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Edificio C8, Campo Grande, 1749-016 Lisboa, Portugal

Received 1 August 2003
Published 6 January 2004
Online at stacks.iop.org/EJP/25/211 (DOI: 10.1088/0143-0807/25/2/008)

Abstract
A standard NaI(Tl) detector can be used in classroom experiments to measure
radioactive source activities, once the detector peak efficiencies and geometric
acceptances are known. Tables of peak efficiencies for 5.1 cm × 5.1 cm and
7.6 cm ×7.6 cm NaI(Tl) detectors, computed using the GEANT3 Monte Carlo
code, are supplied. A Monte Carlo method to compute the geometric acceptance
in a general way is also presented.

1. Introduction

The NaI(Tl) gamma detector is a popular detector, which is widely used in undergraduate
radiation physics experimental courses. This type of detector can be used to measure
radioactive source activities, provided the detector efficiency is known. The activity
measurement by an absolute method is a highly pedagogic experiment, where experimental
uncertainties must be under control in order to achieve a meaningful result. The main problems
can be grouped into three categories: geometric acceptance, detector efficiency, and data
analysis. The geometric acceptance should in principle be possible to compute if the source,
detector and set-up dimensions are accurately known. For radioactive sources with finite
dimensions the problem can became somehow mathematically complex [1]. A Monte Carlo
algorithm [2, 3] capable of solving this problem is presented in this work.

Reliable detector intrinsic efficiency data are not usually provided by the manufacturers,
leaving the potential user the task of measuring them with calibrated radioactive sources, or to
compute them. The first option is not always possible in a teaching laboratory since calibrated
radioactive sources are expensive, and several calibrated sources with different energy peaks
should be available in order to cover a reasonably wide energy spread. Computation of the
detector efficiencies thus looks very attractive. This task can be achieved using one of the
presently available radiation Monte Carlo transport codes. In this work the GEANT3 [4] code
was used to compute the 5.1 cm × 5.1 cm and 7.6 cm × 7.6 cm NaI(Tl) detector efficiency
for several energies and detector–source distances.

Most of the radioactive sources used when teaching radiation physics are solid uncalibrated
sealed sources. These are low cost radioactive sources, for which the manufacturers give
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Figure 1. Some directions of gamma photons falling upon the detector from an isotropic radioactive
source.

typically [5] a 20% uncertainty on the nominal activity value. For some commonly used
radioactive sources a more precise value (of the order of 5%) can be achieved in a careful
experiment using the NaI(Tl) detector. How to accomplish this goal is explained in the
following sections.

2. The activity measurement

The activity A of a radioactive source with N nuclei of a certain species is defined as the
number of decays per unit time

A = −dN

dt
= λN (1)

where λ is the decay constant and dN is the variation of the number of nuclei of that species due
only to decays. The experimental activity determination can be made by recording the photon
detection rate R (number of photons detected per time unit) due to a particular transition with
branching ratio B [6]. If the detection efficiency for these photons is ε, the source activity is
given by [1]

A = R

εB
. (2)

The total efficiency ε can be factorized into geometric acceptance and detector intrinsic
peak efficiency terms [1, 7]. The geometric acceptance is given by the fraction of solid angle
defined between the source and the detector, ��/4π . The detector intrinsic peak efficiency,
εpeak, can be defined as the fraction of photons detected in the full-energy peak relative to the
total number of photons incident on the detector. Thus one has for the source activity

A = R

εpeak
��
4π

B
. (3)

3. The peak efficiency

The peak efficiency reflects the number of events detected in the total absorption peak over the
total number of events impinging on the detector’s window (or wall). It depends on several
variables like the gamma energy, the detector characteristics (dimensions, shape, material, etc)
and the source’s relative placement. The peak efficiency of a system consisting of a source
placed inside an infinite detector would be unity, because eventually all energy would be
absorbed by the detector. Real systems almost never meet these requirements, but high peak
efficiencies can still be obtained. As sketched in figure 1, not all gammas will see the full
detector thickness (for example the gamma emitted in the direction a). This effect will be less
and less important as the source is placed further away from the detector.
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Figure 2. The simulated gamma spectrum of a 137Cs source obtained with a 7.6 cm × 7.6 cm
NaI(Tl) crystal.

The best way to evaluate the peak efficiency is by means of a Monte Carlo code that
computes the radiation transport through the detector material. Several codes (GEANT3 [4],
EGS4 [8] or PENELOPE [9]) can be used for this purpose. As an example, the energy
spectrum obtained with GEANT3 for a 662 keV gamma source (137Cs) interacting with a
7.6 cm × 7.6 cm cylindrical NaI(Tl) detector is shown in figure 2. Note the detector resolution,
apparently too good, when compared to the typical NaI(Tl) spectrum where a resolution of
7% [10] would be expected. In fact the resolution that can be obtained from this simulated
spectrum is the detector intrinsic resolution, due to the energy fluctuations, while the full
resolution is affected by the instrumental resolution [1] introduced by the reading device
(normally a photomultiplier tube) that reduces the overall resolution.

Based on these energy spectra, the peak efficiency can be computed as the number of
events falling in the peak area Npeak over the total number of generated events hitting the
detector Ntot

εpeak = Npeak

Ntot
. (4)

The total number of photons Ntot is in general greater than the number of photons
interacting within the detector, since some of them will pass through the detector without
interaction.

Using the GEANT3 code, peak efficiencies have been computed for two of the most
commonly used NaI(Tl) detectors in the classroom. They are the 5.1 cm × 5.1 cm and
7.6 cm × 7.6 cm detectors which are manufactured with an aluminium window of 0.05 cm
thickness [10]. In tables 1 and 2 the peak efficiencies are presented for the two detectors for
different incident photon energies and source–detector distances for an isotropic point source
placed along the detector’s central axis. For each table entry the number of total generated
events Ntot is 105 for energies in the range 15–1500 keV. The statistical efficiency uncertainty
is smaller than 1% in almost all cases, and the relative error can be computed as 1/

√
Ntotεpeak.

This relative uncertainty is adequate for a classroom experiment since, as we shall see, the
overall error will be dominated by the geometric acceptance uncertainty. The computed energy
values ranging between 15 and 1500 keV cover all common radioactive sources available in
the classroom. Since the peak efficiency values have a smooth variation both with energy and
distance, the value for a particular set-up may be easily obtained by interpolating the table
values. Nevertheless, note the rapid variation of peak efficiency near the 33.2 keV iodine K
shell ionization energy.
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Figure 3. The cylindrical detector solid angle seen by a point source place at a distance d.

Table 1. The peak efficiency of the 5.1 cm × 5.1 cm NaI(Tl) detector.

Source–detector distance (cm)
Energy
(keV) 0.1 1 3 5 10 20 30

15 0.995 0.988 0.984 0.986 0.990 0.992 0.990
20 0.990 0.978 0.974 0.978 0.985 0.987 0.987
30 0.974 0.961 0.959 0.965 0.974 0.980 0.980
33.2 0.867 0.857 0.863 0.871 0.880 0.883 0.884
35 0.829 0.819 0.826 0.833 0.837 0.843 0.841
40 0.823 0.824 0.834 0.840 0.853 0.857 0.854
50 0.836 0.842 0.857 0.865 0.875 0.882 0.880
60 0.853 0.862 0.874 0.881 0.895 0.901 0.902
70 0.865 0.877 0.882 0.894 0.908 0.916 0.918
80 0.878 0.885 0.886 0.900 0.913 0.925 0.928
90 0.888 0.888 0.882 0.896 0.918 0.928 0.935

100 0.894 0.885 0.875 0.889 0.914 0.931 0.936
150 0.891 0.822 0.796 0.819 0.867 0.906 0.919
200 0.820 0.705 0.683 0.718 0.789 0.847 0.867
300 0.598 0.488 0.478 0.521 0.598 0.668 0.696
400 0.433 0.348 0.346 0.383 0.448 0.509 0.535
500 0.336 0.269 0.264 0.296 0.352 0.398 0.420
600 0.271 0.213 0.214 0.240 0.287 0.327 0.346
700 0.225 0.180 0.182 0.200 0.240 0.276 0.291
800 0.193 0.154 0.154 0.172 0.206 0.241 0.254
900 0.169 0.135 0.136 0.151 0.182 0.210 0.222

1000 0.149 0.119 0.121 0.136 0.164 0.188 0.202
1100 0.136 0.108 0.109 0.121 0.148 0.170 0.179
1200 0.125 0.097 0.098 0.111 0.133 0.154 0.165
1300 0.115 0.089 0.089 0.103 0.123 0.143 0.150
1400 0.105 0.082 0.084 0.093 0.115 0.134 0.139
1500 0.097 0.075 0.077 0.087 0.108 0.125 0.133

4. The geometric acceptance

For an arbitrary detector and isotropic point source the geometric acceptance can be defined
as the fraction of solid angle subtended by the detector at the source position

εgeo = 1

4π

∫
d� = 1

4π

∫
A

�r · �n
|r3| d A (5)

where �n is a unitary vector perpendicular to the detector surface at each point and �r the vector
linking the point source to a detector elementary area dA. For an extended source an extra
integration must be carried out to cover all source points. For a cylindrical detector with a
window of radius a and a point source located in the symmetry axis at a distance d from the
detector, the solid angle can be computed as (see figure 3)

�� =
∫ 2π

0
dφ

∫ 1

cos θ

d(cos θ ′) = 2π(1 − cos θ) (6)
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Table 2. The peak efficiency of the 7.6 cm × 7.6 cm NaI(Tl) detector.

Source–detector distance (cm)
Energy
(keV) 0.1 1 3 5 10 20 30

15 0.996 0.993 0.989 0.987 0.990 0.991 0.991
20 0.990 0.986 0.980 0.982 0.985 0.987 0.988
30 0.974 0.972 0.967 0.969 0.975 0.980 0.980
33 0.872 0.863 0.869 0.873 0.881 0.884 0.886
35 0.837 0.828 0.828 0.835 0.841 0.844 0.848
40 0.831 0.829 0.838 0.842 0.851 0.857 0.857
50 0.840 0.851 0.861 0.864 0.877 0.880 0.882
60 0.853 0.867 0.879 0.887 0.897 0.903 0.905
70 0.867 0.885 0.894 0.899 0.910 0.917 0.920
80 0.882 0.897 0.899 0.903 0.917 0.926 0.929
90 0.891 0.903 0.903 0.908 0.921 0.933 0.936

100 0.899 0.907 0.902 0.904 0.917 0.934 0.939
150 0.908 0.886 0.841 0.849 0.879 0.911 0.924
200 0.881 0.809 0.756 0.761 0.808 0.864 0.885
300 0.735 0.636 0.578 0.596 0.657 0.726 0.760
400 0.587 0.496 0.451 0.468 0.532 0.600 0.638
500 0.485 0.404 0.364 0.383 0.437 0.503 0.538
600 0.407 0.339 0.308 0.323 0.377 0.436 0.463
700 0.351 0.291 0.267 0.283 0.327 0.382 0.411
800 0.316 0.256 0.239 0.253 0.290 0.338 0.368
900 0.283 0.229 0.211 0.225 0.264 0.310 0.336

1000 0.256 0.210 0.191 0.205 0.239 0.281 0.303
1100 0.236 0.191 0.178 0.190 0.221 0.260 0.280
1200 0.222 0.178 0.161 0.176 0.208 0.244 0.259
1300 0.201 0.168 0.152 0.160 0.191 0.223 0.245
1400 0.186 0.155 0.142 0.153 0.181 0.214 0.229
1500 0.180 0.145 0.131 0.138 0.168 0.202 0.218

where

tan θ = a

d
and cos θ = 1√

tan2 θ + 1
= d√

a2 + d2

and the geometric acceptance is given by

εgeo = ��

4π
= 1

2

(
1 − d√

a2 + d2

)
. (7)

For other detector or source geometries and placement the evaluation of the solid angle
can be rather complicated [1]. As an alternative, the geometric acceptance can be numerically
computed using a simple Monte Carlo (MC) algorithm. This method uses random numbers to
compute the integral in equation (5). For the sake of simplicity we will assume that both source
and detector are cylinders (in practice a common situation), although the devised algorithm can
easily be adapted to other geometries. The distance between the source face and the detector
window is d and an offset xoff between the two axes is assumed (see figure 4). As an extra
simplification, the origin of the reference frame is placed at the centre of the source face. Thus
the centre of the detector window is placed at the point with coordinates (xoff , 0, d).

The MC algorithm can be set as follows.

(1) Start a counter for the total number of event trials, NEV. Define the total number of events
to be accepted in the detector window, NACC.

(2) Loop on NACC (i.e., from 1 to NACC).
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Figure 4. The source–detector arrangement to compute the geometric acceptance by Monte Carlo
simulation.

(3) Increment NEV by one and start generating a new emission direction in the forward
hemisphere. Using the random number generator, generate two random numbers ξ1 and
ξ2 uniformly distributed in the interval (0, 1). Compute φ = 2πξ1 and cos(θ) = ξ2, and
the direction cosines as ux = sin(θ) cos(φ), uy = sin(θ) sin(φ) and uz = cos(θ).

(4) Generate a new source emitting point (xs, ys, zs). For a cylindrical source of radius rs and
length l, generate three random numbers ξ3, ξ4 and ξ5 uniformly distributed in the interval
(0, 1), compute ρ2 = r2

s ξ3, zs = −lξ4 and ϕ = 2πξ5. Set xs = ρ cos(ϕ), ys = ρ sin(ϕ).
(5) Compute the coordinates of the intersection point between the straight line with vector

equation X = Xs + λ�u passing through Xs = (xs, ys, zs), with direction �u = (ux, uy, uz),
with the plane passing through the detector window z = d . Substituting this last expression
in the vector equation, one gets λ = (d − zs)/uz , x = xs + λux and y = ys + λuy for the
(x, y) coordinates at the detector window plane.

(6) Test if the intersection point lies inside the detector window, i.e.,
√

(x − xoff)2 + y2 � a.
If not return to step (3) else go to step (2).

Finally, compute the geometric acceptance as εgeo = NACC/2NEV. Remember that the
events were only generated in the forward hemisphere, but a true isotropic source would emit
into 4π . The factor 2 in the geometric acceptance expression accounts for this fact.

5. The peak analysis

The final step needed to measure the source activity is to perform the peak analysis and
extract the total number of events falling into the peak area. Two main questions have to
be addressed at this point: background subtraction and definition of the peak limits. These
two topics have some interdependency and must be handled with care. Peak background has
three different origins in the case of a NaI(Tl) detector. The first is the electronic noise due
to the photomultiplier tube. For typical tubes this is important in the ten to a few hundred
kiloelectronvolt range. Second, one has the background due to radioactive sources [1] or
cosmic rays. For instance, radon-222 descendants and potassium-40 can usually be seen in the
energy spectra. These two contributions to the background can be subtracted from the spectra
since their rate can be considered constant for practical purposes. A separate acquisition with
no source should then be made. The third peak background has its origin in Compton scattering
and the overlap with other peaks. This is an irreducible component and the standard way to
subtract it is to fit the peak and background in some user-defined interval using some suitable
combination of functions, like Gauss functions for the peaks and a polynomial or exponential
function for the background. This procedure requires the use of dedicated fitting software
which might not be available to students, complicating the analysis. An alternative approach
is, whenever necessary, to fit the background a few channels before and after the peak with
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Figure 5. The 137Cs decay scheme (adapted from [13]).

Table 3. The activity results obtained for the calibrated 137Cs source, assuming a crystal of
standard dimensions 5.1 cm × 5.1 cm.

Distance Peak Geometric Peak Activity
(cm) integral acceptance efficiency (kBq)

10.42 + 0.095 + 0.05 153 965 0.0139 ± 0.001 0.258 ± 0.002 167.6 ± 6.7
5.61 + 0.095 + 0.05 394 689 0.0429 ± 0.002 0.215 ± 0.001 167.8 ± 6.3

a simple function like a straight line [1] or an exponential, where a standard least squares fit
method can be used [7, 11, 12]. Some care must also be taken when choosing the peak limits
since this will affect the final peak area, and it is not always clear where to set the limits when
peaks overlap. As a general prescription, assuming Gaussian peaks of standard deviation σ ,
the limits can be set at ±3σ around the peak centroid, which corresponds to 99.7% of the total
peak area.

6. An example of activity measurements with a 5.1 cm × 5.1 cm detector

As an application example we started by measuring the activity of a calibrated 137Cs source
held by our laboratory. The source is housed in an aluminium case with 1.9 mm height and
its activity on the day was 181.9 kBq. The source was centred with respect to the detector,
and two acquisitions where made at two different distances from the detector. The nominal
detector dimensions were assumed and for the geometric acceptance evaluation the source
case half-height (0.95 mm) and the detector window thickness (0.5 mm) were added to the
face-to-face source–detector distance. The background was acquired for a longer time interval
than the 137Cs spectra and after rescaling was subtracted from them. The statistical uncertainty
introduced by the background subtraction is thus very small (also because the background
contribution to the 137Cs peak is small), but still it was taken into account in the final error
propagation. Since the 662 keV peak is the highest energy peak in the 137Cs spectrum (see
figure 5), there is no need for further background subtraction.

The results obtained for the 662 keV peak (branching ratio B = 0.851 [13]) for an
acquisition time of 5 min and two source–detector distances are presented in table 3, and the
spectra can be seen in figure 6.

For the sake of simplicity only the statistical error on the peak integral has been considered,
although this underestimates its value since, for instance, the influence on changing the peak
limits is not taken into account. The geometric acceptance errors have been computed assuming
a 0.5 mm uncertainty both in the detector radius and source–detector distance. The results in
table 3 show a departure from the expected activity value, although they are compatible with
that value within the uncertainties.

The geometric acceptance and peak efficiency have been computed assuming standard
crystal dimensions, but real crystals are manufactured with tolerances that can reach 2 mm
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Figure 6. 137Cs gamma spectra obtained with a 5.1 cm × 5.1 cm NaI(Tl) detector at two different
source–detector distances (11.4 and 6.6 cm). The dashed lines indicate the used peak limits, for
the analysis corresponding to ±3σ around the peak centroid.

Table 4. The activity results obtained for the calibrated 60Co source for both gamma peaks. The
geometric acceptance has been corrected relatively to the standard crystal dimensions, assuming a
smaller crystal radius of 2.45 cm.

Energy Distance Peak Geometric Peak Activity
(keV) (cm) integral acceptance efficiency (kBq)

1173 10.42 + 0.095 + 0.05 3080 0.0129 ± 0.0005 0.137 ± 0.001 5.81 ± 0.26
1332 10.42 + 0.095 + 0.05 2682 0.0129 ± 0.0005 0.120 ± 0.001 5.77 ± 0.26
1173 5.61 + 0.095 + 0.05 7765 0.0399 ± 0.0015 0.114 ± 0.001 5.70 ± 0.22
1332 5.61 + 0.095 + 0.05 6564 0.0399 ± 0.0015 0.010 ± 0.001 5.48 ± 0.22

according to the manufacturer. A difference of 1 mm in the crystal radius would have a small
impact on the peak efficiency, but could lead to a significant effect in the geometric acceptance.
If one assumes a crystal radius of 2.45 cm, the geometric acceptances will be 0.0129 ± 0.0005
and 0.0399 ± 0.0015, leading to activity values of 181.1 ± 7.4 and 180.0 ± 7.0 kBq, in better
agreement with the expected value. In order to test the correctness of the smaller crystal
dimensions hypothesis, the activity of a different calibrated source was measured. This time a
60Co source with the same type of aluminium case and an activity of 5.480 kBq on the day was
used. The main gamma peaks have energies of 1173 and 1332 keV with branching ratios of
99.9% [13]. The results obtained, again for an acquisition time of 5 min and the same distances
as before, are presented in table 4 and are in good agreement with the expected activity value.

7. Conclusion

In this work it has been demonstrated that activity measurements can be performed in the
classroom using a standard NaI(Tl) detector. Relative uncertainties of the order of 5% can
be attained in such a measurements, much better than the uncertainties provided by common
uncalibrated radioactive sources. The primary source of error is the uncertainty in the geometric
acceptance, due to dimension tolerances of the crystal. The systematic error can be partially
corrected if a calibrated source is available. The geometric acceptance can be tuned by changing
the used crystal size, allowing the measured activity to match the calibrated value. The main
goal of the present work was to provide peak efficiencies for two common NaI(Tl) detector
sizes, and a reliable method to compute geometric acceptances. Peak analysis was kept simple,
appropriate to a straightforward classroom application.
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