r<%(6u)t—x L(ov) -I—zl/) .
»

We have therefore a resultant sinusoidal wave
whose amplitude is modulated at the frequency é»
since the sign of the cosine is of little importance.
This is a well known result. If one designates by U
the velocity of propagation of the heterodyne or
the group velocity of the waves, one finds

L de/W)
U ==

Let us return to the phase waves. If one assigns to
the moving body a speed v=8¢ not giving to 8 a
completely determined value, but only that it be
bounded by the limits of 8 and 8+88; the fre-
quencies of the corresponding waves fill a small
interval between » and »-+dv.

We are going to establish the following theorem
which we will ultimately use:

The group velocity of the phase waves is equal to
the velocity of the moving body.

In fact, this group velocity is determined by the
formula given above in which the same V and »
can be considered as functions of @ since one has

V=c/B, v=h""mec?/ (1—pBH)12].

One can write

_ /dB
A/ V) /dB
Since

dv/dB = (moc®/h) [8/ (1—6%)¥"],

d(/V)  mecd[B/(1—p%)12]
sk dg

= (mac?/h) (1—62) %2



Therefore,

U=8c=v.

The group velocity of the phase waves is
definitely equal to the velocity of the moving body.
This result requires a remark: In the dispersion
theory of waves, if one exeludes the regions of
absorption, the energy propagation velocity is
equal to the group velocity.! Even though we
examine it from a very different point of view,
we find an analogous result since the velocity of
the moving body is nothing but the energy
propagation velocity.

III. PHASE WAVES IN SPACE-TIME

Minkowski was the first to show that one
obtaing a simple geometric representation of the
relations of space and of time introduced by
Einstein by considering a Fuclidean multiplicity
of four dimensions—called “universe” or ‘“‘space—
time.”” To do this he took three rectangular space-
like axes and a fourth axis normal to the first
three on which was put time multiplied by
c(—1)¥2 Today one more usually puts the real
quantity ¢ on the fourth axis, but then the
mutually normal planes passing through this axis
and normal to it have a pseudo-Euclidean
hyperbolic geometry in which the fundamental
invariant is ¢2di?—da?— dy® — d#2.

tan a,=|/B

ton @, * 8

Let us consider now the space and time variables
associated with the four axes of the fixed observer.
We take the z axis for the straight path of the
moving particle and we show in our paper [above]]
the plane Ofx containing the time axis and the
above mentioned trajectory. Under these condi-
tions, the world line of the particle is represented by
a straight line forming an angle of less than 45°
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with the time axis; this line is, moreover the time
axis observed from the (reference frame) of the
moving particle. We show in our figure two time
axes intersecting at the origin, which does not
violate our general principle.

If the speed of the particle according to a fixed
obiserver is Be, the slope of O has a value of 1/8.
The line Oz’ is in the plane {0z in the frame of the
moving observer at time O, is symmetric to O
and the bisector OD; it is easy to demonstrate
analytically by means of the Lorentz transforma-
tion; however, this results immmediately in the fact
that the limiting speed of energy ¢ has the same
value for all reference systems. The slope of
Oz’ is then 8. If the space surrounding the particle
ig the site of a periodic phenomenon, the state of
the space will become again the same for the
moving observer each time at the elapsed (in-
terval) 1/¢(0OA) —1/c(AB) is equal to the proper
period To=1/vo="h/mqc? of the phenomenon.

The straight lines parallel to Oz’ are then the
“profiles” of the “equiphase” spaces of the
moving observer in the zO¢ plane. The projection
of the points---a’, O, a---have their intersection
in the frame of the fixed observer, at the instant O;
these intersections of two surfaces in three dimen-
sions are some surfaces of two dimensions and
even planes because all the surfaces under con-
sideration are Euclidean. When the time for the
fixed observer passes, that part of the space—time
continuum which is for him spacelike is represented
by a straight line parallel to Oz moving with a
uniform motion in the positive ¢ sense. It is easily
seen that equiphase planes:--a’, O, a---are dis-
placed in the frame of the fixed observer with a
speed ¢/B3. In effect, if the line O of the figure
represents the frame of the fixed observer, at time
t=1, one has age=c. The phase which at time =0
was at a is now at a;; for the fixed observer, it is
then displaced in space by an amount aea; in the
Oz direction, during a unit of time. One can then
say that the speed is:

V =aoay =aay cot.(20z') =c/B.

The ensemble of equiphase planes constitutes
that which we have called phase waves.

It remains to examine the question of fre-
quencies. Let us once again draw a simple figure
[below].
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The straight lines 1 and 2 represent AB two
successive equiphase planes for a fixed observer.
AB is, as we have said, equal to ¢ times the proper
period To=h/mqc?.

AC, the projection of AB on the Of axis, is equal
to

cTy=cTo/(1—62)12,

This results from a simple application of trig-
onometric relations; however, we may say that
upon applying trigonometry to the figures of the
z0t plane, it is always necessary to keep in mind
the particular anisotropy of the plane. The
triangle ABC gives us:
(AB)?= (AC)?— (CB)?=(AC)*(1 —tan? ZCAB)

= (AC)* (1—8%),
(AC)=(4B)/(1—p)""

The frequency 1/T: is that which the periodic
phenomenon appears to have for the fixed
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observer as he follows it with his eyes as it is in
motion. This is

v =ro(1—B2) V2= (moc?/h) (1—B2) 2,

The period of the waves at a point in the frame
of the fixed observer is not given by 1/¢(4C),
but by 1/¢(AD). Let us calculate it.

In the small triangle BCD, one finds the
relation CB/DC =" from which DC=8CB=
B2AC. Moreover, AD=AC—-DC=AC(1-8).
The new period 7' is then equal to

T=cTAC(1—B2) = To(1—g2) 12
and the frequency v of the waves is expressed by
v="T"1=ypy/(1—B2) 2 =mec?/h(1—B2)1/2

We have found once again all the results
obtained analytically in Sec. I, but now we see
better how they relate to the general conception
of space—time and why the phase shift of periodic
motion taking place at different points in space
depends on the manner in which simultaneity is
defined by the theory of relativity.

! See, e.g., L. Brillouin, La théorie des quanta et I'atome de
Bohr, Journal de Physique (Paris, 1922), Chap. 1, pp. 181.
(Recueil des conférences-rapports de documentation sur la
physique, Vol. 2, 1 serie conferences, 4, 5, 6.)



