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a relatively simple derivation of the Bloch equa-
tion, there does not seem to be much point in
trying to improve this theory, if at the same
time it becomes more complicated.
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An elementary method is given for the exact determination of the quantum mechanical trans-
mission and reflection cocefficients for a rectangular one-dimensional potential barrier. The
methed also finds application in approximate solutions for multistep barriers.

HE method commonly used in calculating

the transmission and reflection coefficients
for a particle incident at a rectangular one-
dimensional potential barrier, (see, e.g., Con-
don') depends on solving the Schrodinger equa-
tion for the region within the barrier and on
either side, and eliminating the two constants
which were introduced in the solution for the
region within the barrier. Solutions for barriers
with several steps involve the elimination of two
constants for each region of constant potential
within the barrier. In all cases, the constants
are eliminated by using the conditions for con-
tinuity of ¥ and dy/dx at the discontinuities in
potential. The treatment to be found in modern
books on the subject (e.g., Merzbacher,? and
Dicke and Wittke?) is usually that for a sym-
metrical barrier and in some cases is only
approximate.

The present method consists, firstly, in writing
down the reflected and the transmitted compo-
nents of an elementary wavefunction ¢ incident
at each discontinuity of potential to be found

1E. U. Condon, Rev. Mod. Phys. 3, 43-74 (1931).

:E. Merzbacher, Quantum Mechanics (John Wiley &
Sons, Inc., New York, 1961), pp. 91-92.

s R, H. Dicke and J. P. Wittke, Introduction to Quanium
Mechanics (Addison-Wesley Publ. Co., Inc., Reading,
Mass., 1960), pp. 40-46.

in the barrier. The resultant ¥ wave in a region
of interest is then calculated, following the
principle of superposition, by summing in a
geometric series the components resulting from
multiple reflection and transmission. In this way,
one arrives easily at the transmission and reflec-
tion coefficients for the barrier without the in-
troduction of unnecessary constants and the
necessity for their subsequent elimination. An
approximate solution for the case of a multistep
barrier is found by including only those terms
of the series which are found to be of appreciable
size.

The solution of the Schrédinger equation Hy
=FEy for a particle in a region of constant po-
tential energy 7 may be written as

¥ =exp(ikx), 1)
where
k=[2m(E—-V) ]/ 4. (2)

For E>V, k is real and the solution represents
a complex harmonic wave traveling in the direc-
tion of increasing x; while if E< V, the physi-
cally meaningful solution for ¢ is an exponen-
tially decreasing real function of x. (For E= 7,
Y =1, representing a stationary particle of unde-
termined position.) Thus, for the present purpose,
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F16. 1. (a) Symmetrical rectangular potential barrier
and (b) wavefunctions resulting from the incident ¢ by
successive transmission and reflection.

we may adopt ¢ =exp(zkx) as a general form of
solution, where 2 may be real or imaginary.

Let a particle which is incident from the left
at a discontinuity in potential at x=0 be repre-
sented by the wavefunction ¢ =exp (¢k1x), where
the momentum of the particle p;=#%k1, and the
transmitted and the reflected components by
t1z exp(tkox) and 712 exp(—kix), respectively.
Continuity of ¢ and dy/dx at x=0 gives

bie=2k1/ (k1t+ks) 71a= (k1—ky)/(k1+ks), (3)
where
ki=[2m(E—V.)J/h
and
ko=[2m(E— V) /% 4)

In the case of the symmetrical barrier shown
in Fig. 1 (a), the amplitude coefficients for the
first and second discontinuities are seen to be

tor=2ko/ (ko+ky) ti=2k1/ (k1+k0),
Yo1= <ko—k1)/(ko+k1), (%)
Y197 (kr—ko)/ (kl“l‘ko)r
and the multiply reflected and transmitted terms
are those shown in Fig. 1 (b). The transmitted
or the reflected wavefunction is calculated by

summing the relevant terms. Taking the trans-
mitted wavefunctions, one obtains

Yirans = b1ofor expi(kox+k1a) ]
+t107 10201 exp[ 2 (kox+3k1a) ]
+t1or10%or exp[i(kox+5k12) 1+ -+ (6)
={10t01 expZ(kox+ k1) {1 -+71s® exp (2¢k1a)
+r10t exp(dtkia)+-- -}, (1)
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ie.,

¢trans/¢inc
={f10b01 exp (ikﬂl)/[l — 710 exXp (Ztkla)]: (8)

which, on substituting for g1, f10, and 7y from
Eq. (5), gives

"/’trans/‘pine = 4k0k1 exXp (ik 10/)/
I:(ko‘i—kl)z— (kl—k0)2 exp (Z’Lkld):l (9)

Hence, the intensity transmission coefficient for
the barrier

T: l\btrans/\{/inc [ 2
= |4kok1/[ (ko+k1)? exp(—ikia)
— (k1—ko)? exp (ik12) 712, (10)

where ky is real and £y may be real or pure
imaginary, as given by Eq. (4).

This approach is readily extended for the case
of the double barrier shown in Fig. 2 (a). Analy-
sis of the first barrier enables us to write ¥
=t exp(tkox) for the transmitted wavefunction,
where ¢, which includes a phase shift term, is
given by Eq. (9). The action of the second
barrier on this wavefunction is to give rise to
the succession of terms shown in Fig. 2 (b),
where 7 is the amplitude reflection coefficient
for the complete single barrier. The wavefunction
transmitted by the complete barrier system is
found by summing as before. The conditions
which give rise to resonance effects in the system
may be readily seen from phase considerations.

The case of the asymmetrical barrier which is
specified by the three regions of potential V3,
Vs, and Vs, as shown in Fig. 3, is treated in the
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Fic. 2. (a) Symmetrical double potential barrier and
(b) the components giving rise to a transmitted wave
function.
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V=V4

Y=Vy

Fi6. 3. Asvmmetrical rectangular potential barrier.

same manner as the symmetrical barrier above,
the summations giving rise to geometrical series
as before. The relevant coefficients are

tpa=2ky/ (kptky) 75= (kp—Fky)/ (kpt+ky), (11)

where the suffixes refer to the three regions of
the barrier. Writing the wavefunction incident
from the left as ¢ =exp(tkix) and summing this
time over the reflected components, it is easily
seen that

Urot1 =719 €xP (— k1) +E017 05t 12
Xexp[ —i(kwx-+2kaa) |+ a7 asrorrastio

Xexpl —i(kw+4ka) ]+ -+, (12)
where
kp=[2m(E—V,)]}/h, (13)
ie.,
Yret1 = exXp(— 2k12) {715+ La17 a3t1z €xp (—12k00)
X[ 1+rares exp{—1i2kaa) 47212724
Xexp(—idkoa)+---1}; (14)

or, on substituting from Eq. (11) and summing,
¢1'6f1/¢inc
=[ki—kot+4kiks(ko—k3)/ (k1+ks) (katks)
Xexp (12]31&} — (kg‘—k1> (kg_kg)]

X (kytko)=t (15)

FERMOR

V=V, §
V=V,
(a)
REGION1 2 3
‘b: e ‘ k‘x !34 tz] t‘ze‘(k‘x'kzq+ kab)
13452 alad® ligxek0e3k,0)
tyataa r23‘1ze|(k’x‘3kzq+hb)

(b)

F16. 4. (a) Multistep potential barrier and (b) the for-
mation of the three dominant terms of the transmitted
wavefunction.

Approximate solutions may be arrived at in
cases of more complex barriers by summing the
terms of significant size for the various modes of
transmission as is, €.g., indicated in Fig. 4, where
the first three terms of the transmitted wave-
function are shown. Owing to the multiplicity of
path type, this approach is of course practicable
only when the size of the terms falls rather
sharply. Approximate solutions may similarly be
found for the cases where a smoothly varying
potential function allows a reasonably good
stepwise approximation to be made.

In conclusion, it may be said that the method
offers a simple alternative solution to barrier
penetration problems, and because of its analogy
with the analysis of reflection and transmission
by thin films in physical optics, is likely to prove
attractive to students.



