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Abstract. A numerical procedure to find the ratio between two measured quantities
is discussed in the framework of the least-squares method with errors in both
coordinates. Constant, as well as variable, amounts of statistical uncertainties are
considered for each variable along their measured range. Analytical solutions for
particular cases are given. The variance of the ratio is given as a closed analytical
expression valid for the general case. Limiting cases of the presented results are
compared with those obtained using classical least-squares expressions. A
comparison with the weighted average method is also discussed.

1. Introduction Among the least-squares-based procedures to fit
experimental data when none of the coordinates are error
The ratio between two measured quantities is often free, the modely = mx + b was extensively treated
”eeded n laboratories. As.examples, _the .experlmentalin the literature (see, for instance, the precursor articles
determination of the following proportionality factors st york (1966) and Williamson (1968); the more recent
can be _utefd: call]?ratllon c%ns_tdant .Of qugowslr_lb coils; \orks of Reed (1992) and Press and Teukolsky (1992): and
attenuation factor of voltage dividers; relative calibration o oview by Macdonald and Thompson (1992) with 35

between 5|m_|lar sensors;  determination Of. sensibility references therein). In spite of the work already undertaken,
constants of linear transducers, etc. The quotient between, . . . S ,

o . this model still attracts attention, mainly in the parameters
two quantities (output to input, or output to output)

must be obtained in all these cases and, frequently, bothV/anance evaluation (Cecchi 1991, 1993, Kalantar 1992,

measured quantities have similar amounts of experimental'vIoreno and Bruzzone.1.993).
uncertainties. The least-squares fitting to the mogek kx has almost

The problem of finding the ratio between two quantities the same subtle points as= mx + b, but it has not been
x andy from which the data sef;, y;) 1 <i < N hasbeen  discussed in the literature with the same detail. Moreover,
measured, can be faced by finding the fadtdhat relates  the results already known for= mx +5 cannot be used in
x andy in the formy = kx. WhenN > 1, the problem of a straightforward manner to evaluate either its variance,
finding k is clearly overdetermined. Among the standard because the fitted slope depends on whether an intebcept
numerical procedures to find in these cases, the least- is included in the model or not.
squares method is the most common. It is so widespread In the current work we develop the model = kx
that it is included in many spreadsheets. Moreover, it hasin a self-contained form, based on the generalized least-
an analytical solution when measurement errors in only squares method proposed by Deming (1943); the standard
one coordinate are taken into account (Bevington 1969). error propagation formula will then be used to obtain the
Nevertheless, the problem loses its simplicity when one ygariance ofk. A particular case covering three situations of
has to consider statistical uncertainties in bethand y;  gyperimental interest for which an analytical solution exists
measurementsy; andg; respectively. These uncertainties iy pe treated in detail. Limiting cases will be analysed
not onI_y de_termlne the variance 6f but they also affect when possible, and a comparison with the weighted average
the estimation ok. method will be discussed. Finally, the conclusions of the
1+ Argentine National Research Council. work will be drawn.
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2. Method

When dealing with errors in both coordinates, the Deming
criterion states that the expression

N

S =) oy (xi — X)? + 0, (v — ¥)?]
i=1

1)

must be minimized to obtain the fitting point;, Y;),
which, in turn, satisfies a relation lik¢(X, Y, p) =0, p
being the set ofn < N parameters to be determined, and
f is the so called model to fit the data. The coefficients
andw,, are weighting factors, usually to be the reciprocal of
the variance of the observationg 2 and ,8[2 respectively,
when Gaussian error theory is applicable. When this is not

which must be minimized by varying. This condition
means

a5
— =0 5
% (%)
which leads to
o i — kx) [ B + ko
pyn Gkl kel o o

1 [B7 + k2a?]2
Note that for the model we are dealing with, the
effective variance approach not only is exact, but also
reduces the original N + 1)-dimensional problem (the
minimization of expression (2) in which all th&; points
together withk must be varied) to a one-dimensional
parametric minimization of expression (4). In spite of this

the case, other weighting procedures, and even eXpressior@implification, the remaining minimization problem has no

for S other than that proposed by Deming, must be used.

analytical solution in the general case, essentially, because

For example, in the case of Poisson statistics (closely Of the occurrence ok in the denominators of (6), and
related to counting processes), weights are usually assignederefore computational methods must be used to find

as the reciprocal of the measured values, and expression (1

is kept as a simplifying approximation (Bevington 1969).

Combinations of weighting schemes can be considered in

the framework of the maximum likelihood theory. In this
work we will consider only the Gaussian case for the sake
of brevity. Nevertheless, when the Poisson distribution can

S\Ievertheless, several well known numerical techniques,
such as Brent's method, golden section search or quasi-
Newton-based methods, can be successfully applied. For
details and algorithms on these and other minimization
procedures see the work of Prextsal (1992).

be approximated by a Gaussian curve (number of counts2.2. Evaluation of the fitted points

greater than 50, say) both the formalism we are going o .
. . . nce k is known,
to discuss and the results we will obtain can be extended

to Poisson statistics by redefining the weighting factors as
stated above.

2.1. Relation between Deming criterion and the
effective variance method

For the case we are interested in, there is an explicit
relationship Y f(X) between the fitting points.
Therefore, expression (1) may be rewritten as

N
S =) o — X)P +ouly — fFXD ()
i=1

where f(X;) = kX; is the proposed model to fit the data.

Following Orear’s derivation (1982), the minimization
of equation (2) for a well behaved functiofi, can be
approximately done by minimizing

N
S=Z
i=1

[yi — f@))?
2
g+ (1) 2

with respect tof which, in turn, can be a member of some
parametrized family.

Formula (3) is the so-called effective variance method
(Barker and Diana 1974) which, as Orear has shown, is
equivalent to the Deming criterion equation(2) whgns
a linear function.

Applying expression (3) to the modé¢l(x) = kx, we
have

®)

N

2

i=1

(i — kx;)?
BE + kPaf

(4)

138

it is worthwhile to look for the
fitted points X; and Y;. Starting with expression (2)
and consideringS a minimum function ofX;, we have
9S5/9X; = 0, from which X; results in

_ xiB?+kyia?
i = /3’2 i kzaiz .

Now, theY; variables can be found directly by the definition
Y, = kX;.

As limiting cases, from these expressions it can be seen
that

X =x; and Y, = kx;
wheneverny; = 0; whereas
Xi=yi/k and Y, =y

wheneverg; = 0, as one would expect from the classical
least-squares fits with errors in only one coordinate.

3. Variance of k

To quantify the accuracy of the ratio estimation, it is
necessary to evaluate the variancekoérising from the

data uncertainties. Using the well known error propagation
formula, valid for small and uncorrelated random errors,

[ERREDI

where the quantitiek/dx; and dk/dy; remain to be
determined from the proposed model and from the
experimental data set.

N

HOEDY

i=1
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As we have already mentioned, it is not always possible
to find an analytical expression férfrom equation (6), and

therefore the partial derivatives appearing in expression (7)
cannot always be directly evaluated. Nevertheless, one can

resort to the following implicit derivation procedure.

By differentiating expression (5) with respectig and
evaluating the result for the value bfwhich minimizess,
we have

3 39S  9%S 9k lei<n
R e i
Bx,- ok 8k2 8x,- -
which allow us to obtain
aal _ Wi(d; — kF;) ®)
Xi A

whereW; = (82 + k%?) " is the overall weight of theth
point; d; = y; — kx; is the vertical separation between the
ith point and the fitting line; the factoF; is defined as
F; = x; + 2kd; W,‘Oliz; and

N

1928
=Y Wi(F} — W, d?ad).
i=1

=202 ®)

In the same manner, by differentiating expression (5) now
with respect toy;, we obtain
ok Wi F;

. (10)

By
Finally, the variance ok is obtained by replacingk/dx;

and dk/dy; in expression (7). Once the replacements are
worked out, the following expression results fof(k)

1 N
02k) = 15 D WEGEB! + yfer). 11)
i=1
Note that oncek is obtained either by minimizing
expression (4) or by solving equation (6), the variance
o2(k) can be obtained from a direct evaluation of
expression (11). It is necessary to mention thamust be

no-null to allow expressions (8) and (10), and consequently

the variance ok as given by (11), to be defined. Since the
condition A > 0 is sufficient to ensure the existence of a
minimum of S, the requirement # 0 is compatible with
the minimization ofs.

4. Special cases

Although it is not possible to give a general analytical

Determining ratios by least-squares

which, providedeV:l wy,x;y; 7 0, has the solutions

N 2
B+ ./B2+ [ZC doica wx,.x,-yi]
ZZ{V:]_Q)X,'xiyi

(14)

where
N
B = Za)x, (yl-2 - cle-z).
i=1

If Y-V, w,xiy = 0, then equation (13) leads ko= 0,
provided B # 0. If YN w,xy; = 0 andB = 0
simultaneously, therk becomes indeterminate. It must
be noted that ifzf"zlwx,x,-y,- = 0 there is zero linear
correlation betweernx and y (Bevington 1969) and it is
then inappropriate to attempt to fit the data to the line
y = kx. Nevertheless, these two possibilities must be taken
into account when programming an algorithm.

The two solutions given by equation (14) correspond
to the closest and farthest fitting lines, that is, those which
minimize and maximizes respectively. Let us calt, the
solution taken with the+’ sign in equation (14) and_
the one corresponding to the-* sign. It can be seen that
k.k_ < 0. Moreover, it can be verified that

2
kik_ = —c?=— <E>

&%)
which means that when neither of the two coordinates
is error free, the two fitted lines are not necessarily
perpendicular. Care must be taken, however, wher- 0
or B; — 0 in the above expression, because in these
limiting cases one of the two solutions is lost.df — O,
for example, expression (12) becomes the classical least-
squares fitting for the model = kx with variableg; errors,
which has the unique solution

Ty oy
i=1 wy,x:}’z

N 2
D im1 @y X;

On the other hand, ifs; — 0, it can be seen from
equation (13) that the non-trivial solution is also unique,
just because it comes from a linear equatiork.inin fact,

it can be shown that the resulting expression#an this
limiting case is

N 2
D i1 Ox, Vi
N
Zi:l Wy, Xi Vi

k= when o =0.

k = when

Bi =0.

solution of equation (6), there are three cases of practical Returning to the general case, whers; # 0, the problem

interest, where this equation can be explicitly solved in

terms of the given data points and their uncertainties. These

cases arise whem and g; are proportional to one another.
In fact, if 8; = co;, ¢ = constant, equation (4) reduces to

SN (i — kx;)?

S = 12
2+ k2 (12)
and the minimum condition is expressed by
N
Z wyd; (xic* + ky;) =0 (13)

i=1

of selectingk remains to be solved. There are several
ways to choose the correct solution among the two available
ones given by expression (14). From physical insight, for
instance, one frequently knows the signkoénd therefore
one can select the correct slope beforehand. Another way
is by computingS from equation (4) for both values @fto

see which of them yields the lower value $f In addition,

it can be checked thah > O for the value ofk which
minimizesS. One further method is a direct inspection of
a data plot together with the two lines to decide which is
the best. This is a simple, almost trivial method, which
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should be viewed as a necessary qualitative complement to

the quantitative alternatives expressed above.

The variance ok for the special case we are interested
in is
Y0y 67 + PxP)

AZ(CZ +k2)2
where A is evaluated from expression (9) usig;
oy, /(?+K?), and F; = x; + (2kd;)/(c* + k?).

Now, let us consider the remaining two special cases.
By takingo; = o and 8; = B8, Vi, and hence by putting
¢ = B/a andw,, = a2 in the above expressions, the case

o?(k) =

of constant errors along each axis can be handled. Finally,
one can consider equal errors for all the data points in both

coordinates, that is; = B; = g, Vi, with o, = constant.

Perhaps this is the less general case but is also a commo

situation which the experimentalist must face, when dealing
with voltages of similar amplitudes, for instance. All the
needed formulae can be obtained by putting= 1 and
w,, = 052 The resulting expressions for these two last
special cases will not be displayed here for brevity.
Before passing to the next section, it is convenient to
mention that all the obtained results satisfy the scaling law
k(ux,vy) = gk(x, y) u, v constantu # 0
wherek (ux, vy) means the value df obtained after scaling
the x and yaxes by the factors andv respectively.
The reversibility criterion against coordinates inter-
change, i.e.
k(x,y) =k™(y, x) (15)

is also satisfied. This last desirable feature is not fulfilled

by all the proposed data reduction methods, as we shall see

at the end of the next section.

5. Comparison with the weighted average method

It is useful to compare the results obtained in sections 2—4,

with those that arise from the error theory applied to a set of
quotients. In fact, having a series df points (x;, y;), one
could attempt to estimate the rattoby evaluating thev
guotientsy; /x; and then averaging all these partial results.
Following this procedure, one gets

Yi
Xi

ki 1<i<N
and

¥

2 2
o?(ki) = <a—’2+ﬁ—’2> 1<i<N
X \X; Vi

2

as results from the usual error propagation law.
The weighted averagg) of thek; values is defined as
(Bevington 1969)
Yy o 2k
Yo (k)

and its variance is given by

(k) = (16)

1

2
k)= —/————.
o) = S s
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n

It can be shown that althougkk) can be a good
approximation ta, it is verified that

(k) # k

becausek) is not a solution of equation (6). To see this, it
is sufficient to consider the particular case of two data points
(a, b) and (b, a), a # b, with botha andb greater than 0,
for instance. In addition, equal uncertaintiesdaandb can

be assumed for the sake of simplicity. After some algebra,
the averaging scheme yields) = (a%b + b%a)/(a* + b*),
which does not satisfy equation (6). In fact, by solving
equation (6), or by following the procedure discussed in
section 4, one obtaink = 1. This last result is what one
could expect from symmetry considerations.

Only in the limiting case in whicly; = 0 Vi, one gets

(k) = k. In fact, it can be seen from equation (6) that

N -2

> ima B X
N 22

>ic B

which coincides with(k) as defined in expression (16).
Moreover, it can be proven, by simple substitution, that

k= when o; = OVi

o ((k)) = o (k)

under the hypothesig; = 0 Vi.

To close the comparison between the results obtained in
sections 2—4 and the averaging procedure we are discussing
here, it is worthwhile to mention that if there are errors in
both coordinates, the averaging scheme does not satisfy the
reversibility criterion (15), i.e.

(k(x, y)) # (k(y,x))*

as can be shown from expression (16). This fact makes
the formalism discussed in sections 2—4 more suitable for
determining the ratio between two measured quantities than
the weighted average method.

6. Final remarks and conclusions

Although it is not possible to solve analytically the equation
that determinesc in the general case, explicit analytical
solutions were given for particular cases of experimental
interest. These cases were studied in some detail, ending
with ready-to-use formulae. Obtainikgn the general case
can be done by minimizing equation (4), which is easy to
evaluate, and depends on only one parameter. Well known
algorithms can be used to solve this problem.

The variance ok was analytically given for the general
case, in a closed form. Closed expressions for the fitted
points(X;, ¥;) were also obtained, and limiting cases when
one coordinate is error free were checked. The reversibility
of the obtained results when coordinates are interchanged
was also stated.

Certainly, there will be situations whekeand (k) will
coincide within their standard dispersions. Hence, it could
be argued that all that has been discussed in this article is of
little significance. Nonetheless, in the opinion of the author,
an experimentalist will prefer to process a high quality data
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set using an adequate method, instead of losing part of thatBevingt;n P R 1969Data Reduction and Error Analysis for the
quality merely by using a poor numerical procedure. This Physical SciencefNew York: McGraw-Hill)

is particularly important when the data must be processed Cecch G C 1991 Error analysis of the parameters of a
i . . . least-squares determined curve when both variables have
to find a reliable calibration factor.

. : . uncertaintieMeas. Sci. TechnoR (12) 1127-8
In this sense, when errors in both coordinates are 1993 Erratum: Error analysis of the parameters of a

present, the use of the weighted average should be avoided, least-squares determined curve when both variables have
or at least, it should be considered as an approximation  uncertaintiesMeas. Sci. Technok (8) 906
susceptible to be improved using the method discussed inPemirg W E 1943The Statistical Adjustment of Datalew

o L York: Wiley) 1964 (New York: Dover)
the current work. Within the same spirit, only those curve y;janta A H 1992 Straight-line parameters’ errors propagated

fitting algorithms that allow for the inclusion of overall from the errors in both coordinatédeas. Sci. TechnoB
weighting factors, which in turn depend upon the fitting 1113 o
parameter as stated by expression (4), should be used td/acdonatl J R and ThompsoW J 1992 Least-squares fitting -
obtaink. when both variables contain errors: pitfalls and possibilities

Am. J. Phys60 (1) 66-73
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