substituting Eq. (2.41) into Eq. (2.40), switching the order of integration,
and then invoking the delta function formula

x)=2m) "7, e dw=2f; cosZm)dv.

1A rigorous derivation of the widely known formulas (2.48), which is
sometimes called the Box—Muller algorithm, may be found in Ref. 10,
Sec. 1.8, which also describes a simple procedure for generating values for
ri and r, in Eqs. (2.48a).

"It is possible to construct a simulation algorithm for O—~U processes that is
exact for both Y and X, but to do that we need a little more random
variable theory than is given in Sec. Il B.

%A nice account of Einstein’s work in Ref. 1 is given in Ref. 9, pp. 2-6.

’Ip, T. Gillespie, “Fluctuation and dissipation in Brownian motion,” Am. J.
Phys. 61, 1077-1083 (1993). A more sophisticated argument is given in
Ref. 10, Secs. 4.5 and 4.6.

Nyquist’s original analysis in Ref. 5 proceeds quite differently from the
analysis that we give here; see Ref. 7, p. 592.

3] R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory
(Addison-Wesley, Reading, MA, 1960), p. 176.

ZGee, e.g., Ref. 7, Sec. 7.5.

A short proof of this “lemma” may be found in Ref. 10, p. 114.

Photon counting statistics—Undergraduate experiment
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A photon counting experiment for student physics laboratory is described. It is designed to illustrate
the probabilistic nature of the photodetection process itself as well as statistical fluctuations of light.
The setup enables the student to measure photon count distributions for both coherent and
pseudothermal light sources yielding Poisson and Bose—Einstein distributions, respectively.
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L. INTRODUCTION

Photon counting is a technique commonly used to measure
extremely low light fluxes. A photomultiplier tube (PMT) of
proper design is used to convert light into an electrical sig-
nal. (The most important property of photon counting PMT
is very high gain at the first dynode This allows one to
distinguish between the pulse' resulting from electrons
ejected from the photocathode and those coming from the
dynodes.) Light impinging on the photocathode of the PMT
ejects electrons from it. Assuming that the gain of the PMT
itself and that of the following electronics is high enough,
one can distinguish individual electrical pulses, each of them
corresponding to a single photoelectron. The electrical pulses
from the PMT are fed into a discriminator and pulses with
amplitudes higher than a given threshold value are counted.
Those are usually referred to as photon counts. This way one
can count the number of electrical pulses, ideally each of
them corresponding to a single photoelectron. Since for each
photoelectron created one photon of the light field has to be
destroyed, the method is commonly called photon counting.
Thus, in this oversimplified picture, one can think of the
method as a way to prove the existence of photons. This is
not true. Actually there is no need to quantize the electro-
magnetic field in order to explain all the features of the pho-
toelectric process. All that is necessary is an assumption that
the light interacts with matter which is described quantum
mechanically. This leads to what is commonly referred to as
a semiclassical description,” a model in which light is de-
scribed as a classical electromagnetic wave and the atomic
system, the photocathode in our case, quantum mechanically.
The question of whether one has to invoke the quantum na-
ture of electromagnetic field at all has been disputed ever
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since Einstein introduced the notion of the “light quantum”
in 1905 in his paper describing the external photoelectric
process.® Several different models for the photon have been
proposed startlng with a simple partlcle model and ending
with what is known as Dirac’s model,* each of them present-
ing its own difficulties in interpretation. Amazingly enough,
the answer to this question has been settled quite recently
when expenments on photon antibunching® and squeezed
states (for a review on the topic see, for example, the paper
by Walls') proved that at least in some cases a quantum
mechanical description of the light is necessary. Since in the
experiments described in this paper the light can be perfectly
described in a classical way, the semiclassical picture will be
used henceforth.

The noise present in photon counting can be separated into
two terms. The first is of a technical nature and is caused
predominantly by electrical pulses created by amplification
of electrons thermally released from the photocathode or the
first dynode, which cannot be distinguished from the pulses
corresponding to photoelectrons. Those pulses are present
even if there is no light falling on the photocathode and for
this reason are called dark counts. The dark count rate can be
minimized by proper design and cooling of the PMT. Cur-
rently, even modestly priced systems have a dark count rate
as small as a few counts per second. We will assume
throughout this paper that the dark counts can be neglected
altogether. The second contribution to the noise in the photon
counting experiment and the only one considered in this pa-
per is of a fundamental nature and cannot be eliminated.
Again, it can be divided into two parts caused by the stochas-
tic nature of photoelectric process and light intensity fluctua-
tions, respectively. Using the semiclassical model mentioned
above one finds that for a constant intensity of light reaching
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the photocathode the photoelectrons tend to leave the photo-
cathode at random times. Thus the number of photon counts
in a given time interval is not constant. Instead it fluctuates,
leading to noise which is often referred to as shot noise. It is
a fundamental feature of the photoelectric process. On the
one hand, one can think that the photocurrent from the pho-
tocathode is constant but is formed by a discrete flow of
electrons. Then the shot noise in the PMT tube is of the same
nature as the shot noise in any vacuum tube. On the other
hand one can think of each of the photoelectrons as being
ejected as a result of absorption and destruction of one pho-
ton from the light beam. In this picture the statistics of pho-
ton counts reflects the statistics of photons in the measured
light beam. It is important to stress that the shot noise will be
present in photon counting experiments whenever the radia-
tion measured can be described classically. However, for
squeezed states a subshot noise operation of the photon
counting PMT is possible.® Turning back to a semiclassical
description, in addition to the shot noise, extra fluctuations in
the photon count number arise whenever the intensity of the
light being measured is not constant. In this case the photon
counting statistics depend on the experimental details and
reveal both the random nature of the photoelectric process
itself and the nature of light fluctuations.

II. PHOTON COUNTING STATISTICS

The elementary experiment in photon counting is one in
which photoelectrons are counted during a given time inter-
val T. Since, as we have already mentioned in the Introduc-
tion, the photoelectric process is stochastic, one should ex-
pect that the number of photon counts will be stochastic, too.
This means that the outcome of such an experiment cannot
be predicted in advance. The most one can know is the prob-
ability of obtaining any given result. The formula for this
probability distribution was first derived in the late 1950s by
Mandel.” Before writing Mandel’s formula explicitly, let us
define the integrated light intensity W as®

W= f f f M leysgde dx dy, 0
A

where I(x,y;§) is the intensity of the light wave at point
(x,y) and time £, and A is the illuminated area of the photo-
cathode. As defined by formula (1), W is the energy of the
light beam reaching the photocathode during a time interval
starting at ¢ and ending at ¢+ 7. In general, W is a stochastic
variable with a probability density function given by
Pyw(W). The probability of observing K photon counts dur-
ing time interval T is given by Mandel’s formula’

© WK
P(K)=f0 (aK!)

exp(— aW)Py(W)dWw, 2)

where a= 7/hv and 7 is the quantum efficiency of the pho-
tocathode, A is Planck’s constant, and v is the light fre-
quency. As should be expected, the number of photon counts
recorded in the time interval T is proportional to the energy
delivered by the light beam to the photocathode during this
time interval. Thus, in general, any fluctuations in the light
intensity will, in principle, lead to fluctuations in the re-
corded number of photon counts. However, even for the light
beam with perfectly constant intensity the number of the
photon counts recorded during time T is not constant. This
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can be easily seen by performing the integration in formula
(2) with an assumption

P(W)=8W-W),

where W is the average (constant) integrated intensity. The
result of the integration is the Poisson distribution

KK -
P(K)= Fexp(—K), (3)

with the average number of photon counts K= aW. There-
fore, even in the photon counting experiment with a constant
intensity light source, one observes stochastic variations in
the number of counts. The resulting noise is the shot noise.

Two distinct light sources are of particular interest. The
first one is a single-mode laser operating well above the
threshold. The light emitted by such a laser is classically
described by a constant amplitude perfectly monochromatic
wave. Obviously the intensity of such a light beam is con-
stant. Therefore, in this case, one should expect that the pho-
ton count distribution will be given by the Poisson distribu-
tion (3). It is worth mentioning that the quantum mechanical
description of the light from a single-mode laser uses a co-
herent state mode® which converges to the classical descrip-
tion in the high-intensity limit.!” The second light source of
interest is a thermal source, i.e., a discharge lamp, incandes-
cent lamp, etc. It is easy to see why the intensity of light
from such a source is not constant. In this case the light field
is a superposition of many waves with random amplitudes
and phases being emitted by individual atoms or molecules
in the discharge. It is very useful to introduce the notion of
the coherence time for such field. We will not do it rigor-
ously here; instead, we will define the coherence time heu-
ristically. One can think of an amplitude and phase of the
thermal light as changing stochastically but with a finite rate.
This means that given the knowledge of the amplitude and
phase at any given moment of time, one can with some ac-
curacy predict what these parameters will be some short time
later. On the other hand, after a long enough time, the field
amplitude and phase are not correlated with their initial val-
ues and one cannot make any predictions. Thus one can say
that the field “remembers” its previous parameters over
some characteristic time. This time is called the coherence
time. It is inversely proportional to the spectral width of the
light source and for true thermal sources such as an incan-
descent lamp is very short. The instantaneous intensity prob-
ability density function for a linearly polarized thermal field
is a negative exponential with zero intensity being the most
probable:

P()=1+ !
()—]-eXp ik )

where I is the average intensity.

For thermal light the integrated intensity probability den-
sity Py(W) depends on the time interval used. Two limiting
cases are easy to analyze. For 7" much shorter than the co-
herence time 7., the integrated intensity W has the same
distribution as the instantaneous intensity [formula (4)] and
the photon count distribution is given by the Bose—Einstein
formula:

K

1 K
P(K)=—(—— (5)

1+R\1+K
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Fig. 1. Principle of pseudothermal light generation. L is a lens and GGP is
a ground-glass plate. The laser beam is focused on the ground surface of the
plate and the scattered light observed behind the pinhole P. The inset shows
schematically a magnified part of the plate with several areas of various
thicknesses illuminated by the laser beam. Sets of concentric circles indicate
that each of the elementary areas is a source of a spherical wave.

while for T> 7, the function P (W) is constant, the same as
for a single-mode laser. Unfortunately, the coherence time
for true thermal sources is very short (usually shorter than 1
ps) and for technical reasons one cannot measure P(K) for
T<r1,. However, one can easily make a pseudothermal light
from the laser light. This can be achieved by scattering laser
light from a large set of moving, randomly distributed scat-
tering centers. Two methods for achieving this have been
reported as early as the 1960s. The first one relies on scat-
tering the light from a collection of submicron-sized plastic
balls suspended in liquid,!! while the second uses a rotating
ground-glass plate.'> The latter was used in our experiment.
The principle of generating pseudothermal light using this
method is illustrated in Fig. 1. Each of the elementary areas
on the uneven glass surface illuminated by the laser beam
forms a source of a spherical wave as illustrated in the inset.
The optical field observed in the position of the pinhole is a
sum of many waves with amplitudes and phases determined,
respectively, by the size and relative positions of the respec-
tive scattering areas. Since both size and position of these
areas are random, the resulting field is composed of many
components with random amplitudes and phases. The result-
ing light intensity varies dramatically with the position of the
observation point. This leads to a well-known phenomenon
called speckle. If the glass plate is translated perpendicularly
to the beam the speckle pattern changes and the light field
observed behind the pinhole fluctuates. It can be shown that
for the aperture diameter much smaller than speckle grain
size, the intensity of light behind the aperture displays fluc-
tuations described by the same formula as those of the ther-
mal light.!! The advantage of using this method to produce
pseudothermal light is that one can easily control the corre-
lation time of the fluctuating light produced this way. It can
be continuously adjusted by changing the speed with which
the glass moves across the laser beam. Light scattered from
the ground-glass plate at some angle to the beam axis was
used in our experiment to imitate a thermal source.
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PH2

He-Ne laser

PC counter in

Fig. 2. Experimental setup P1, P2—Polaroid polarizers; PH1 and PH2—
pinholes; PMT—ophoton counting photomultiplier tube; D—discriminator;
PC—personal computer. The inset shows a ground-glass plate (GGP)
mounted on a dc motor, and a lens (L) which were optionally inserted into
the laser beam in order to produce pseudothermal light.

HI. EXPERIMENT

The experimental setup is shown in Fig. 2. A 5-mW po-
larized He—Ne laser was used as a light source throughout
the measurements. The laser beam passed through two Po-
laroid polarizers P1 and P2, and two pinholes, PH1 and PH2,
mounted at the ends of a black metal tube of about 0.5-m
length before reaching the photon counting PMT. The pur-
pose of the pinholes and the metal tube is to decrease the
solid angle viewed from the photocathode of the PMT and
thus limit as far as possible the amount of the stray light
reaching the photocathode. At the same time by appropriate
choice of the pinhole diameters the intensity of the laser light
impinging on the photocathode can be brought to a reason-
ably low level of about few thousand counts per second. The
pinholes were made by carefully piercing holes in aluminum
foil with a sharp needle. The pinhole diameters used were
from about 50 um to about 200 um as measured from the
diffraction pattern of the laser beam. Final adjustment of the
light intensity and thus the photoelectron count rate was
made by rotating the second polarizer. To produce pseudo-
thermal light a 10-cm focal length lens and a slowly rotating
ground glass disk were inserted into the laser beam as shown
schematically in the picture. A dc motor was used to turn the
glass. A photodiode with a small active area was temporarily
set in the position of the first pinhole and the signal from the
photodiode observed on an oscilloscope. This enabled us to
adjust the motor speed in such a way that the intensity fluc-
tuations observed on the scope had a characteristic time of
about 100 ms. This gave us an order of magnitude estimate
for the coherence time 7. of the light. It should be much
longer than the photon counting time interval T (in our case
1 ms) if the Bose—Einstein distribution is to be observed.
The PMT used was a Hamamatsu H4730-01 photon counting
head consisting of the PMT tube itself as well as an amplifier
and a discriminator. The discriminator produced a transistor—
transistor logic (TTL) level pulse whenever the output pulse
from the PMT tube had an amplitude higher than a given
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Fig. 3. Experimental photon count distributions (diamonds) measured for the He—Ne laser light and Poisson distributions (squares) with corresponding
average values. (a)-(d) Results for count numbers 1, 4, 12, and 19, respectively.

threshold value. The TTL pulses were fed into a pulse
counter board (Advantech model PCL-720) in a IBM com-
patible PC computer. Another plug-in board in the computer
was used to provide an analog output voltage which deter-
mined the discriminator threshold. A rather straightforward
computer code was written to control the DA converter and
the counter boards. The code enabled the following tasks to
be performed by the computer: setting the discriminator
threshold, repetitive photon counting over a given time inter-
val T, calculating average count number K and probability
distribution.

First, the characteristics of the photon counting system
itself were measured. With the PMT supply voltage set at
+1000 YV, a distribution function of the PMT pulse amplitude
K(V,) was measured by varying the discriminator threshold
between —(.5 and —2.5 V. Numerical differentiation of
K(V,) yielded the PMT pulse amplitude probability density
function. This function showed a rather weakly pronounced
single-photon peak centered around —1.5 V. The result con-
firmed the manufacturer’s recommendation for a ~1.0 V dis-
criminator threshold and this value has been used in all the
following measurements. In order to measure the dark count
rate, the input of the PMT was blocked and an average of
100 measurements each lasting 1 s was taken for different
values of PMT supply voltage. The results obtained showed
that the dark count rate increases monotonically with the
PMT high voltage in the range of +800 to +1200 V. For a
PMT high voltage of +1000 V, the dark count rate was about
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60 counts/s which is slightly lower than specified for this
instrument. All the following measurements were carried out
in such a way as to make the contribution of the dark counts
insignificant. For example, if the average count number K
desired was 5, then the counting time T was chosen to be 1
ms and thus average dark count rate during time T was 0.06
which is negligible compared to K. For higher values of K
the counting time T could be appropriately extended while
keeping the dark count contribution at the negligible level.

Photon count distributions were measured for both He—Ne
laser light and pseudothermal light produced by a rotating
disk of ground glass as described before. In each of the mea-
surements the procedure was as follows. First, the average
count rate was adjusted to the desired value by changing the
light intensity with the polarizer P2. Then a series of 10 000
measurements was taken and the data stored in computer
memory. Finally, the probability distribution was calculated
as the ratio of the number of measurements with a given
number of counts to the total number of measurements. The
time interval T used varied from 1 to 10 ms, but all the
measurements for the pseudothermal light were taken with
T=1 ms in order to fulfill the condition T<€7, described
earlier.

IV. RESULTS AND DISCUSSION

Figure 3 shows the photon count distributions for the laser
light. Four distributions with average count numbers of 1, 4,
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Fig. 4. Experimental photon count distributions (diamonds) for the pseudothermal light and Bose—Einstein distributions (squares) with corresponding average

values. (a)—(d) Results for count numbers 1, 4, 12, and 19, respectively.

12, and 19 are shown. Also shown in the picture are Poisson
distributions with K equal to 1, 4, 12, and 19. As can be seen
in the picture, the distributions measured for the He—Ne laser
light are almost identical to the Poisson distributions with
corresponding average count numbers. This might seem a bit
surprising since the laser used in the experiment was not a
single longitudinal mode laser and did not emit completely
coherent light of constant intensity. Still the photon count
distributions are exactly the same as those expected for co-
herent light. It can be explained as follows. Since the laser
operates on a few longitudinal modes simultaneously, the
instantaneous intensity varies in time because of mode beat-
ing. However the characteristic time of the intensity fluctua-
tions (coherence time 7,) is relatively short (of the order of 1
ns). Since the shortest time interval 7 used in the experiment
was 1 ms, the relation 7> 7, holds very well, the integrated
intensity is constant except for technical noise caused for
example by fluctuations of the discharge current in the laser
tube, etc., and the experiment yields a Poisson distribution.
This shows that one does not need an expensive single-mode
He—Ne laser in order to demonstrate the photon count distri-
bution of the coherent light. Such a demonstration can be
achieved with a multimode laser at the cost of a somewhat
more complex theoretical description. The data in Fig. 3
show the importance of shot noise in the measurements of
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very low light fluxes. The variance of the photon count num-

ber for the Poisson distribution varies as \/IT<, and thus the
signal to noise ratio scales as

S/N= VK. (6)

Thus the shot noise is the major problem whenever the light
intensity and the count number are low. This is where
squeezed states with possible sub-Poissonian distributions
are most relevant. For very high light intensities and thus
high values of K, one can usually neglect shot noise alto-
gether. This corresponds to the limit in which the coherent
state describes the classical monochromatic wave. The re-
sults of measurements for pseudothermal light are shown in
Fig. 4. The average count numbers shown are again 1, 4, 12,
and 19. Also shown in the picture are theoretical distribu-
tions (Bose—Einstein distributions) with corresponding aver-
age count numbers. The overall agreement is very good al-
though a slight discrepancy can be seen for low count
numbers indicating that the light scattered by rotating
ground-glass plate used in our experiment is not perfect
pseudothermal light. The comparison of Figs. 3 and 4 shows
a dramatic difference between the two distributions. The
most striking property of the Bose—Einstein distribution, as
compared to the Poisson distribution, is that its variance is
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larger than the average value and the signal to noise ratio
given by the formula

SIN= | —— ™

1+K

is always smaller than 1. In this case the noise observed in
the photon counting experiment is, for larger values of K,
totally dominated by the fluctuations of the light intensity,
while the stochastic nature of the photoelectron process itself
manifests itself only for very small values of K.

In conclusion, we have described a photon counting ex-
periment for the advanced student physics laboratory that
demonstrates both shot noise for a constant intensity source
and intensity noise for thermal radiation.
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Photon states made easy: A computational approach to quantum
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Students first meet the wave-particle paradox through the photon and wave descriptions of light. Yet,
in basic courses on quantum mechanics, they study matter particles only, because the mathematics
of the quantized radiation field is usually considered too advanced. An oscillating electromagnetic
field is formally similar to a harmonic oscillator, whose energy eigenstates can represent states of
well-defined photon number, Using a computer program from the CUPS project, an approach will
be described which demonstrates the action of the annihilation operator on these states, constructs
coherent states which behave like classical electromagnetic fields, and shows how such states can be
squeezed. All of these have practical relevance in modern optics. This is just one example of the
computer making a hitherto unapproachable subject accessible to ordinary undergraduates.
Computers have already changed how much of quantum mechanics is taught. As more such
possibilities are realized, the teaching of the whole subject must surely change radically. © 1996

American Association of Physics Teachers.

L. INTRODUCTION

In the 70 or so years since the original formulation of
quantum mechanics, the way the subject is taught has be-
come highly standardized. Almost without exception, all
post-introductory textbooks arrange their material in the
same way. In particular, they start with one dimensional top-
ics and introduce as many concepts as they can until it be-
comes too difficult, mathematically, to go further.

In recent years, much software has been written for use in
standard courses,! to relieve the dependence on extensive
analytical expertise which so many students do not have.
Nowadays it is easy to generate solutions of problems like
bound states in different potential wells, plane waves inci-
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dent on various barriers, and the motion of wave packets. As
a result, instructors able to push the study of one-
dimensional quantum mechanics much further than they
once could. ,

Another feature of the standard approach is the promi-
nence given to the idea that the same physical system can be
described by different formalisms. The harmonic oscillator,
for example, is often treated in three different ways: in
Schrodinger representation, in matrix mechanics, and by op-
erator methods. The idea that different physical systems can
be modeled by the same mathematics is equally valuable but
seldom exploited. A good example occurs in the quantum
theory of radiation.

When most students are introduced to modern physics, the
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