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Tight-binding model for graphene π-bands from maximally localized Wannier functions
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The electronic properties of graphene sheets are often understood by starting from a simple phenomenological
π -band tight-binding model. We provide a perspective on these models that is based on a study of ab initio
maximally localized Wannier wave functions centered at carbon sites. Hopping processes in graphene can be
separated into intersublattice contributions responsible for band dispersion near the Dirac point, and intrasublattice
contributions responsible for electron-hole symmetry breaking. Both types of corrections to the simplest near-
neighbor model can be experimentally relevant. We find that distant neighbor hopping parameters increase the
ratio of the full π -band width to the Dirac point velocity and flatten bands along the KM Brillouin-zone edge.
We propose a five-parameter model which achieves a good compromise between simplicity and accuracy, and
an alternate 15-parameter model achieves better accuracy with some loss of simplicity.
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I. INTRODUCTION

The electronic structure of graphene features π -orbital
bands close to the Fermi energy and σ -orbital bands associated
with its honeycomb lattice sp2 bonding network.1 The π and
π∗ bands that are responsible for most observable electronic
properties of graphene are usually described using tight-
binding models obtained by fitting either to experiment or to
theoretical first-principles bands.1–4 Many qualitative features
are correctly captured when only near-neighbor hopping
is retained, although more accuracy can be achieved by
increasing the number of parameters. For instance, the model
introduced many years ago by Wallace2 includes first- and
second-neighbor hopping terms. Another useful model retains
only nearest-neighbor hopping, but introduces an additional
parameter to allow for a finite overlap between orbitals1

localized on neighboring sites. Both improvements make
it possible to account for the electron-hole asymmetry of
graphene’s band structure. More recent work3 based on the
SIESTA5 ab initio simulation software has provided a model
which includes up to the third-nearest-neighbor hopping terms
with finite overlaps between neighboring localized orbitals and
provides a better fit of the bands over a broader energy range.
An alternate and physically more transparent hopping tight-
binding model has been obtained using a similar scheme.4

More accurate tight-binding models are sometimes important
in understanding the electronic properties of graphene sheets,
for example in deciding whether deviations from the near-
neighbor model should be ascribed to band or many-body
effects.

In this paper, we explore graphene tight-binding models
from the point of view of maximally localized Wannier6 func-
tions. The Wannier approach provides a physically intuitive
but fully rigorous representation of graphene’s π -bands.7 In
the Wannier representation, the band Hamiltonian is succinctly
represented in terms of parameters with an intuitive physical
meaning as amplitudes for electron hopping from one site to
another; the more physically opaque overlap parameters of
some linear combination of atomic orbital (LCAO) theories
vanish exactly because of the orthonormality of the Wannier
basis set. There is, however, a gauge freedom8 in Wannier

function construction that can modify localization details and
hopping parameters. One useful and physically meaningful
prescription is to construct maximally localized Wannier
functions which minimize spread relative to localization
centers.6 The numerical calculations we present are based
on the maximally localized Wannier function method im-
plemented in the software package WANNIER90,9 which post-
processes Bloch wave functions obtained from first-principles
calculations.

Our aim is to provide a tight-binding model for graphene
that accurately reproduces the first-principles local-density
approximation10 bands produced by plane-wave pseudopo-
tential calculations as implemented in QUANTUM ESPRESSO.11

The numerical values of the hopping parameters thus obtained
provide a highly accurate tight-binding fit to the ab initio π ,
π∗ bands throughout the Brillouin zone. We explicitly discuss
the role played by remote neighbor hopping terms in these
models, explaining how they are related to the Fermi velocity
value and to the trigonal warping and particle-hole symmetry
breaking. Our paper is structured as follows. In Sec. II, we
briefly summarize some of the ideas behind the Wannier
function basis construction implemented in WANNIER90, and
we explain some details of this particular application of
the maximally localized Wannier method. In Sec. III, we
present several tight-binding model approximations to the
graphene π -bands model, some including up to 17 distinct
hopping parameters. We close the paper with a conclusions
and discussion section, in which we focus on the merits of the
recommended models.

II. MAXIMALLY LOCALIZED WANNIER FUNCTIONS IN
GRAPHENE FROM DFT CALCULATIONS

Bloch states in topologically trivial solids can always be
expanded in terms of localized Wannier orbitals. Because
of the arbitrary k-dependent Bloch-state phase, Wannier
functions are not unique. Our study is based on the WANNIER90

tool developed by Marzari and collaborators9 which
constructs maximally localized Wannier functions (MLWFs)
that minimize the spread of density probability around
localization centers. We performed initial band-structure
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FIG. 1. (Color online) (a) Band structure of graphene obtained through Wannier interpolation of first-principles LDA results for three
different k-point sampling densities. The potential was constructed from a common converged charge density obtained using a 36 × 36 mesh.
Differences between the coarser sampling bands and the reference 30 × 30 sampling bands are shown below using solid (dashed) lines for the
π -conduction (valence) bands. Note that the conduction-band energy near the Brillouin-zone edge M point is most sensitive to the Wannier
interpolation. (b) Tight-binding band structures for different hopping parameter sets. The bands of the commonly used minimal model (pink)
that has nearest-neighbor hopping only is also shown for comparison. The minimal model hopping parameter chosen was t1 = −2.59 eV to
match the Dirac point velocity of the ab initio bands. The black solid lines plot the same reference bands as in the left panel, whereas the blue
and red lines represent the tight-binding model bands obtained from 3 × 3 sampling which results in five independent hopping parameters
(see Tables I and II), and the 15-band model implied by 6 × 6 sampling. Note that the five-nearest-neighbor tight-binding model gives more
accurate band structures than the 3 × 3 interpolated bands with a maximum error of about 2% of the bandwidth, whereas the 15-neighbor
model is essentially identical to the 6 × 6 interpolated bands. The five-parameter model follows the ab initio bands reasonably accurately over
the full Brillouin zone using a small number of parameters. The panel below plots differences relative to the reference bands. (c) Surface plots
for the maximally localized π -band and σ -bonding orbital Wannier functions. The red and blue regions indicate positive and negative values
of the real part of the wave-function amplitudes. Adapted from Ref. 8.

calculations using the QUANTUM ESPRESSO code11 with the
Rappe Rabe Kaxiras Joannopoulous ultrasoft (C.pz-rrkjus)
pseudopotential which is based on the Perdew-Zunger12

local-density-approximation (LDA)10 exchange-correlation
potential parametrization. We used a kinetic-energy cutoff of
80 Ry for the plane-wave expansion and calculated the self-
consistent ground state using a 36 × 36 × 1 Monkhorst-Pack
mesh of k points and a Fermi distribution edge fictitiously
smeared by 0.02 Ry. Starting from a self-consistent charge
density obtained in this way, we evaluated up to 36 bands
on different sets of nkx

× nky
× 1 k-point grids. The required

input overlap matrices and projections were calculated using
the post-processing routine PW2WANNIER90 supplied with
QUANTUM ESPRESSO. For the maximally localized Wannier
function calculation we used atom-centered projections of the
pz orbitals for the π , π∗ bands of graphene and bond-centered
s orbitals for the bonding σ bands as initial guesses, and then
we ran WANNIER90 to obtain optimized MLWFs, following
procedures similar to those explained in Refs. 8 and 9.
We fixed the upper limit of the frozen energy window to
be 1 eV above the Dirac point for the disentanglement
procedure and set the maximum number of iterative steps

to 300, which proved to be more than sufficient to converge
the MLWFs and works particularly well for graphene. The
Wannier function spread for the pz orbitals is discussed in
the Appendix.

One advantage of the Wannier interpolation method is
the possibility in some systems of accurately parametrizing
first-principles band structures across the entire Brillouin zone
with a small number of parameters that can be extracted from
a coarse k-point sampling.13 In the case of graphene, a rather
limited 6 × 6 × 1 k-point sampling density with two atoms in
the unit cell already leads to Wannier interpolated bands that
are practically indistinguishable from the fully converged ab
initio bands obtained from interpolation of a 30 × 30 k-point
sampling calculation as shown in Fig. 1. Some discrepancies
are visible to the naked eye when we use a lower sampling den-
sity of 3 × 3 × 1. The density of k-point sampling defines the
system size beyond which all properties are periodic, and there-
fore limits the maximum number of physically meaningful
nearest-neighbor hopping terms that can be used to reproduce
the bands in the system. For a 3 × 3 × 1 sampling density, only
five nearest-neighbor hopping terms are properly defined (see
Table I).
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TABLE I. Hopping amplitudes in eV implied by four different k-point sampling densities. Intersublattice and intrasublattice amplitudes
are grouped separately. The two models on the left, with 5 and 15 parameters, respectively, provide good compromises between accuracy and
simplicity.

AB n m N 0 dn/a tn,3×3 tn,6×6 tn,12×12 tn,30×30

1 1 3 1√
3

−3.00236 −2.94015 −2.92774 −2.92181
2 3 3 2√

3
−0.22464 −0.26199 −0.27586 −0.27897

3 4 6
√

7
3 0.05205 0.03172 0.02807 0.02669

4 7 6
√

13
3 −0.00830 −0.00727 −0.00885

5 8 3 4√
3

−0.02463 −0.01812 −0.01772

6 9 6
√

19
3 0.00096 0.00463 0.00675

7 11 3 5√
3

0.00467 −0.00227 −0.00262

8 13 6
√

28
3 −0.00724 −0.00088 0.00019

9 14 6
√

31
3 0.00562 0.00044 −0.00068

10 16 6
√

37
3 −0.00230 −0.00237

AA n m N 0 dn/a t ′
n,3×3 t ′

n,6×6 t ′
n,12×12 t ′

n,30×30

0 0 1 0 0.4770 0.3590 0.3307 0.3208
1 2 6 1 0.20509 0.21813 0.22377 0.22378
2 5 6

√
3 0.06912 0.04357 0.04555 0.04813

3 6 6 2 −0.02379 −0.02406 −0.02402
4 10 12

√
7 0.00538 0.00313 0.00263

5 12 6 3 0.00783 0.00296 0.00111
6 15 6 6√

3
−0.01429 −0.00110 0.00018

7 17 12
√

39
3 −0.00066 −0.00008

III. π -BAND TIGHT-BINDING HAMILTONIANS

Because there is one π -electron per site, the π -band tight-
binding Hamiltonian is a 2 × 2 matrix:

H (k) =
(

HAA(k) HAB(k)

HBA(k) HBB(k)

)
. (1)

The Bloch function basis function for this Hamiltonian is
related to the Wannier functions by

|ψkα〉 = 1√
N

∑
R

eik(R+τα )|R + τα〉, (2)

where α is the sublattice index, τα is the position of the
sublattice relative to the lattice vectors R, and |R + τα〉 is
a Wannier function. The matrix elements of the Hamiltonian
are related to the Wannier representation hopping amplitudes
by

Hαβ(k) = 〈ψkα|H |ψkβ〉 (3)

= 1

N

∑
RR′

eik(R′−R)tαβ(R − R′), (4)

where

tαβ(R − R′) = 〈R + τα|H |R′ + τ ′
β〉 (5)

represents tunneling from β to α sublattice sites located,
respectively, at R′ + τ ′

β and R + τα . It follows from inversion
symmetry that HAA(k) = HBB(k).

By grouping neighbor vectors related by symmetry, the
Hamiltonian matrix elements can be expressed as a sum over
neighbor indices n:

HAB(k) =
∑

n

tnfn(k) (6)

or

HAA(k) =
∑

n

t ′ngn(k), (7)

where tn = tABn and t ′n = t ′AAn are the common hopping of
members of the set of nth neighbors for a given sublattice,
and fn and gn are the corresponding structure factors obtained
by summing phase factors exp(i�k · �R) over this set.14 It is
useful to distinguish neighbor groups that are off-diagonal in
the sublattice from those that are diagonal. The positions of
the distant neighbors from a reference site 0 at the origin are
shown in Fig. 2, where we use blue and red to distinguish
A and B sublattices. We have chosen a coordinate system in
which the honeycomb’s Bravais lattice has primitive vectors

�a1 = a(1,0) , �a2 = a

(
1

2
,

√
3

2

)
, (8)

where a = 2.46 Å is the lattice constant of graphene. The self-
consistent LDA lattice constant we obtained was a = 2.44 Å,
about 1% smaller, and yields a converged nearest-neighbor
hopping of t = −2.99, see Table II, a value about 2–3% greater
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FIG. 2. (Color online) (a) Honeycomb lattice neighbors m as defined in Tables III and IV grouped by symmetry. The central site (0) in
this illustration is on the A (blue) sublattice and the three first-nearest neighbors are on the B (red) sublattice. The inner and outer hexagons
indicate the hopping processes included in 5- and 15-neighbor tight-binding models. (b) Hopping amplitude t(d) as a function of the real space
distance d between the carbon lattice sites for Wannier models implied by different k-point sampling densities. The inset highlights differences
between remote hopping amplitudes.

than the results quoted in Table I. The reciprocal-lattice vectors
are then

�b1 = 4π√
3a

(√
3

2
, − 1

2

)
, �b2 = 4π√

3a
(0,1). (9)

We choose τα = (0,0) and τβ = (0,a/
√

3). Numerical values
of the interlattice hopping parameters implied by different
k-space sampling densities are plotted in Fig. 5 and listed
in Tables I and II. The translation vectors for each group
of neighbors, the associated structure factors, and their

TABLE II. Same as Table I but calculated using a self-consistent lattice constant of a = 2.439 Å about 1% smaller than the experimental
value a = 2.46 Å gathering the hopping terms between the pz orbitals as a function of distance for a different sampling of k-point densities,
where we distinguish the intersublattice hopping giving rise to the band dispersion and the intrasublattice hopping that accounts for particle-hole
symmetry breaking.

AB n m N 0 dn/a tαβn,3×3 tαβn,6×6 tαβn,12×12 tαβn,30×30

1 1 3 1√
3

−3.07504 −3.01006 −2.99727 −2.99251
2 3 3 2√

3
−0.23442 −0.27298 −0.28745 −0.28983

3 4 6
√

7
3 0.05350 0.03278 0.02903 0.02791

4 7 6
√

13
3 −0.00884 −0.00775 −0.00877

5 8 3 4√
3

−0.02594 −0.01925 −0.01870

6 9 6
√

19
3 0.00095 0.00490 0.00621

7 11 3 5√
3

0.00485 −0.00252 −0.00256

8 13 6
√

28
3 −0.00752 −0.00087 −0.00018

9 14 6
√

31
3 0.00591 0.00047 −0.00033

10 16 6
√

37
3 −0.00246 −0.00264

AA n m N 0 dn/a t ′
n,3×3 t ′

n,6×6 t ′
n,12×12 t ′

n,30×30

0 0 1 0 0.4914 0.3680 0.3387 0.3302
1 2 6 1 0.21264 0.22614 0.23205 0.23206
2 5 6

√
3 0.07326 0.04584 0.04780 0.04969

3 6 6 2 −0.02478 −0.02518 −0.02499
4 10 12

√
7 0.00564 0.00337 0.00285

5 12 6 3 0.00826 0.00308 0.00204
6 15 6 6√

3
−0.01492 −0.00114 −0.00014

7 17 12
√

39
3 −0.00072 −0.00029
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TABLE III. Summary of the distant neighbor contributions in the Hamiltonian matrix elements for intersublattice terms. The letter n

denotes the index for the nearest-neighbor sites for a given sublattice, m is the distant neighbor index when both sublattices are considered
and correspond to the numbers as labeled in Fig. 1. N 0 is the number of lattice sites contributing in the structure factor consisting of
nth nearest-neighbor terms, fn(k) is the analytic expression of the structure factor corresponding to the nth-neighbor contribution to the
Hamiltonian matrix element, and f cont

n (kD + k) is the continuum approximation near the Dirac point of the aforementioned Hamitonian
matrix element term.

n m N 0 dn/a τ&fn(k) f cont
n (kD + k)

1 1 3 1√
3

τ1 = (0, 1√
3
), τ2,3 = (± 1

2 , − 1
2
√

3
) −

√
3a

2 k e−iθk + a2

8 ei2θk

e
i

ky a√
3 + 2e

−i
ky a

2
√

3 cos( kxa

2 )

2 3 3 2√
3

τ1,2 = (±1, 1√
3
), τ3 = (0, − 2√

3
)

√
3ak e−iθk + a2

2 ei2θk

e
−i

ky 2a√
3 + 2e

i
ky a√

3 cos(kxa)

3 4 6
√

7
3 τ1,2 = (± 1

2 , 5
2
√

3
), τ3,4 = (± 3

2 , − 1
2
√

3
), τ5,6 = (±1, − 2√

3
)

√
3a

2 k e−iθk − 13a2

8 ei2θk

2 e
i

ky 5a

2
√

3 cos( kxa

2 ) + 2 e
−i

ky a

2
√

3 cos( kx 3a

2 ) + 2 e
−i

ky 2a√
3 cos(kxa)

4 7 6
√

13
3 τ1,2 = (±2, 1√

3
), τ3,4 = (± 3

2 , 5
2
√

3
), τ5,6 = (± 1

2 , − 7a

2
√

3
) − 5

√
3a

2 k e−iθk − a2

8 ei2θk

2e
i

ky a√
3 cos(kx2a) + 2e

i
ky 5a

2
√

3 cos( kx 3a

2 ) + 2e
−i

ky 7a

2
√

3 cos( kxa

2 )

5 8 3 4√
3

τ1 = (0, 4√
3
), τ2,3 = (±2, − 2√

3
) −2

√
3ak e−iθk + 2a2

e
i

ky 4a√
3 + 2 cos(kx2a)e

−i
ky 2a√

3

6 9 6
√

19
3 τ1,2 = (±1, 4√

3
), τ3,4 = (± 5

2 , − 1
2
√

3
) 7

√
3a

2 k e−iθk + 11a2

8 ei2θk

2e
i

ky 4a√
3 cos(kxa) + 2 cos( kx 5a

2 )e
−i

ky a

2
√

3 + 2 cos( kx 3a

2 )e
−i

ky 7a

2
√

3

7 11 3 5√
3

τ1,2 = (± 5
2 , 5

2
√

3
), τ3 = (0, − 5√

3
) 5

√
3a

2 k e−iθk + 25a2

8 ei2θk

e
−i

ky 5a√
3 + 2e

i
ky 5a

2
√

3 cos( kx 5a

2 )

8 13 6
√

28
3 τ1,2 = (±2, 4√

3
), τ3,4 = (±3, 1√

3
), τ5,6 = (±1, − 5√

3
) −√

3ae−iθk − 13a2

2 ei2θk

2 cos(kx2a)e
i

ky 4a√
3 + 2 cos(kx3a)e

i
ky a√

3 + 2 cos(kxa)e
−i

ky 5a√
3

9 14 6
√

31
3 τ1,2 = (± 1

2 , 11
2
√

3
), τ3,4 = (±3, − 2√

3
), τ5,6 = (± 5

2 , − 7
2
√

3
) 2

√
3ae−iθk − 23a2

4 ei2θk

2 cos( kxa

2 )e
i

ky 11a

2
√

3 + 2 cos(kx3a)e
−i

ky 2a√
3 + 2 cos( kx 5a

2 )e
−i

ky 7a

2
√

3

10 16 6
√

37
3 τ1,2 = (± 7

2 , − 1
2
√

3
), τ3,4 = a(± 3

2 , 11
2
√

3
), τ5,6 = (±2, − 5√

3
) − 11

√
3a

2 e−iθk + 47a2

8 ei2θk

2 cos( kx 7a

2 )e
−i

ky a

2
√

3 + 2 cos( kx 3a

2 )e
i

ky 11a

2
√

3 + 2 cos(kx2a)e
−i

ky 5a√
3

expansions near the band-crossing Brillouin-zone cor-
ner points kD = (4π/3a,0) are listed in Tables III and
IV. A schematic representation of the translation vectors
and the role played by each structure factor is shown
in Fig. 3.

The role played by remote neighbors in modifying the
band dispersion is best illustrated by comparing with the
minimal nearest-neighbor model bands, plotted in Fig. 1 and
magnified near the Dirac point in Fig. 4. The intersublattice
hopping terms are responsible for the main features in the band
dispersion, including the trigonal distortions near the Dirac
point. The nearest-neighbor amplitude has the largest value
and already captures the bands qualitatively. As we can see
in Table V, the third-neighbor hopping process is responsible
for a substantial reduction in the trigonal distortion produced
by first-neighbor hopping. In Fig. 3, we plot equal magnitude

contours for individual remote neighbor contributions. The
more remote neighbors play a less essential role because the
hopping amplitude decreases. The strength of trigonal warping
is reflected by the difference in band dispersion around the
Dirac cone between the 	-K and K-M directions, as illustrated
in Fig. 4.

The intrasublattice hopping terms that account for the
particle-hole symmetry breaking are examined in Fig. 4(b).
There are at least six hopping sites for a given nth-distant-
neighbor hopping whose contributions to the bands are
illustrated in Fig. 5. From an inspection of Figs. 3, 4(d), 5,
and the hopping terms gathered in Tables I and II, we can
observe that the second distant hopping term alone captures
correctly the positive correction to the bands near the 	, but
fails to capture features near M and K points. The fifth-
neighbor hopping is responsible for dips of the diagonal terms
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TABLE IV. Similar to Table III for intra-sublattice hopping terms. The sites with labels n = 2; 4; 6; 7 have been separated in two groups
to distinguish different crystal symmetries. The function gn(k) is the analytic expression of the nth neighbor contribution to the Hamiltonian
matrix element and gcont

αbn (kD + k) is its continuum approximation near the Dirac point.

n m N 0 dn/a τ&gn(k) gcont
n (kD + k)

0 0 1 0 τ1 = (0,0) 1

1

1 2 6 1 τ1,2 = (±1,0), τ3,4 = (± 1
2 ,

√
3

2 ), τ5,6 = (± 1
2 , −

√
3

2 ) −3 + 3a2

4 k2

2 cos(kxa) + 4 cos( ky

√
3a

2 ) cos( kxa

2 )

2 5 3
√

3 τ1 = (0,
√

3), τ2,3 = (± 3
2 , −

√
3

2 ) 3 − 9a2

4 k2

eiky

√
3a + 2e−i

ky
√

3a

2 cos( kx 3a

2 )

2∗ 5∗ 3
√

3 τ1 = (0, −√
3), τ2,3 = (± 3

2 ,
√

3
2 ) 3 − 9a2

4 k2

e−iky

√
3a + 2ei

ky
√

3a

2 cos( kx 3a

2 )

3 6 6 2 τ1,2 = (±2,0), τ3,4,5,6 = (±1, ± √
3) −3 + 3a2k2

2 cos(kx2a) + 4 cos(kxa) cos(ky

√
3a)

4 10 6
√

7 τ1,2 = (± 1
2 , 9

2
√

3
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near M and K and also plays an important role in reversing
the sign of the leading parabolic particle-hole correction term
near K . We conclude that all main features in the bands can
be captured by a five neighbor tight-binding model.

Because of the inversion symmetry property HAA(k) =
HBB(k), the π -band energies of graphene are given by

E±(k) = |HAA(k)| ± |HAB(k)|. (10)

It follows that the velocity at the Dirac point is determined
by |HAB(k)|, i.e., by the intersublattice hopping contribution
to the Hamiltonian, and that particle-hole symmetry is broken
whenever |HAA(k)| �= 0, i.e., whenever there is an intrasublat-
tice contribution. As summarized in Table III, for all intersub-

lattice hopping processes, fn(k) vanishes at the Brillouin-zone
corner kD = (4π/3a,0) and has a leading correction propor-
tional to q exp(−iθ�q). Here �q is the wave vector measured
from the Brillouin-zone corner. The intrasublattice processes,
on the other hand, have no linear-in-q terms and are isotropic
to second order in q. The subleading term in the expansion of
the intersublattice terms behaves like q2 exp(2iθ�q).

The low-energy �k · �p model implied by a given tight-
binding parametrization is obtained by performing a Taylor
expansion of the bands near the Dirac point K . Intrasublattice
processes contribute to the diagonal elements of the �k · �p
Hamiltonian, whereas intersublattice processes contribute
to the off-diagonal matrix elements. For the off-diagonal
elements for which the Dirac velocity and trigonal warping
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FIG. 3. (Color online) (a) Individual neighbor shell contributions
to the band Hamiltonian. The role of intersublattice hopping terms
is illustrated using conduction-band surface and contour plots for the
bands obtained for neighbor shells 1, 3, 4, and 7 with the hopping
parameter set to tnAB = 1 eV. More distant neighbors give features
that vary more rapidly in momentum space. (b) Similar plots for
intrasublattice contributions from neighbor shells 2, 5, 10, and 17.
We have indicated with red arrows those sites labeled with an asterisk
in Table IV.

are specified at low energies, we have

Hαβ(kD + k) 	 Cαβ1ke−iθk + Cαβ2k
2ei2θk , (11)

involving sums of fn terms for matrix elements connecting
sites αβ = AB. The explicit form of the expansion coefficients
is given by

Cαβ1 =
√

3a

2
(−t1 + 2t2 + t3 − 5t4 − 4t5 + 7t6 + 5t7

+ 2t8 − 4t9 + 11t10), (12)

Cαβ2 = a2

8
(t1 + 4t2 − 13t3 − t4 + 16t5 + 11t6 + 25t7

− 52t8 − 46t9 + 47t10), (13)

where we have abbreviated the notation by denoting tn = tαβn

removing the αβ subscripts.

For the diagonal elements responsible for particle-hole
symmetry breaking as summarized in Table IV, we have

Hαβ(kD + k) 	 C ′
αβ0 + C ′

αβ2 k2 (14)

and their form is given by

C ′
αβ0 = t ′0 − 3t ′1 + 6t ′2 − 3t ′3 − 6t ′4 + 6t ′5 + 6t ′6 − 6t ′7, (15)

C ′
αβ2 = 3a2

4
(t ′1 − 6t ′2 + 4t ′3 + 14t ′4 − 18t ′5 − 6t ′6 + 26t ′7)

(16)

for matrix elements connecting the sites αβ = AA,BB for
intrasublattice hopping parameters involving sums of gn

terms. We have used the primes, both for the expansion
coefficients as well as the hopping terms, to indicate that they
involve expansions of gn terms rather than fn. More distant
hopping processes make a relatively smaller contribution to
CAA2 as expected. We set CAA0 = 0 because in graphene the
Fermi level crosses the Dirac points. Thus, the continuum
model Hamiltonian near kD = (4π/3a,0) in terms of the
effective parameters can be written as

H cont
kD

(k) = k2C ′
AA2I + k CAB1[cos(θk)σx + sin(θk)σy]

+ k2 CAB2[cos(2θk)σx − sin(2θk)σy], (17)

where σx and σy are Pauli matrices. The values of the
parameters for expansion near the Dirac point are given in
Table V, both for the experimental lattice constant and a
slightly smaller self-consistent LDA value.

The values of the �k · �p parameters corresponding to dif-
ferent tight-binding models are summarized in Fig. 5. We see
there that, in addition to providing a good characterization of
the overall shape of the bands, the five-neighbor tight-binding
model accurately characterizes the three most important
continuum model band parameters. The main advantage of
the 15-parameter model is that it provides a more accurate
description of the conduction-band van Hove singularity.

TABLE V. Expansion coefficients for the effective two-
dimensional continuum model Hamiltonian near the Dirac point
kD = (4π/3a,0). The CAB1 term is related with the Fermi velocity
through υF = CAB1/h̄. Both the 5- and 15-parameter models are in
satisfactory agreement with the main parameters that define the effec-
tive continuum model. Although the particle-hole symmetry-breaking
term given by C ′

AA2 shows the largest discrepancy between both
models, it has a relatively small effect due to its small value compared
to the other two terms. The results between the experimental and
self-consistent LDA lattice constant that are different by less than 1%
introduce marginal changes in the obtained parameters.

exp a = 2.46 Å LDA a = 2.439 Å

5 n.n. 15 n.n. 5 n.n. 15 n.n.

C ′
AA2 (eV Å

2
) −0.951 −0.537 −1.01 −0.572

CAB1 (eV Å) 5.55 5.50 5.62 5.57

CAB2 (eV Å
2
) −3.46 −3.44 −3.50 −3.48

195450-7



JEIL JUNG AND ALLAN H. MACDONALD PHYSICAL REVIEW B 87, 195450 (2013)
B

an
d 

en
er

gy
   

 (
eV

)

(a)

Minimal

0.8 0.9 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k
(1

/a
)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3(c)

Γ

k (1/a)

k
(1

/
a
)

(d)

(b)

|υ
|

(1
06

m
/
s)

Minimal
30 X 30
TB,   5NN  3 X 3

k (2π/a)k (2π/a)

KM Γ KM Γ
5NN

15NN

30X30

0 0.5 1 1.5
0

0.5

1

1.5

Γ

(eV )
4

2

0

-2

-4
-4 -2 0 2 4

-0.5

0

0.5

1

1.5

FIG. 4. (Color online) (a) Band-structure estimates near the Dirac point obtained using the minimal model, using the five-hopping-parameter
model extracted from the from 3 × 3 calculation, and using the 15-hopping-parameter model extracted from 6 × 6 k-point sampling, compared
to the interpolated reference bands denoted by solid black lines. The dotted horizontal lines show the energy cuts used for the contour plots
in (c). (b) Absolute value of quasiparticle velocities υ = ∂E/h̄∂k for the minimal model, the five-nearest-neighbor model, and the reference
ab initio bands. The dotted horizontal line at υ = 0.838 × 106 m/s specifies the Fermi velocity at the Dirac point. The solid lines represent
conduction-band quasiparticle velocities and the dashed lines correspond to valence-band velocities. Note that the velocity vanishes in both
conduction and valence bands at the �k = M van Hove singularity point. (c) Contour lines of the energy bands in (a) for the minimal and reference
band model for 0.2, 0.4, and 0.6 eV. (d) Color scale plot of HAA(k) calculated using 17-nearest-neighbor hopping terms. The combined effect
of second- and fifth-nearest-neighbor hopping terms enables us to account for the negative inverted parabolic correction near K , the more
pronounced negative corrections near M , and large positive corrections near 	.

IV. CONCLUSIONS AND DISCUSSIONS

We have discussed graphene π -band tight-binding models
derived from maximally localized Wannier functions, assess-
ing the degree to which they reproduce the Dirac velocity,
trigonal warping, and particle-hole-symmetry-breaking
parameters that appear in continuum models of graphene, and
their overall accuracy within an eV of the Dirac point. We find
that a relatively convenient five-nearest-neighbor tight-binding
model with three intersublattice and two intrasublattice hop-
ping parameters obtained from a rather coarse 3 × 3 k-point
momentum-space sampling already provides a substantial
improvement relative to the commonly used minimal model
with only near-neighbor hopping. Accuracy is further
improved near the conduction-band van Hove singularity by
using a 15-parameter model which retains nine intrasublattice
hopping processes and six intersublattice hopping processes.
These two models are superior in both accuracy and in the
transparency of their physical interpretation compared to
previously proposed refinements of the minimal model.

Intrasublattice particle-hole symmetry-breaking effects are
most prominent near symmetry points with peaks at 	 and
valleys around M and K . These effects require at least up to
fifth-nearest-neighbor hopping terms for a qualitatively correct
description. The 15-parameter model based on 6 × 6 sampling
provides an essentially exact reproduction of the ab initio LDA
bands.

The models presented here provide a tight-binding plat-
form for graphene electronic property studies which have
ab initio accuracy. The improved accuracy relative to the

minimal model is valuable, especially for applications in
which high-energy features of the bands must be accurately
captured. Examples that come to mind include optical ab-
sorption in visible and near-infrared regimes15 and putative
superconductivity16–18 in systems with Fermi energies at the
van Hove singularities.

Of course, the tight-binding model is only as accurate as the
ab initio LDA calculation that it approximates. Our use of the
LDA approximation is intentional since we wish to construct
bands that have a realistic bonding structure, but we want as
much as possible to construct a model that does not already
reflect the peculiar π -band19–21 exchange and correlation
effects which increase Fermi velocities in low-carrier-density
systems when disorder is weak and reshape22 Dirac cones.
It is well known, for example, that many-body physics is
necessary in particular to explain the divergence of the Fermi
level quasiparticle velocity at vanishing carrier density,22

photoemission satellites,23 and the plasmaron features near the
Dirac point in angle-resolved photoemission spectra (ARPES)
when the carrier density is finite.24 Many-body effects must be
accounted for separately because their influence depends on
the observable under study, in addition to being dependent on
carrier density and disorder. For many low-energy phenomena,
the influence of interactions can often be accounted for simply
by renormalizing the Fermi velocity, or equivalently by renor-
malizing hopping parameters. Many-body velocity enhance-
ments are likely responsible for the fact that near-neighbor
hopping parameters that are obtained by fitting to experimental
data are normally larger than those of our tight-binding models.
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FIG. 5. (Color online) Leading low-energy graphene continuum
model band parameters implied by different Wannier interpolations.
For the three models considered, these plots show the dependence
on hopping-parameter truncation at different neighbor shells. CAB1,
CAB2, and CAA2 are, respectively, the velocity, trigonal warping,
and particle-hole symmetry-breaking parameters for continuum �k · �p
models and are defined in Eqs. (12) and (13) and Eqs. (15) and
(16). The dashed horizontal line in the CAB1 plot is the minimal
model tight-binding model fit to the ab initio LDA band-structure
Dirac point velocity. The five-neighbor model obtained from 3 × 3
k-point sampling Wannier interpolation produces accurate values of
the coefficients for the Fermi velocity and parabolic off diagonal
correction.

The present analysis suggests that the minimal
near-neighbor tight-binding model often used for graphene
provides an adequate description of many properties, not
because hopping really is very short-ranged, but instead
because the low-energy bands depend only on the Dirac-point
velocity. Presumably the same is true of interlayer hopping
terms. The range of interlayer hopping processes plays a key
role in assessing the influence of relative layer alignment25–28

on the electronic structure of graphene on graphene and
graphene on boron nitride. The maximally localized Wannier
approach should prove equally valuable for those closely
related electronic structure problems.

TABLE VI. Evolution of wave-function spread with k-point
sampling density given in Å

2
. We attribute the increase in spread

with k-point density to the strong dependence of the wave function
on momentum near the Dirac point.

3 × 3 6 × 6 12 × 12 30 × 30

�pz
0.8237 0.9168 0.9571 0.9750

�σ 0.5223 0.5875 0.6074 0.6134
�tot 3.2143 3.5960 3.7365 3.7900
�I 2.4951 2.8437 2.9844 3.0380
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APPENDIX: WANNIER FUNCTION SPREAD

Wannier functions constructed from an ab initio calculation
with a finite density of k points have a density which
is localized near points separated by a distance inversely
related to the coarseness of the k-point mesh. The spread
of the Wannier wave functions around their centers provides
estimates of atomic orbital size. A mean-square characteristic
is defined by8

� =
∑

n

〈(r − r̄n)2〉 = �I + �̃, (A1)

where n is the index of each Wannier function and r̄n is its cen-
ter. Here �I is a gauge-invariant contribution to the spreading
that remains fixed for a given choice of band subspace, whereas
�̃ can be minimized through iterative unitary transformations
as explained in Ref. 9. The dependence of orbital spreading on
k-point sampling density is weak in the case of graphene, as we
show in Table VI, which hints that a relatively coarse sampling
of the k points produces a physically realistic model. The slow
increase of the Wannier-function spread with k-point mesh
density may reflect the strong dependence of the interlayer-
sublattice phase on momentum near the band-crossing
Dirac point.21
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