Estructura de la materia 3 Serie 3 – Aplicaciones de Hartree-Fock Cátedra: Martín Ruiz de Azúa Curso de verano 2012

- **1.** Se quiere estudiar la estabilidad de la molécula de hidrógeno ionizada \mathbf{H}_{2}^{+} , para lo cual se utiliza una base mínima (compuesta por los orbitales espaciales atómicos $|1s_{A}\rangle y |1s_{B}\rangle$ centrados respectivamente en los átomos A y B de la molécula)..
 - a) Utilizando el principio variacional demuestre que la mejor aproximación al estado fundamental de la molécula para esta base mínima esta dada por el orbital:

$$\phi_{1} = [2(1+S)]^{-1/2} (1s_{A} + 1s_{B})$$

$$donde \quad S = \langle 1s_{A} | 1s_{B} \rangle$$
(Ver ayuda final)

b) Demuestre que la energía de la molécula \mathbf{H}_2^+ , a una distancia internuclear \mathbf{R} en su estado fundamental es:

$$E = E_H - [V_1(R) + V_2(R)]/[1 + S(R)] + 1/R$$

donde $\mathbf{E_H}$ es la energía del átomo de \mathbf{H} y $V_1 = \left<1s_A\left|\frac{1}{\left|\vec{r} - \vec{R}_B\right|}\right|1s_A\right>$

$$\mathbf{y} \, V_2 = \left\langle \mathbf{1} s_A \, \middle| \, \frac{1}{\left| \vec{r} - \vec{R}_B \right|} \middle| \, \mathbf{1} s_B \right\rangle.$$

(Para hallar esta expresión suponga que las funciones $|1s_A\rangle$ y $|1s_B\rangle$ son autoestados del hamitoniano de átomo de hidrógeno centrado en el núcleo correspondiente)

- c) Use los datos de la tabla 1 para hallar la curva de energía E(R) y determine
 - i) la energía de disociación del enlace.
 - ii) la longitud de equilibrio del enlace. Compare con la longitud de equilibrio de H_2 (=1.4 au (exp) y 1.346 au (STO3G))
- d) ¿Se puede asegurar que el sistema es ligado a partir de este cálculo rudimentario? Justifique.
- e) Muestre que el orbital

$$\phi_2 = [2(1-S)]^{-1/2} (1s_A - 1s_B)$$

(ortogonal a ϕ_1) es antiligante.

Tabla 1

R/a ₀	0	1	2	3	4
V ₁ /R _H	1.000	0.729	0.473	0.330	0.250
V_2/R_H	1.000	0.736	0.406	0.199	0.092
S	1.000	0.858	0.587	0.349	0.189

$$E_H = -\frac{1}{2}R_H$$
, $R_H = 27.3eV$ y $a_0 = 0.53$ Å

^(*) Necesitará evaluar el término de repulsión nuclear

<u>Ayuda</u>: el cálculo variacional del punto a) es sustancialmente más simple si se utiliza para el mismo directamente la base $|\phi_{\scriptscriptstyle 1}\rangle$, $|\phi_{\scriptscriptstyle 2}\rangle$ en lugar de la base $|1s_{\scriptscriptstyle A}\rangle$, $|1s_{\scriptscriptstyle B}\rangle$.

- 2. Muestre que
 - a) el elemento de matriz general del operador de Fock tiene la forma:

$$f_{ij} = \langle \chi_i | f | \chi_j \rangle = \langle \chi_i | h | \chi_j \rangle + \sum_{b \mid o(x)} \langle \chi_i \chi_b | \chi_j \chi_b \rangle$$

- $\mathbf{b})$ el operador de Fock es hermítico probando la hermiticidad del elemento de matriz $\mathbf{f_{ij}}$.
- **3.** Muestre que la expansión de las energías orbitales en términos de los espín-orbitales de Hatree-Fock se puede convertir, para un sistema de capa cerrada, a la expresión:

$$\varepsilon_i = h_{ii} + \sum_{b=0}^{n} (2J_{bi} - K_{bi})$$
, donde n (igual a N/2, con N el número de electrones del sistema) es el número de orbitales espaciales ocupados.

4. Potencial de Ionizacion: Considerando un estado ionizado del sistema en el cual un electrón ha sido sacado del espín-orbital χ_a del estado de Hartree-Fock $\left|\Psi_0^N\right>$,

$$|\Psi_0^{N-1}\rangle = |\chi_1\chi_2....\chi_{a-1}\chi_{a+1}....\chi_N\rangle$$

Demuestre que la energía necesaria para este proceso de ionización IP es:

$$IP = E_0^{N-1} - E_0^N = -\langle a | h | a \rangle - \sum_{b(acu)}^N \langle ab | ab \rangle = -\varepsilon_a$$

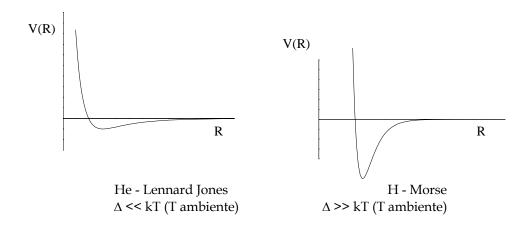
5. Doble ionización : Muestre que la energía requerida para mover un electrón de χ_c y uno de χ_d para producir el determinante $\left| {}^{N-2}\Psi_{cd} \right>$ es :

$$-\varepsilon_{c} - \varepsilon_{d} + \langle cd|cd \rangle - \langle cd|dc \rangle$$
.

6. Muestre que la afinidad electrónica EA es

$$\mathbf{E}\mathbf{A} {=}^{N}\mathbf{E_{0}} {-}^{N+1}\mathbf{E^{r}} = -\langle r|h|r\rangle - \sum_{b}\langle rb\|rb\rangle = -\epsilon_{\mathbf{r}}$$

- 7. ¿Cuál es el estado de Hartree-Fock para el H₂ en base mínima? Para el estado propuesto:
 - a) Escriba en forma explícita el operador de Fock.
 - b) Halle los elementos de matriz del operador de Fock hallado en a) en la propia base mínima. ¿Cuál es la dimensión de la matriz hallada?
 - c) ¿Qué características debe tener dicha matriz si el estado propuesto es efectivamente el de Hartree-Fock?
 - d) Para este estado, evalúe la contribución a la energía de cada término del hamiltoniano. ¿Qué término es responsable de la energía de enlace de la molécula? Relaciónelo con el *solapamiento* de las funciones atómicas. (Véase Problema 1)


8. Usando los datos de la tabla, obtenga las curvas de disociación del H₂ en base mínima empleando RHF. ¿Cuál es la distancia de equilibrio?

R	ϵ_1	ϵ_2	J ₁₁	J_{12}	J_{22}	K ₁₂
0,6	-0,7927	1,3327	0,7496	0,7392	0,7817	0,1614
0,8	-0,7321	1,1233	0,7330	0,7212	0,7607	0,1655
1,0	-0,6758	0,9418	0,7144	0,7019	0,7388	0,1702
1,2	-0,6245	0,7919	0,6947	0,6824	0,7176	0,1755
1,4	-0,5782	0,6703	0,6746	0,6636	0,6975	0,1813
1,6	-0,5368	0,5715	0,6545	0,6457	0,6786	0,1874
1,8	-0,4998	0,4898	0,6349	0,6289	0,6608	0,1938
2,0	-0,4665	0,4209	0,6162	0,6131	0,6439	0,2005
2,5	-0,3954	0,2889	0,5751	0,5789	0,6057	0,2179
3,0	-0,3377	0,1981	0,5432	0,5512	0,5734	0,2351
4,0	-0,2542	0,0916	0,5026	0,5121	0,5259	0,2651
5,0	-0,2028	0,0387	0,4808	0,4873	0,4947	0,2877
7,5	-0,1478	-0,0114	0,4533	0,4540	0,4547	0,3206
10,0	-0,1293	-0,0292	0,4373	0,4373	0,4373	0,3373
20,0	-0,1043	-0,0543	0,4123	0,4123	0,4123	0,3623
100,0	-0,0843	-0,0743	0,3923	0,3923	0,3923	0,3823

(Extraída de Modern Quantum Chemistry, Attila Szabo - Neil S. Ostlund.) Cálculos usando la base de funciones Slater sto-3g (exp=1,24).

 ϵ_1 y ϵ_2 energías orbitales, R distancia intermolecular, J_{ab} y K_{ab} integrales de Coulomb e intercambio. (De la página web de la materia se puede obtener esta tabla en formato excel)

- **9.** Para el caso del problema 1, es decir el \mathbf{H}_{2}^{+} , obtenga "mejores" curvas de disociación utilizando el laboratorio de computación y compare los resultados.
- **10.** Explique por qué la curva de energía potencial V(R) para dos átomos de He y para dos átomos de H son radicalmente diferentes (para el estado electrónico fundamental). Relacionarlo con el llenado de orbitales enlazantes y antienlazantes en cada caso.

- **11.** i) A partir de los orbitales atómicos que constituyen la base mínima para la serie de moléculas diatómicas X₂ (X=H, Li, C, N y F) construya una posible base de orbitales moleculares.
 - ii) A partir de los cálculos numéricos realizados para las moléculas diatómicas que figuran en el Anexo de este problema:
 - **a**) Analice la ocupación de los orbitales moleculares, su simetría y su carácter enlazante o antienlazante.
 - **b**) En cada caso, pase a la descripción química "localizando" los orbitales. Determine el número de enlaces (es decir el número de electrones "compartidos"). Interprete en términos de la valencia.
 - c) Determine la simetría global del estado fundamental.
 - d) Analice en particular la simetría de la molécula de NO.

Molécula	Simetría	Molécula	Simetría
H_2	$1\Sigma_g^+$	O_2	$3\Sigma_g$ -
Li_2	$1\Sigma_g^+$	F_2	$^{1}\Sigma_{g}^{+}$
C_2	$1\Sigma_g^+$	O_2^+	$^2\Pi_{ m g}$
N_2	$1\Sigma_g^+$	NO	2∏

Simetría del estado fundamental de algunas moléculas diatómicas (observadas).

12. El oxígeno es paramagnético. En estado gaseoso y a T=293K su susceptibilidad magnética es χ =3,449 χ 10-3 por mol en unidades cgs. La relación entre la susceptibilidad macroscópica y el momento dipolar magnético permanente μ 0 de cada molécula puede estimarse (para campos débiles, es decir tales que μ 0B<<kT) a partir de:

$$\chi = \frac{\alpha n \mu_0^2}{kT}$$

donde α es una constante del orden de 1, n es el número de Avogadro y $k = 1{,}38x10^{-16}$ erg K⁻¹ es la constante de Boltzmann.

- a) Estime el valor del momento dipolar magnético de la molécula de O2.
- **b**) El isótopo A=16 de O₂ es un núcleo par-par y, por lo tanto, no tiene momento dipolar magnético. El isótopo A=17 tiene abundancia natural 0,037%, tiene espín no nulo y momento magnético $g_0\mu_N$ donde μ_N es el magnetón nuclear que se relaciona con el magnetón de Bohr β mediante el cociente de las masas del protón y el electrón, $\mu_N = \beta m_e/M_p$. El factor giromagnético del ¹⁷O es g_0 =-0,76. En unidades atómicas β =3,8x10-3 y en unidades cgs β =0,922x10-20 (ues.cm). De acuerdo al resultado de **a**) y estos datos determine si el magnetismo del O₂ es de origen nuclear o electrónico.
- c) A continuación se dan los datos de un cálculo RHF de capa cerrada para la molécula de O₂ con 14 electrones (z es el eje internuclear).
 - i) Clasifique de acuerdo con su simetría espacial a los orbitales ocupados en orden creciente de energía orbital.
 - ii) Analice en qué orbitales debe ubicar los dos electrones adicionales para formar el estado unideterminantal $|\Psi_0\rangle$ de menor energía para la molécula de O_2 con sus 16 electrones.

```
Molecular Orbital Coefficients
                                    2
                          1
                                                    (SGU)--O
                       (SGU)--O (SGG)--O
                                          (SGG)--0
                                                              (SGG)--0
    EIGENVALUES --
                     -21.96877 -21.96868
                                          -2.75167
                                                    -2.08231
                                                              -1.70982
   1 1
        0 1S
                       0.70336
                                 0.70398 - 0.16270 - 0.18778
                                                              -0.07758
            2S
                       0.01795
                                0.01156
                                          0.54730
                                                     0.80063
                                                               0.37288
                                0.00000
   3
            2PX
                      0.00000
                                           0.00000
                                                     0.00000
                                                               0.00000
   4
            2PY
                       0.00000
                                 0.00000
                                           0.00000
                                                     0.00000
                                                               0.00000
           2PZ
                      -0.00542
                                -0.00035
                                         -0.21755
                                                     0.11766
                                                               0.60038
   6 2
        0 1S
                      -0.70336
                                0.70398
                                          -0.16270
                                                     0.18778
                                                              -0.07758
           2.5
                      -0.01795
                                 0.01156
                                          0.54730
                                                    -0.80063
                                                               0.37288
   8
           2PX
                      0.00000
                                 0.00000
                                           0.00000
                                                    0.00000
                                                               0.00000
   9
           2PY
                       0.00000
                                 0.00000
                                           0.00000
                                                     0.00000
                                                               0.00000
  10
           2PZ
                      -0.00542
                                 0.00035
                                           0.21755
                                                     0.11766
                                                              -0.60038
                                              8
                                                        9
                                                                 10
                      (PIU)--O (PIU)--O (PIG)--V
                                                    (PIG)--V (SGU)--V
    EIGENVALUES --
                      -1.66681 -1.66681 -0.98011 -0.98011
                                                              -0.53112
  1 1
        0 1s
                       0.00000
                                0.00000
                                           0.00000
                                                     0.00000
                                                               0.08620
                                                     0.00000
            2S
                       0.00000
                                 0.00000
                                           0.00000
                                                              -0.54956
   3
            2PX
                       0.65863
                                0.00000
                                           0.76816
                                                     0.00000
                                                              0.00000
   4
           2PY
                                 0.65863
                                           0.00000
                                                     0.76816
                       0.00000
                                                               0.00000
           2PZ
                       0.00000
                                 0.00000
                                           0.00000
                                                     0.00000
                                                               0.95125
   6 2
        0 1S
                       0.00000
                                0.00000
                                           0.00000
                                                     0.00000
                                                             -0.08620
            2S
                       0.00000
                                 0.00000
                                          0.00000
                                                     0.00000
                                                               0.54956
   8
           2PX
                       0.65863
                                 0.00000
                                         -0.76816
                                                    0.00000
                                                               0.00000
                       0.00000
                                 0.65863
                                          0.00000 -0.76816
  9
           2PY
                                                               0.00000
  10
            2PZ
                       0.00000
                                 0.00000
                                           0.00000
                                                     0.00000
                                                               0.95125
3 symmetry adapted basis functions of AG symmetry.
 0 symmetry adapted basis functions of B1G symmetry.
1 symmetry adapted basis functions of B2G symmetry.
 1 symmetry adapted basis functions of B3G symmetry.
 0 symmetry adapted basis functions of AU symmetry.
 3 symmetry adapted basis functions of B1U symmetry.
1 symmetry adapted basis functions of B2U symmetry.
1 symmetry adapted basis functions of B3U symmetry.
Integrales bielectrónicas en la base molecular:
tipo <aa aa> = Jaa
<10 10 |10 10> = 0.740876798
tipo \langle ab | ab \rangle = J_{ab}
<8 9 | 8 9> = <8 10 | 8 10> = 0.607744325
<9 10 | 9 10 > = 0.548715273
tipo <aa|bb>=<ab|ba>=Kab
<8 8 9 9> = <8 8 10 10> = 0.025030126
<9 9 10 10> = 0.0222363459
```

- iii) ¿Cuánto vale el momento dipolar magnético de la molécula de O_2 en ese estado? Comparar con **b**).
- **iv**) Determine la simetría global del estado fundamental de las moléculas de O_2 y O_2 ⁺.
- **13.** Analice si en un subespacio del espacio de estados de un sistema físico, la solución óptima desde el punto de vista variacional coincide con la que corresponde a diagonalizar el hamiltoniano proyectado en el subespacio en cuestión.
- **14.** Una base mínima para el benceno consiste de 72 espín-orbitales. Calcule el tamaño de la matriz de CI completa formada por los elementos de matriz del hamiltoniano entre determinantes. ¿Cuántos determinantes monoexcitados hay? ¿Cuántos doblemente excitados?

- **15.** Considere la molécula H₂ en base mínima:
 - a) Discuta en cuántos bloques se puede separar la matriz de CI Completo (full CI) empleando la simetría espacial y de espín de los orbitales. ¿qué simetría tienen los excitados en orden creciente?
 - b) Muestre que el bloque de la matriz de CI completa asociado al estado fundamental es:

$$H = \begin{pmatrix} \langle 1|\mathbf{h}|1\rangle + \langle \bar{1}|\mathbf{h}|\bar{1}\rangle + \langle 1\bar{1}||1\bar{1}\rangle & \langle 1\bar{1}||2\bar{2}\rangle \\ \langle 2\bar{2}||1\bar{1}\rangle & \langle 2|\mathbf{h}|2\rangle + \langle \bar{2}|\mathbf{h}|\bar{2}\rangle + \langle 2\bar{2}||2\bar{2}\rangle \end{pmatrix}$$

$$\operatorname{con} \begin{cases} |1\rangle = |\phi_1\alpha\rangle & |\bar{1}\rangle = |\phi_1\beta\rangle \\ |2\rangle = |\phi_2\alpha\rangle & |\bar{2}\rangle = |\phi_2\beta\rangle \end{cases}$$

$$\phi_1 = [2(1+S)]^{-1/2}(1s_A + 1s_B)$$

$$\operatorname{donde} \phi_2 = [2(1-S)]^{-1/2}(1s_A - 1s_B)$$

$$S = \langle 1s_A | 1s_B \rangle$$

c) Muestre que integrando las coordenadas de espín la matriz de CI queda:

$$H = \begin{bmatrix} 2 h_{11} + J_{11} & K_{12} \\ K_{12} & 2 h_{22} + J_{22} \end{bmatrix}$$

- d) ¿Por qué en el punto b) se ha escrito una matriz de dimensión 2 (y no de dimensión 6)?
- **e)** Muestre que el estado triplete $|{}^3\Psi_1^2\rangle$ y el estado singlete $|{}^1\Psi_1^2\rangle$ (del bloque vacante) son tales que $\langle H\rangle = h_{11} + h_{22} + J_{12} \pm K_{12}$. Muestre que la energía del triplete es más baja que la del singlete.
- **f**) Usando los datos de la tabla del Problema 8, obtenga las curvas de disociación del H₂ en base mínima empleando *full* CI y compárelas con aquellas resultantes del calculo RHF. ¿Cuál es la distancia de equilibrio en este caso?
- **16.** Escriba la matriz de CI del HeH+ para las 3 configuraciones con S=0 (base mínima). Si es posible, encuentre el autovalor más bajo de la matriz de CI. ¿A qué corresponde?

Orbitales moleculares

$$\psi_1(\mathbf{r}) = 0.91\phi_{1sHe}(\mathbf{r}) + 0.1584\phi_{1sH}(\mathbf{r})$$
 $\psi_2(\mathbf{r}) = -0.8324\phi_{1sHe}(\mathbf{r}) + 1.2156\phi_{1sH}(\mathbf{r})$

Integrales mono- y bi- electrónicas

	Base atómica	Base molecular		
	(1 se refiere al 1sHe y 2 al 1Sh)	(1 se refiere a ψ_1 y 2 a ψ_2)		
h ₁₁	-2.6442	-2.6158		
h_{12}	-1.5113	0.1954		
h_{22}	-1.7201	-1.3154		
<11 11>	1.0547	0.9596		
<11 21>	0.4744	-0.1954		
<12 12>	0.5664	0.6063		
<22 11>	0.2469	0.1261		
<22 21>	0.3504	-0.0045		
<22 22>	0.6250	0.6159		

- **17.** Suponga que a la base mínima de funciones 1s del H_2 se le agrega una función tipo p_z sobre cada H (z es el eje internuclear).
 - **a)** Construya una base de orbitales posibles que tengan la simetría de la molécula. Clasifíquelos según su simetría.
 - **b**) Determine la dimensión del bloque $^{1}\Sigma_{g}^{+}$ de la matriz CI en esa base. ¿Qué forma tienen los estados (bielectrónicos) que pertenecen a dicho bloque?
- 18. Muestre
 - a) Que $H_0 = \sum f(i)$ es tal que cualquier estado unideterminental $|\Psi_0\rangle = |...\chi_a...\rangle$ es autofunción de \mathbf{H}_0 con autovalor $\mathbf{E}_0 = \sum \mathbf{\epsilon}_a$. (Véase práctica 1)
 - **b**) Que en consecuencia, el hamiltoniano *H* puede partirse en la forma:

$$H = H_0 + V$$

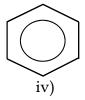
donde V es el "potencial de fluctuaciones"

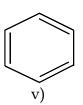
$$V = \sum_{i < i} \frac{1}{r_{ij}} - \sum_{i} v^{HF}(i),$$

es decir el potencial de interaccion al que se le ha restado el "campo medio"

$$\mathbf{v}^{\mathrm{HF}}(\mathbf{i}) = \sum_{b} \mathbf{J}_{b}(\mathbf{i}) - \mathbf{K}_{b}(\mathbf{i})$$

- c) considerando a V como perturbación y utilizando la teoría de perturbaciones de Rayleigh-Schrödinger, halle la corrección a segundo orden a la energía debida a la correlación electrónica, y la corrección consistente en la función de onda.
- **19.** Suponga que se ha efectuado un cálculo Hartree Fock para la molécula de H₂ con la base de funciones atómicas descripta en el problema 17, obteniéndose los correspondientes orbitales moleculares de Hartree-Fock y sus energías orbitales:
 - a) Halle los elementos de matriz del bloque triplete de la matriz CI del sistema (suponiendo conocidas todas las integrales mono y bielectrónicas entre orbitales moleculares). ¿En cuántos sub-bloques se puede subdividir dicho bloque?
 - **b**) ¿Qué significado tienen los autovalores de dicha matriz?
- **20.** Resuelva los puntos del problema 19 pero para cierto sistema molecular X₂ con 6 electrones y en el cual del cálculo Hartree Fock se han obtienido nuevamente 4 orbitales moleculares espaciales.
- 21. Benceno: Conjugación como fuente de estabilidad química. Al unirse los átomos de carbono para formar la molécula de benceno, cada uno satura 3 valencias con el H del extremo y sus 2 carbonos vecinos. Resta un electrón desapareado por átomo. Los 6 electrones, en esas condiciones, ocupan orbitales que son antisimétricos ante reflexiones respecto del plano de la molécula (orbitales π), que necesariamente por simetría van a ser combinaciones de los orbitales atómicos tipo p, perpendiculares a dicho plano. Por lo tanto, el operador de Fock va a tener un bloque de 6x6 que involucra a esos orbitales p_i, i=1,6. La interacción con los restantes electrones (los σ) estará contenida en el potencial de Fock V^F. Sin embargo, la clasificación de niveles puede obtenerse de un Hamiltoniano modelo sencillo (modelo de Hückel):


- a) se desprecia el solapamiento (overlap) entre los orbitales p_i, es decir se los trata como si fueran ortogonales.
- b) En esa base atómica se considera que solamente son importantes los elementos de matriz diagonales α (cuyo valor es igual para todos por simetría) y los extradiagonales solamente con los primeros vecinos $\beta = \langle \mathbf{p_i} | \mathbf{H} | \mathbf{p_{i+1}} \rangle$ (donde debe entenderse que $p_7 = p_1$ y $p_0 = p_6$ para tener bien en cuenta la interacción entre los átomos 6 y 1) (¡Importante! α , β < 0).
- c) En el modelo de capa cerrada, habrá 2 electrones por orbital de modo que deben obtenerse los 3 autoestados de menor energía para describir la forma en que se distribuyen los 6 electrones π en el benceno.


Para resolver el ejercicio utilice las siguientes ayudas:

- i) Mostrar que [H,R]=0 para R el operador que describe una permutación cíclica de los índices 1-6. Además, la permutación que manda 1→n se puede expresar como Rⁿ donde R es la permutación que manda 1→2, 2→3,....., 6→1. Mostrar que R es unitaria. Mostrar que si un estado es autoestado de R entonces lo es de H.
- ii) Concéntrese en los autoestados de R. Esto es más fácil porque como R^6 =1 cualquier autovalor λ tiene que ser tal que λ^6 =1. Halle los seis autovectores correspondientes a cada una de las raíces sextas de 1 en el plano complejo (R no es hermítica!). Compruebe que son autoestados de H y determine el autovalor correspondiente a cada uno.
- **iii**) Como H es real, un estado y su conjugado tienen que ser de igual autovalor. Use esa degeneración para obtener autoestados de H con coeficientes reales.
- **iv**) Forme el determinante con los tres orbitales de menor autovalor doblemente ocupados y determine la contribución resultante a la energía del sistema.
- v) Calcule el <H> para el estado unideterminantal formado con los orbitales:


$$\frac{1}{\sqrt{2}}(p_1+p_2); \quad \frac{1}{\sqrt{2}}(p_3+p_4); \quad \frac{1}{\sqrt{2}}(p_5+p_6)$$

vi) La diferencia entre las descripciones y es que en el primer caso los electrones están delocalizados de manera que se respeta completamente la simetría de la molécula. Además, su comportamiento es tal que, ante un campo magnético por ejemplo, forman colectivamente lo que se denomina una corriente de anillo. El caso v) describe electrones fuertemente localizados en dobles enlaces al estilo del eteno, que es la manera de saturar todas las valencias dibujando estructuras de Kekule. La diferencia de energía entre ambos estados se denomina energía de delocalización. ¿Cuánto vale? Notar que depende únicamente del parámetro β.

- **22.** En Química se suele interpretar la estructura electrónica a partir de combinaciones enlazantes de orbitales atómicos hibridizados. Emplee este tipo de descripción en las moléculas de C₂H₂, C₂H₄ y C₂H₆. Para eso:
 - **a**) Construya orbitales atómicos hibridizados tipo sp, sp² y sp³ a partir de los orbitales atómicos de valencia del carbono.
 - **b**) Empleando las estructuras geométricas de cada molécula, determine qué combinaciones enlazantes de estos orbitales dan la estructura electrónica en cada caso.

- c) Determine en forma aproximada la estructura geométrica del ciclohexano (C_6H_{12}) .
- **23.** * Usando las integrales de uno y dos electrones dadas más abajo, realice un cálculo SCF de capa cerrada para el estado fundamental $1\sigma^2$ del sistema HeH^+ .

Para llevar a cabo el cálculo se presenta la información respecto de la distancia internuclear R=1.4ua. Los exponentes orbitales de Slater 1s del He y H son 1.6875 y 1.0 respectivamente. Las integrales requeridas en la base de orbitales atómicos son (en au):

$$S_{aa} = S_{bb} = 1.0$$

$$S_{ab} = 0.5784$$

$$h_{aa} = -2.6442$$

$$h_{bb} = -1.7201$$

$$h_{ab} = -1.5113$$

$$(h_{ij} = \langle i | h | j \rangle)$$

$$\langle aa | aa \rangle = 1.0547$$

$$\langle aa | ba \rangle = 0.4744$$

$$\langle ab | ab \rangle = 0.5664$$

$$\langle bb | aa \rangle = 0.2469$$

$$\langle bb | ba \rangle = 0.3504$$

$$\langle bb | bb \rangle = 0.6250$$

donde el índice **a** se refiere a **1sHe** y el índice **b** a **1sH**. Como elección inicial para el orbital molecular ocupado use $\chi_1 = 1$ sHe y siga los siguientes pasos:

- a) Formar una matriz de Fock con esta elección inicial del orbital molecular ocupado.
- b) Resolver la ecuación de autovalores para obtener las energías orbitales y un orbital molecular ocupado mejorado. Observar que la condición de normalización requerida para los coeficientes es $\langle \chi_1 | \chi_1 \rangle = 1$.
- c) Determinar la energía SCF total en esta etapa del procedimiento iterativo.
- **d**) Utilizar el orbital mejorado del ciclo anterior para una entrada en el nuevo. Recalcular todo. Observar la variación de la energía y la desviación cuadrática de la matriz densidad.
- e) Luego de algunos pasos los orbitales convergidos son:

$$\chi_1 = 0.9 \, \, 1sHe + 0.1584 \, \, 1sH \, \, \, \, \, \, \, \, \chi_2 = -0.8324 \, \, 1sHe + 1.2156 \, \, 1sH$$

Verificar que estén ortonormalizados y si no es así, hacerlo.

f) Mostrar, usando las integrales de uno y dos electrones en la base de orbitales moleculares

$$\begin{array}{lll} \langle 1|h|1\rangle = -2.6158 & \langle 1|h|2\rangle = 0.1954 & \langle 2|h|2\rangle = -1.3154 \\ \langle 11|11\rangle = 0.9596 & \langle 11|21\rangle = -0.1954 & \langle 12|12\rangle = 0.6063 \\ \langle 12|21\rangle = 0.1261 & \langle 22|21\rangle = -0.0045 & \langle 22|22\rangle = 0.6159 \\ \end{array}$$

que los valores convergidos de las energías orbitales son

$$\varepsilon_1 = -1.6562$$
 $\varepsilon_2 = -0.2289$

Anexo del Problema 11

H_2

Base: STO-3G EHF=-1.1175059

Standard orientation:

Center	Atomic	Atomic	Coc	Coordinates (Angstroms)				
Number	Number	Type	X	Y	Z			
1	1	0	0.000000	0.000000	0.356115			
2	1	0	0.000000	0.000000	-0.356115			
Rotation	al constants	(GHZ):	0.0000000	1977.0684221	1977.0684221			

Molecular Orbital Coefficients

				1	2
	EIG	ENV	ALUES -	 -0.59022	0.70065
1	1	Η	1S	0.54586	1.24624
2	2	Η	1s	0.54586	-1.24624

 \mathtt{Li}_2

Base: STO-3G EHF=-14.6387473

Standard orientation:

		Standar 	d orientat 	1on:			
Center Number	Atomic Number			Coordinat X	es (Angst Y	roms) Z	
1 2	 3 3	0 0			000000 000000	1.348272	
			0.00			-1.348272	
Rotation	al consta	ints (GHZ):	0.000000	0 19.8	126462	19.812646	
Mole	cular Orb	oital Coefficie					
		1	2	3	4	5	
	NVALUES -	-2.33043	-2.33038	-0.14889	0.08229		
	Li 1S	0.70039	0.70095	-0.19732	-0.17944		
2	2S	0.03709	0.02026	0.56831	0.70124		
3	2PX	0.00000	0.00000	0.00000	0.00000		
4	2PY	0.00000	0.00000	0.00000	0.00000		
5	2PZ	-0.00804	0.00166	-0.10192	0.30462		
	Li 1S	-0.70039	0.70095	-0.19732	0.17944		
7	2S	-0.03709	0.02026	0.56831	-0.70124		
8	2PX	0.00000	0.00000	0.00000	0.00000		
9	2PY	0.00000	0.00000	0.00000	0.00000		
10	2PZ	-0.00804	-0.00166	0.10192	0.30462	0.00000	
		6	7	8	9	10	
	NVALUES -	0.13427	0.15710	0.23935	0.23935		
	Li 1S	0.00000	-0.03563	0.00000	0.00000		
2	2S	0.00000	0.29063	0.00000	0.00000		
3	2PX	0.62604	0.00000	0.83088	0.00000		
4	2PY	0.00000	0.00000	0.00000	0.83088		
5	2PZ	0.00000	0.64093	0.00000	0.00000		
	Li 1S	0.00000	-0.03563	0.00000	0.00000		
7	2S	0.00000	0.29063	0.00000	0.00000		
8	2PX	0.62604	0.00000	-0.83088	0.00000		
9	2PY	0.00000	0.00000	0.00000	-0.83088		
10	2PZ	0.00000	-0.64093	0.00000	0.00000	-1.19031	

C_2

Base: STO-3G EHF=-74.4222012

Input orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Type	X	Y	Z		
1	6	0	0.00000	0.000000	-0.616669		
2	6	0	0.000000	0.00000	0.616669		

Rotational constants (GHZ): 0.0000000 55.3735424 55.3735424

	Molecular Orbital Coefficients								
				1	2	3	4	5	
	EIG	ENV	ALUES	-11.05190	-11.05026	-0.97365	-0.42520	-0.37371	
1	1	C	1S	0.70241	0.70239	-0.19427	-0.18179	0.00000	
2			2S	0.01433	0.02798	0.53061	0.74827	0.00000	
3			2PX	0.00000	0.00000	0.00000	0.00000	0.62359	
4			2PY	0.00000	0.00000	0.00000	0.00000	0.00000	
5			2PZ	-0.00138	-0.00910	-0.17397	0.26272	0.00000	
6	2	С	1S	0.70241	-0.70239	-0.19427	0.18179	0.00000	
7			2S	0.01433	-0.02798	0.53061	-0.74827	0.00000	
8			2PX	0.00000	0.00000	0.00000	0.00000	0.62359	
9			2PY	0.00000	0.00000	0.00000	0.00000	0.00000	
10			2PZ	0.00138	-0.00910	0.17397	0.26272	0.00000	
				6	7	8	9	10	
	EIG:	ENV	ALUES	-0.37371	0.03090	0.35009	0.35009	1.16058	
1	1	С	1S	0.00000	-0.05275	0.00000	0.00000	-0.13304	
2			2S	0.00000	0.35412	0.00000	0.00000	1.23698	
3			2PX	0.00000	0.00000	0.83671	0.00000	0.00000	
4			2PY	0.62359	0.00000	0.00000	0.83671	0.00000	
5			2PZ	0.00000	0.62708	0.00000	0.00000	-1.22901	
6	2	С	1S	0.00000	-0.05275	0.00000	0.00000	0.13304	
7			2S	0.00000	0.35412	0.00000	0.00000	-1.23698	
8			2PX	0.00000	0.00000	-0.83671	0.00000	0.00000	
9			2PY	0.62359	0.00000	0.00000	-0.83671	0.00000	
10			2PZ	0.00000	-0.62708	0.00000	0.00000	-1.22901	

.....

N_2

Base: STO-3G EHF= -107.5006543

Center Atomic		.C	Atomic		Coordinates (Angstroms)					
Num	ber		Numbe	er	Type		X		Y	Z
	 1		 7		0	0.00	0000	0.	000000	0.566964
2		7		0	0.00	0000	0.	000000	-0.566964	
Rot	ati	onal	const	ants	(GHZ):	0.000000	0	56.1	375016	56.137501
	Мо	lecu	lar Oı	bita	l Coefficie	ents				
					1	2	3		4	5
	ΕI	GENV	ALUES			-15.50493				
	1	N				0.70282				0.00000
2			2S			0.02571	0.50		0.74662	
3			2PX			0.00000			0.00000	
4			2PY			0.00000	0.00			
5			2PZ		-0.00171	-0.00924	-0.23	3025	0.25274	0.00000
6	2	N	1S		0.70318	-0.70282	-0.17	7370	0.17256	0.00000
7			2S		0.01286	-0.02571	0.50	0002	-0.74662	0.00000
8			2PX		0.00000	0.00000	0.00	0000	0.00000	0.62965
9			2PY		0.00000	0.00000	0.00	0000	0.00000	0.00000
10			2PZ		0.00171	-0.00924	0.23	3025	0.25274	0.00000
					6	7	8		9	10
	ΕI	GENV	ALUES		-0.54854		0.26			
_	1	N			0.00000		0.00		0.00000	
2			2S		0.00000	0.39957	0.00		0.00000	
3			2PX		0.00000	0.00000	0.82		0.00000	
4			2PY			0.00000	0.00			0.00000
5			2PZ		0.00000		0.00		0.00000	
6	2	N	1S		0.00000		0.00		0.00000	
7			2S		0.00000	0.39957	0.00			1.09442
8			2PX			0.00000	-0.82			0.00000
9			2PY		0.62965		0.00			0.00000
10			2PZ		0.00000	-0.60424	0.00	0000	0.00000	1.16287

Serie 3 pág. 14

 \mathbf{F}_2

Base: STO-3G EHF= -195.9816246

					Standard	d orientati	on:		
Cen			Aton		Atomic			es (Angst	
Number Number		er 	Type		X	Y	Z 		
:	1		9)	0	0.00	0000 0.	.000000	0.657306
	2		9)	0	0.00	0000 0.	.000000	-0.657306
Rota	ati	iona	al cons	tants	(GHZ):	0.000000	0 30.7	7846699	30.7846699
	Mo	oled	ular C	rbita:	l Coefficie	ents			
					1	2	3	4	5
	E	IGEN	IVALUES	5	-26.04780	-26.04677	-1.68460	-1.32674	-0.64131
1	1	F	1S		0.70328	0.70383	-0.17436	-0.19128	0.00000
2			2S		0.01623	0.01282	0.64816	0.76806	0.00000
3			2PX		0.00000	0.00000	0.00000	0.00000	0.0000
4			2PY		0.00000	0.00000	0.00000	0.00000	0.68273
5			2PZ		-0.00288	0.00048	-0.10712	0.08555	0.00000
6	2	F	1S		-0.70328	0.70383	-0.17436	0.19128	0.00000
7			2S		-0.01623	0.01282	0.64816	-0.76806	0.0000
8			2PX		0.00000	0.00000	0.00000	0.00000	0.0000
9			2PY		0.00000	0.00000	0.00000	0.00000	0.68273
10			2PZ		-0.00288	-0.00048	0.10712	0.08555	0.00000
					6	7	8	9	10
	E	IGEN	IVALUES	5	-0.64131	-0.59605	-0.45446	-0.45446	0.44558
1	1	F	1S		0.00000	-0.04813	0.00000	0.00000	0.05598
2			2S		0.00000	0.22530	0.00000	0.00000	-0.28338
3			2PX		0.68273	0.00000	0.73429	0.00000	0.00000
4			2PY		0.00000	0.00000	0.00000	0.73429	0.00000
5			2PZ		0.00000	0.63926	0.00000	0.00000	0.82460
6	2	F			0.00000	-0.04813	0.00000	0.00000	-0.05598
7			2S		0.00000	0.22530	0.00000	0.00000	0.28338
8			2PX		0.68273	0.00000	-0.73429	0.00000	0.00000
9			2PY		0.00000	0.00000	0.00000	-0.73429	0.00000
10			2PZ		0.00000	-0.63926	0.00000	0.00000	0.82460

NO^{+}

Base: STO-3G (método Hartree-Fock restricto)

ERHF=-127.196744451

	. 1907 11101	Standar	d orientat	ion:					
Center Number	Atomic Number	Atomic Type	Coordinates (Ang X Y			stroms) Z			
1 2	8 7	0		0.000000 0.		0.552813 -0.631787			
Rotation	al constants	GHZ):	0.000000	0 48.2	347883	48.2347883			
Molecular Orbital Coefficients									
		1	2	3	4	5			
	NVALUES	-21.15512	-16.22044	-2.06930	-1.35745	-1.08190			
) 1S	0.99467	0.00035	-0.19610	0.16304	0.0000			
2	2S	0.02376	-0.00607	0.66496	-0.74098	0.00000			
3	2PX	0.00000	0.00000	0.00000	0.00000	0.74361			
4	2PY	0.00000	0.00000	0.00000	0.00000	0.00000			
5	2PZ	-0.00533	0.00333	-0.22441	-0.33738	0.00000			
	N 1S	0.00048	0.99477	-0.13306	-0.18776	0.00000			
7	2S	-0.00617	0.02293	0.38162	0.76547	0.00000			
8	2PX	0.00000	0.00000	0.00000	0.00000	0.53909			
9	2PY	0.00000	0.00000	0.00000	0.00000	0.00000			
10	2PZ	-0.00517	0.00552	0.20205	-0.04170	0.00000			
		6	7	8	9	10			
	NVALUES	-1.08190	-1.07909	-0.33024	-0.33024	0.24288			
) 1S	0.00000	0.04664	0.00000	0.00000	0.10770			
2	2S	0.00000	-0.25266	0.00000	0.00000	-0.77273			
3	2PX	0.00000	0.00000	-0.69758	0.00000	0.00000			
4 5	2PY	0.74361	0.00000	0.00000	-0.69758	0.00000			
	2PZ	0.00000	-0.56960	0.00000	0.00000	0.97421			
	N 1S	0.00000	0.10870	0.00000	0.00000	-0.10642			
7 8	2S	0.00000	-0.52787	0.00000	0.00000	0.73692			
8 9	2PX 2PY	0.00000 0.53909	0.00000	0.86542 0.00000	0.00000 0.86542	0.00000			
9 10	2PI 2PZ	0.00000	0.59978	0.00000	0.86542	1.06240			
10	2P4	0.00000	0.599/8	0.00000	0.00000	1.00240			