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Abstract. A numerical procedure to find the ratio between two measured quantities
is discussed in the framework of the least-squares method with errors in both
coordinates. Constant, as well as variable, amounts of statistical uncertainties are
considered for each variable along their measured range. Analytical solutions for
particular cases are given. The variance of the ratio is given as a closed analytical
expression valid for the general case. Limiting cases of the presented results are
compared with those obtained using classical least-squares expressions. A
comparison with the weighted average method is also discussed.

1. Introduction

The ratio between two measured quantities is often
needed in laboratories. As examples, the experimental
determination of the following proportionality factors
can be cited: calibration constant of Rogowski coils;
attenuation factor of voltage dividers; relative calibration
between similar sensors; determination of sensibility
constants of linear transducers, etc. The quotient between
two quantities (output to input, or output to output)
must be obtained in all these cases and, frequently, both
measured quantities have similar amounts of experimental
uncertainties.

The problem of finding the ratio between two quantities
x andy from which the data set(xi, yi) 1 ≤ i ≤ N has been
measured, can be faced by finding the factork that relates
x andy in the formy = kx. WhenN > 1, the problem of
finding k is clearly overdetermined. Among the standard
numerical procedures to findk in these cases, the least-
squares method is the most common. It is so widespread
that it is included in many spreadsheets. Moreover, it has
an analytical solution when measurement errors in only
one coordinate are taken into account (Bevington 1969).
Nevertheless, the problem loses its simplicity when one
has to consider statistical uncertainties in bothxi and yi

measurements:αi andβi respectively. These uncertainties
not only determine the variance ofk, but they also affect
the estimation ofk.

† Argentine National Research Council.

Among the least-squares-based procedures to fit
experimental data when none of the coordinates are error
free, the modely = mx + b was extensively treated
in the literature (see, for instance, the precursor articles
of York (1966) and Williamson (1968); the more recent
works of Reed (1992) and Press and Teukolsky (1992); and
the review by Macdonald and Thompson (1992) with 35
references therein). In spite of the work already undertaken,
this model still attracts attention, mainly in the parameters’
variance evaluation (Cecchi 1991, 1993, Kalantar 1992,
Moreno and Bruzzone 1993).

The least-squares fitting to the modely = kx has almost
the same subtle points asy = mx + b, but it has not been
discussed in the literature with the same detail. Moreover,
the results already known fory = mx+b cannot be used in
a straightforward manner to evaluate eitherk or its variance,
because the fitted slope depends on whether an interceptb

is included in the model or not.
In the current work we develop the modely = kx

in a self-contained form, based on the generalized least-
squares method proposed by Deming (1943); the standard
error propagation formula will then be used to obtain the
variance ofk. A particular case covering three situations of
experimental interest for which an analytical solution exists
will be treated in detail. Limiting cases will be analysed
when possible, and a comparison with the weighted average
method will be discussed. Finally, the conclusions of the
work will be drawn.
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2. Method

When dealing with errors in both coordinates, the Deming
criterion states that the expression

S =
N∑

i=1

[ωxi
(xi − Xi)

2 + ωyi
(yi − Yi)

2] (1)

must be minimized to obtain the fitting points(Xi, Yi),
which, in turn, satisfies a relation likef (X, Y, p) = 0, p

being the set ofm < N parameters to be determined, and
f is the so called model to fit the data. The coefficientsωxi

andωyi
are weighting factors, usually to be the reciprocal of

the variance of the observationsα−2
i andβ−2

i respectively,
when Gaussian error theory is applicable. When this is not
the case, other weighting procedures, and even expressions
for S other than that proposed by Deming, must be used.
For example, in the case of Poisson statistics (closely
related to counting processes), weights are usually assigned
as the reciprocal of the measured values, and expression (1)
is kept as a simplifying approximation (Bevington 1969).
Combinations of weighting schemes can be considered in
the framework of the maximum likelihood theory. In this
work we will consider only the Gaussian case for the sake
of brevity. Nevertheless, when the Poisson distribution can
be approximated by a Gaussian curve (number of counts
greater than 50, say) both the formalism we are going
to discuss and the results we will obtain can be extended
to Poisson statistics by redefining the weighting factors as
stated above.

2.1. Relation between Deming criterion and the
effective variance method

For the case we are interested in, there is an explicit
relationship Y = f (X) between the fitting points.
Therefore, expression (1) may be rewritten as

S =
N∑

i=1

{ωxi
(xi − Xi)

2 + ωyi
[yi − f (Xi)]

2} (2)

wheref (Xi) = kXi is the proposed model to fit the data.
Following Orear’s derivation (1982), the minimization

of equation (2) for a well behaved functionf , can be
approximately done by minimizing

S =
N∑

i=1

[yi − f (xi)]2

β2
i +

(
df
dx

|xi

)2
α2

i

(3)

with respect tof which, in turn, can be a member of some
parametrized family.

Formula (3) is the so-called effective variance method
(Barker and Diana 1974) which, as Orear has shown, is
equivalent to the Deming criterion equation(2) whenf is
a linear function.

Applying expression (3) to the modelf (x) = kx, we
have

S =
N∑

i=1

(yi − kxi)
2

β2
i + k2α2

i

(4)

which must be minimized by varyingk. This condition
means

∂S

∂k
= 0 (5)

which leads to

−2
N∑

i=1

(yi − kxi)[xiβ
2
i + kyiα

2
i ]

[β2
i + k2α2

i ]2
= 0. (6)

Note that for the model we are dealing with, the
effective variance approach not only is exact, but also
reduces the original(N + 1)-dimensional problem (the
minimization of expression (2) in which all theXi points
together with k must be varied) to a one-dimensional
parametric minimization of expression (4). In spite of this
simplification, the remaining minimization problem has no
analytical solution in the general case, essentially, because
of the occurrence ofk in the denominators of (6), and
therefore computational methods must be used to findk.
Nevertheless, several well known numerical techniques,
such as Brent’s method, golden section search or quasi-
Newton-based methods, can be successfully applied. For
details and algorithms on these and other minimization
procedures see the work of Presset al (1992).

2.2. Evaluation of the fitted points

Once k is known, it is worthwhile to look for the
fitted points Xi and Yi . Starting with expression (2)
and consideringS a minimum function ofXi , we have
∂S/∂Xi = 0, from whichXi results in

Xi = xiβ
2
i + kyiα

2
i

β2
i + k2α2

i

.

Now, theYi variables can be found directly by the definition
Yi = kXi .

As limiting cases, from these expressions it can be seen
that

Xi = xi and Yi = kxi

wheneverαi = 0; whereas

Xi = yi/k and Yi = yi

wheneverβi = 0, as one would expect from the classical
least-squares fits with errors in only one coordinate.

3. Variance of k

To quantify the accuracy of the ratio estimation, it is
necessary to evaluate the variance ofk arising from the
data uncertainties. Using the well known error propagation
formula, valid for small and uncorrelated random errors,
we have

σ 2(k) =
N∑

i=1

[(
∂k

∂xi

αi

)2

+
(

∂k

∂yi

βi

)2]
(7)

where the quantities∂k/∂xi and ∂k/∂yi remain to be
determined from the proposed model and from the
experimental data set.
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As we have already mentioned, it is not always possible
to find an analytical expression fork from equation (6), and
therefore the partial derivatives appearing in expression (7)
cannot always be directly evaluated. Nevertheless, one can
resort to the following implicit derivation procedure.

By differentiating expression (5) with respect toxi , and
evaluating the result for the value ofk which minimizesS,
we have

∂

∂xi

∂S

∂k
+ ∂2S

∂k2

∂k

∂xi

= 0 1 ≤ i ≤ N

which allow us to obtain

∂k

∂xi

= Wi(di − kFi)

1
(8)

whereWi = (β2
i + k2α2

i )
−1

is the overall weight of theith
point; di = yi − kxi is the vertical separation between the
ith point and the fitting line; the factorFi is defined as
Fi = xi + 2kdiWiα

2
i ; and

1 = 1

2

∂2S

∂k2
=

N∑
i=1

Wi(F
2
i − Wi d

2
i α2

i ). (9)

In the same manner, by differentiating expression (5) now
with respect toyi , we obtain

∂k

∂yi

= WiFi

1
. (10)

Finally, the variance ofk is obtained by replacing∂k/∂xi

and ∂k/∂yi in expression (7). Once the replacements are
worked out, the following expression results forσ 2(k)

σ 2(k) = 1

12

N∑
i=1

W 2
i (x2

i β
2
i + y2

i α
2
i ). (11)

Note that oncek is obtained either by minimizing
expression (4) or by solving equation (6), the variance
σ 2(k) can be obtained from a direct evaluation of
expression (11). It is necessary to mention that1 must be
no-null to allow expressions (8) and (10), and consequently
the variance ofk as given by (11), to be defined. Since the
condition 1 > 0 is sufficient to ensure the existence of a
minimum of S, the requirement1 6= 0 is compatible with
the minimization ofS.

4. Special cases

Although it is not possible to give a general analytical
solution of equation (6), there are three cases of practical
interest, where this equation can be explicitly solved in
terms of the given data points and their uncertainties. These
cases arise whenαi andβi are proportional to one another.
In fact, if βi = cαi , c = constant, equation (4) reduces to

S =
∑N

i=1 ωxi
(yi − kxi)

2

c2 + k2
(12)

and the minimum condition is expressed by

N∑
i=1

ωxi
di(xic

2 + kyi) = 0 (13)

which, provided
∑N

i=1 ωxi
xiyi 6= 0, has the solutions

k =
B ±

√
B2 +

[
2c

∑N
i=1 ωxi

xiyi

]2

2
∑N

i=1 ωxi
xiyi

(14)

where

B =
N∑

i=1

ωxi
(y2

i − c2x2
i ).

If
∑N

i=1 ωxi
xiyi = 0, then equation (13) leads tok = 0,

provided B 6= 0. If
∑N

i=1 ωxi
xiyi = 0 and B = 0

simultaneously, thenk becomes indeterminate. It must
be noted that if

∑N
i=1 ωxi

xiyi = 0 there is zero linear
correlation betweenx and y (Bevington 1969) and it is
then inappropriate to attempt to fit the data to the line
y = kx. Nevertheless, these two possibilities must be taken
into account when programming an algorithm.

The two solutions given by equation (14) correspond
to the closest and farthest fitting lines, that is, those which
minimize and maximizeS respectively. Let us callk+ the
solution taken with the ‘+’ sign in equation (14) andk−
the one corresponding to the ‘−’ sign. It can be seen that
k+k− < 0. Moreover, it can be verified that

k+k− = −c2 = −
(

βi

αi

)2

which means that when neither of the two coordinates
is error free, the two fitted lines are not necessarily
perpendicular. Care must be taken, however, whenαi → 0
or βi → 0 in the above expression, because in these
limiting cases one of the two solutions is lost. Ifαi → 0,
for example, expression (12) becomes the classical least-
squares fitting for the modely = kx with variableβi errors,
which has the unique solution

k =
∑N

i=1 ωyi
xiyi∑N

i=1 ωyi
x2

i

when αi = 0.

On the other hand, ifβi → 0, it can be seen from
equation (13) that the non-trivial solution is also unique,
just because it comes from a linear equation ink. In fact,
it can be shown that the resulting expression fork in this
limiting case is

k =
∑N

i=1 ωxi
y2

i∑N
i=1 ωxi

xiyi

when βi = 0.

Returning to the general case, whenαiβi 6= 0, the problem
of selectingk remains to be solved. There are several
ways to choose the correct solution among the two available
ones given by expression (14). From physical insight, for
instance, one frequently knows the sign ofk and therefore
one can select the correct slope beforehand. Another way
is by computingS from equation (4) for both values ofk to
see which of them yields the lower value ofS. In addition,
it can be checked that1 > 0 for the value ofk which
minimizesS. One further method is a direct inspection of
a data plot together with the two lines to decide which is
the best. This is a simple, almost trivial method, which
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should be viewed as a necessary qualitative complement to
the quantitative alternatives expressed above.

The variance ofk for the special case we are interested
in is

σ 2(k) =
∑N

i=1 ωxi
(y2

i + c2x2
i )

12(c2 + k2)2

where 1 is evaluated from expression (9) usingWi =
ωxi

/(c2 + k2), andFi = xi + (2kdi)/(c
2 + k2).

Now, let us consider the remaining two special cases.
By taking αi = α and βi = β, ∀i, and hence by putting
c = β/α andωxi

= α−2 in the above expressions, the case
of constant errors along each axis can be handled. Finally,
one can consider equal errors for all the data points in both
coordinates, that isαi = βi = σo, ∀i, with σo = constant.
Perhaps this is the less general case but is also a common
situation which the experimentalist must face, when dealing
with voltages of similar amplitudes, for instance. All the
needed formulae can be obtained by puttingc = 1 and
ωxi

= σ−2
o . The resulting expressions for these two last

special cases will not be displayed here for brevity.
Before passing to the next section, it is convenient to

mention that all the obtained results satisfy the scaling law

k(ux, vy) = v

u
k(x, y) u, v constant, u 6= 0

wherek(ux, vy) means the value ofk obtained after scaling
the x andyaxes by the factorsu andv respectively.

The reversibility criterion against coordinates inter-
change, i.e.

k(x, y) = k−1(y, x) (15)

is also satisfied. This last desirable feature is not fulfilled
by all the proposed data reduction methods, as we shall see
at the end of the next section.

5. Comparison with the weighted average method

It is useful to compare the results obtained in sections 2–4,
with those that arise from the error theory applied to a set of
quotients. In fact, having a series ofN points(xi, yi), one
could attempt to estimate the ratiok by evaluating theN
quotientsyi/xi and then averaging all these partial results.
Following this procedure, one gets

ki = yi

xi

1 ≤ i ≤ N

and

σ 2(ki) = y2
i

x2
i

(
α2

i

x2
i

+ β2
i

y2
i

)
1 ≤ i ≤ N

as results from the usual error propagation law.
The weighted average〈k〉 of theki values is defined as

(Bevington 1969)

〈k〉 =
∑N

i=1 σ−2(ki)ki∑N
i=1 σ−2(ki)

(16)

and its variance is given by

σ 2(〈k〉) = 1∑N
i=1 σ−2(ki)

.

It can be shown that although〈k〉 can be a good
approximation tok, it is verified that

〈k〉 6= k

because〈k〉 is not a solution of equation (6). To see this, it
is sufficient to consider the particular case of two data points
(a, b) and (b, a), a 6= b, with botha andb greater than 0,
for instance. In addition, equal uncertainties fora andb can
be assumed for the sake of simplicity. After some algebra,
the averaging scheme yields〈k〉 = (a3b + b3a)/(a4 + b4),
which does not satisfy equation (6). In fact, by solving
equation (6), or by following the procedure discussed in
section 4, one obtainsk = 1. This last result is what one
could expect from symmetry considerations.

Only in the limiting case in whichαi = 0 ∀i, one gets
〈k〉 = k. In fact, it can be seen from equation (6) that

k =
∑N

i=1 β−2
i xiyi∑N

i=1 β−2
i x2

i

when αi = 0∀i

which coincides with〈k〉 as defined in expression (16).
Moreover, it can be proven, by simple substitution, that

σ(〈k〉) = σ(k)

under the hypothesisαi = 0 ∀i.
To close the comparison between the results obtained in

sections 2–4 and the averaging procedure we are discussing
here, it is worthwhile to mention that if there are errors in
both coordinates, the averaging scheme does not satisfy the
reversibility criterion (15), i.e.

〈k(x, y)〉 6= 〈k(y, x)〉−1

as can be shown from expression (16). This fact makes
the formalism discussed in sections 2–4 more suitable for
determining the ratio between two measured quantities than
the weighted average method.

6. Final remarks and conclusions

Although it is not possible to solve analytically the equation
that determinesk in the general case, explicit analytical
solutions were given for particular cases of experimental
interest. These cases were studied in some detail, ending
with ready-to-use formulae. Obtainingk in the general case
can be done by minimizing equation (4), which is easy to
evaluate, and depends on only one parameter. Well known
algorithms can be used to solve this problem.

The variance ofk was analytically given for the general
case, in a closed form. Closed expressions for the fitted
points(Xi, Yi) were also obtained, and limiting cases when
one coordinate is error free were checked. The reversibility
of the obtained results when coordinates are interchanged
was also stated.

Certainly, there will be situations wherek and〈k〉 will
coincide within their standard dispersions. Hence, it could
be argued that all that has been discussed in this article is of
little significance. Nonetheless, in the opinion of the author,
an experimentalist will prefer to process a high quality data
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set using an adequate method, instead of losing part of that
quality merely by using a poor numerical procedure. This
is particularly important when the data must be processed
to find a reliable calibration factor.

In this sense, when errors in both coordinates are
present, the use of the weighted average should be avoided,
or at least, it should be considered as an approximation
susceptible to be improved using the method discussed in
the current work. Within the same spirit, only those curve
fitting algorithms that allow for the inclusion of overall
weighting factors, which in turn depend upon the fitting
parameter as stated by expression (4), should be used to
obtaink.
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