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Chapter 1

Big Bang Nucleosynthesis

1.1 Elemental abundances

One of the most important clues about the origin and subsequent evolution of our universe

comes from nuclear physics, the elemental abundances we can measure on the sun’s surface,

on the surfaces of distance stars (including elements dredged up from the interior by mixing),

and in the interstellar medium. One can divide the elements into roughly five groups:

a) The dominant elements in our universe are hydrogen and helium, which account for al-

most all of the known baryons. Their abundances by mass are

1H ∼ 0.75

4He ∼ 0.25

We will see that these elements owe their abundances primarily to nuclear and weak inter-

action processes occuring in the first few minutes after the big bang. Because of this, their

abundances are powerful probes of cosmology. We will also see that these abundances can

also be tied to cosmological physics at quite a different era, the era of recombination, when

electrons, protons, and other bare nuclei recombined, forming atoms. At that point the uni-

verse became transparent to photons. Measurement of the cosmic microwave background,

the radiation that decoupled at this time, provides another test of the baryon abundance in

our universe, because that bayon number influences the density fluctuations that grew over

the first 400,000 years of the universe’s evolution.
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Figure 1: The solar system abundances of the elements (these elements were incorporated

into the solar system 4.7 b.y. ago) as a function of A=Z+N. Note: a) the large abundances

of H and He; b) the deep “hole” coresponding to Li/Be/B; c) a series of peaks, particularly

prominent for the α nuclei, corresponding to the products of stellar burning between mass

12 and mass ∼ 40; d) a mass peak near Fe, A ∼ 56-60; e) rare heavier elements, but with

mass peaks near A ∼ 130 and A ∼ 195. From Hix and Thielemann, astro-ph/9906478/.

Figure 2: The evolution of galactic Li as a function of metallicity. Stellar metallicity serves

as a clock, with low-metallicity stars having formed early, high metallicity later (when the

interstellar medium was enriched in metals from previous generations of stars). The [Fe/H]

is the metallicity measure, relative to solar. Note the Li abundance plateau – called the

Spite plateau – at low metallicity, indicating that some baseline of Li existed when the first

stars were formed. This is assumed to be the primordial value. Note the great spread of

values for stars of solar metallicity. The two circles correspond to the expected standard

solar model Li (the high value) and the measured Li. The sun managed to destroy mosts of

its Li – most likely by dredging Li to depth (to high temperatures, where it can be burned)

– during some past epoch. Also shown are various theoretical mechanisms proposed for

synthesizing Li. From Ryan et al., astro-ph/9905211/.

Figure 3: A more detailed view of solar system heavy element abundances. Note that the two

mass peaks mentioned earlier are double peaks. We will see that the peak components are

produced by different neutron-capture mechanisms. From Truran et al., astro-ph/0209308/.
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nuclear reaction played in the synthesis of the elements. In 1957, Burbidge,
Burbidge, Fowler & Hoyle [1] and Cameron [2] wove these threads into a co-
hesive theory of nucleosynthesis, demonstrating how the solar isotopic abun-
dances (displayed in Fig. 1) bore the fingerprints of their astrophysical origins.
Today, investigations refine our answers to these same two questions, how are
the elements that make up our universe formed, and how do these nuclear
transformations, and the energy they release, affect their astrophysical hosts.

In this article, we will concentrate on summarizing the two basic numerical
methods used in nucleosynthesis studies, the tracking of nuclear transmuta-
tions via rate equations and via equilibria. We will also briefly discuss work
which seeks to meld these methods together in order to overcome the limita-
tions of each. To properly orient readers unfamiliar with nuclear astrophysics
and to briefly describe the differing physical conditions which influence the
optimal choice of abundance evolution method, we begin with a brief intro-
duction to the background astrophysics (§2), before discussing the form that
the rate equations take (§3). In §4 we will discuss the difficulties inherent in
solving these rate equations. §5 describes the equations of nuclear equilibria
as well as the limitations of their use. Finally in §6 we will discuss hybrid
schemes which seek to use local equilibria to simplify the rate equations.
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work by Käppeler et al. (1989). Note the distinctive s-process signatures at masses A ≈ 88,

138, and 208 and the corresponding r-process signatures at A ≈ 130 and 195, all attributable

to closed shell effects on neutron capture cross sections. It is the r-process pattern thus

extracted from solar system abundances that can be compared with the observed heavy

element patterns in extremely metal-deficient stars. The total solar system abundances for

the heavy elements are those compiled by Anders and Grevesse (1989).



b) In contrast to the abundance of H and He, the lighter “1p-shell” nuclei — those heavier

than He but lighter than C – are relatively rare. Relative to H and He, their abundances

are lower by 8-10 orders of magnitude:

6Li ∼ 7.75E-10

7Li ∼ 1.13e-8

9Be ∼ 3.13E-10

10B ∼ 5.22E-10

11B ∼ 2.30E-9

These rare elements have a fascinating heritage. We will see that 7Li can be produced in

the Big Bang. Li, Be, and B can also be produced in the interstellar medium, when ener-

getic cosmic-ray protons collide with elements like C, N, and O. This process thus connects

to two important chapters in this course – one on the origin of cosmic rays, the other on

supernovae (which on exploding enrich the interstellar medium with the products of stellar

burning, such as C, N, and O). (Other stars have intense winds that similarly eject elements

into the interstellar medium.) But Li, Be, and B can also be synthesized by core-collapse su-

pernovae, directly by the interactions of neutrinos in the carbon shells of such stars. Finally,

elements like Li are notoriously fragile, easily burned in stars. (We will see that our sun has

only 1/100th the Li we would anticipate, for example.) The result is a very interesting but

complicated history for these rare elements. By carefully measuring abundances – in our

solar system, in pristine material found in the interstellar medium, and on the surfaces of

stars of varying ages – we can deduce their evolution history. The goal of the nuclear astro-

physics is then to use that history to understanding how the various processes mentioned

above have operated since the Big Bang.

c) The relatively more abundant, and largely α-stable elements C, N, O, Ne, Mg, Si. Here

α-stable is slang for a nucleus whose (N,Z) is a multiple of 4He, (N,Z)=(2,2). An important

property of the nuclear force is pairing: nucleons are fermions with spin 1/2. As nucleons

fill the lowest levels of the nuclear potential, they gain additional energy from the attractive
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interaction of two like nucleons (two protons or two neutrons) residing in the same level

– that is, having the same spatial wave function. Two like-nucleons can exist in the same

spatial level because there are two spin choices. The α-stable nuclei are those that, naively,

could be envisioned as fully paired. These nuclei tend to be more tightly bound than their

neighbors with broken pairs. Thus these nuclei, in the thermal furnances inside the cores

of stars, tend to be the thermodynamically-favored products of nuclear burning. These are

the final nuclear states that yield the most energy, when daughter nuclei fuse.

12C ∼ 3.87E-3

14N ∼ 0.94E-3

16O ∼ 8.55E-3

20Ne ∼ 1.34E-3

24Mg ∼ 0.58E-3

28Si ∼ 0.75E-3

d) There is an abundance peak near iron-group nuclei. Elements near Fe and Ni have the

largest binding energy/nucleon. Thus such elements are the last possible products of a se-

quence of fusion reactions that produce more tightly bound nuclei, thus liberating energy

to maintain the gas pressure of a star. The synthesis of such elements requires hot, dense

conditions – rather explosive conditions – because of the large Coulomb barriers that must

be overcome for nuclear fusion. High temperatures, and thus high bombarding energies, are

needed.

e) The heavy elements, A ∼> 100. Many of these elements are very rare. Yet an examina-

tion of abundances as a function of A or N shows interesting patterns – several abundance

peaks. In fact, on closer examination, each peak is actually a double peak, with the two

components split by ∼ 10 mass units. The huge Coulomb barriers that inhibit the fusion of

heavy nuclei argue another mechanism must be at work. The only reasonable mechanism

is (n,γ) reactions. We will see that heavy elements can be produced in ordinary stars with

4



relatively weak neutron sources (thus the capture on a given nucleus occur slowly), or under

explosive conditions (such as a supernova or neutron star collision) where extremely high

neutron densities can be produced for short times.

So how are the differences in abundances among these groups explained?

First question: Could 4He, 25% by mass, be generated by stellar burning during the lifetime

of our galaxy?

Edington first proposed 4p → 4He as an energy source for our sun

4p → 4He + 2e+ + 2νe

The mass difference for this reaction is ∼ 25.7 MeV, while the typical kinetic energy carried

off by neutrinos ∼ 0.4 MeV. Therefore about 25 MeV is released per four protons consumed.

This is the energy that keeps the electron gas in our sun hot: energy is produced in the solar

core at the required rate, just about balancing the energy that is carried off the sun by the

photons emitted from the photosphere. Thus we can estimate the rate of fusion in the solar

core from the measured solar constant.

solar constant ∼ 0.033 cal/sec/cm2

distance to earth ∼ 1.49 × 1013 cm = r

therefore the power output is

(4πr2)(.033cal/sec/cm2) ∼ 0.92 · 1026cal/sec ∼ 2.4 · 1039MeV/sec

but as 4 protons are consumed for every 25 MeV produced

→ 4 ·1038 p/sec consumed

Now the sun has a mass equal to that of ∼ 1.19 · 1057 protons
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So assume 5 billion years (b.y.) (the sun is estimated to be about 4.6 b.y. in age) of burning

at the current power level. Then we can estimate the number of protons consumed over that

lifetime

(3.15 · 107sec/year)(5 · 109years)(4 · 1038protons/sec) ∼ 0.63 · 1056protons

So this is

0.63

11.9
∼ 5.3% of the sun′s mass

Thus

only ∼ 5% of protons converted in 5 b.y.

(Of course, this He is also locked in the core of our sun, not in places like the interstellar

medium where it could be counted by those interested in determining abundances.) And

many protons are not in stars. Thus the tentative conclusion is that stellar burning con-

tributes to, but cannot account for all, of the 4He. In fact, this conclusion can be put on

much firmer ground by looking at the 4He abundance as a function of stellar metallicity,

which is kind of a “clock” for the galaxy. Very metal poor stars presumably were formed

very early (before supernovae and novae created many of the metals). The surfaces of such

stars should not know about the 4He synthesis in the core, but rather be representative of

the star at its birth. So if the surface shows a large 4He abundance, one would conclude

that that 4He was primordial.

We will learn more about 4p → 4He later. It was first described by Bethe and Critchfield

∼ 1939; the theory was further developed by Salpeter and by Burbidge, Burbidge, Fowler,

and Hoyle in the 1950s.

1.2 Big bang nucleosynthesis
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Gamow in the 1940s: proposed a “big bang” cosmology where the universe began as a hot

soup, then expanded and cooled. When cooled below about kT ∼ 1 MeV, when e+ - e−

annihilation would occur, that soup would consists of the familiar stable particles like p, n,

e−, and γ.

The basic idea of big bang nucleosynthesis: a nuclear reaction network that begins with n

+ p → d + γ and ends ....??

It is absolute clear this must happen as

τ1/2(n) ∼ 10 minutes

So if there is no nucleosynthesis, there would be no neutrons now. This is an important

qualitative idea: neutrons exist in our present day world only because they bind in nuclei.

Free neutrons have enough energy to decay to protons via beta decay. Bound neutrons do

not because their binding energy makes this decay energetically impossible. So some kind

of “condensation” or “freezeout” of nuclei from the hot big bang must have occurred.

Now we can calculate the n/p ratio. The mass abundance is 75% H and 25% 4He. So this

means for every 4He (4 mass units) there must be about 12 protons (12 mass units). Thus

there are 2 neutrons and 14 protons in the sum. Therefore

n

p
∼ 1

7

in our galaxy.

Challenge: Can we understand this number?

Does the number tell us anything about the early universe?

Recall in a thermal gas a particle has a kinetic energy of E ∼ 3kT/2, where k = Boltzman’s

constant = 0.862 ·10−10 MeV/K. Here capital K stands for degrees K. So
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1 MeV ∼ kT ⇒ T = 1.16 ·1010K

That is, an MeV is the typical thermal energy of a particle in a heat bath of T = 10 billion

degrees K.

**********

Before we proceed we need to have a few results about cosmology. This will be very quick

and without derivation, as it is the subject of another quarter (particle astrophysics etc)

of this two-quarter series. We start with the Robertson-Walker metric (that is, measure of

distance) for a homogeneous, isotropic universe

dτ 2 = dt2 − R2(t)

[
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

]

where

k=+1 ↔ curved space, finite

k= 0 ↔ flat space, infinite

k=-1 ↔ curved space, infinite

Note that R(t) sets the scale of the geometry, and is a function of time. The coordinate r in

the metric above is dimensionless: it’s not the usual r. The dimension of length is carried

by R(t). So if an observer sits at the comoving reference point (r,θ, φ) (note t is the time

such an at-rest observer would measure), the length of the radius from r=0 to him/her is

R(t)
∫ r

0

dr′√
1 − kr′2

Thus if R(t) increases with t, it would be like riding on the surface of an expanding balloon.

Now the evolution of R(t) is determined by the Einstein equations which, under certain

simplifying assumptions, yield

dR(t)
dt

R(t)
= Hubble“constant” =

√
8πGρ(t)

3
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where G is Newton’s gravitational constant and ρ(t) is the energy density. One can show

from energy conservation that when the universe is dominated by relativistic particles ρ

satisfies

ρ ∝ 1

R4

(The assumption about relativistic particles is connected with the need to know the equa-

tion of state to figure out how ρ changes when R(t) changes. For relativistic particles, the

pressure is just 1/3 of ρ.)

So from this result we note

dρ
dt

ρ
=

−4R−5 dR
dt

R−4
=

−4dR
dt

R

So we can plug in the expression for the Hubble constant and integrate to get

ρ(t) =
3

32πG(t + β)2

where β is an integration constant. Finally, one can write still another expression for ρ by

calculating the energy density, which in the early universe is dominated by light, relativistic

particles (the photon, electron and positron, and the three neutrinos). This yields

ρ(t) = N
π2

30
T4

where T is the temperature and N is the effective numbers of degrees of freedom (=43/4

if all of the species above contribute). This formula is relatively easy to understand. The

density of massive particles should go like T 3 because the momentum states (kx, ky, kz) will

fill up roughly to (T, T, T ). Then an extra power of T comes from the fact we are calculating

the energy density, and each particle has an energy ∼ T .

So examining these expressions yields

R ∼ T−1 ∼
√

t
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We can look up in Weinberg’s book some numbers from more careful calculations:

T (K) R/Ro t(sec)

∼ 10MeV 1011 1.9 · 10−11 .0108

∼ 1MeV 1010 1.9 · 10−10 1.103

∼ 100keV 109 2.6 · 10−9 182

∼ 10keV 108 2.7 · 10−8 19200

**********

So let’s look at some of these epochs

A) t ∼ .01 sec T ∼ 1011K kT∼10 MeV� 2mec
2

Neutrinos and electrons/positrons are kept in chemical equilibrium by neutral- and charged-

current interactions:

The neutral current reaction (Zo exchange) has the same strength for all three neutrino

flavors (νe, νµ, ντ ). The charged-current reaction involves only electron-family particles: the

analogous reactions involve muon-family particles does not occur because of the tempera-

ture. The mass of two muons exceeds 200 MeV, and thus cannot be produced at this time.

There are similar charge-changing reactions coupling n ↔ p. As we will be discussing weak

interactions quite a bit (they are involved in most of the stellar reactions of interest to us),

let’s say a bit more at this time about the rules for charged current reactions. The reactions

p ↔ n are

p + e− ↔ n + νe

n + e+ ↔ p + ν̄e

p ↔ n + e+ + νe
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n ↔ p + e− + ν̄e

We will treat the neutrinos as Dirac particles (that is, a particle with a distinct antiparticle).

The rules for the reactions above are then simple. First, charge is conserved, which means

the sum of the charges going into a reaction are equal to the sum of the outgoing charges.

Second, there is a second additively-conserved charge, lepton number. The lepton numbers

are defined as follows

particle l

e+ −1

e− +1

νe +1

ν̄e −1

The n and p can be considered two possible states in which to find the nucleon; these

states have different masses, m(n) = 939.566 MeV and m(p) = 938.272 MeV. A two state

system in thermal and chemical equilibrium - weak interactions n ↔ p are the mechanism

for maintaining chemical equilibrium - has occupation probabilities

occup ∝ gie
−Ei/kT

where gi is the number of states at energy Ei (the two spin states in this case). Thus

n

p
=

e−mn/kT

e−mp/kT
= e−∆m/kT

where ∆m = 1.294 MeV. At T = 1011K, kT=8.62 MeV. Thus at this temperature,

n

p
= 0.86

Although this temperature is far above the temperature of nucleosynthesis, the n/p ratio

has already begun to drop.

B) t ∼ 0.1 sec T ∼ 3 ·1010 K ∼ 3 MeV
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Somewhat before this temperature is reached the νµ and ντ have fallen out of equilibrium.

This occurs because the rate for interactions with electrons is too slow to keep up with the

rate of expansion of the universe: we will do an example below. Note that the muon and

tauon flavor reactions off electrons/positrons are only about 1/7 as strong as for electron

neutrinos: that is why these “heavy flavors” decouple first.

At around 3MeV the νe also decouple.

We will now explore this question of “falling out of equilibrium” in the context of the n ↔ p

reactions to see whether nucleons are still in equilibrium. To answer this question we need

to know:

• What is the time scale for n ↔ p reactions?

• What is the time scale describing the expansion of the universe that forms the comparison

scale?

The time scale for the n ↔ p reactions can be posed as that for a neutron in our thermal

bath to convert to a proton via n + νe ↔ p + e−. That rate is

Λ(T ) ∼ 〈σv〉nν(t)

were nν is the electron neutrino number density and v is the relative velocity of the neutrino

and neutron, which we can take as c=1. Now nν has the dimensions of 1/cm3 and v of cm/sec,

so the product carries the dimensions of flux, 1/cm2sec. The cross section is roughly

σ ∼ G2
FE2

ν ∼ G2
F (kT )2

What about nν? This is our previous argument that the number of states/unit volume for

relativistic particles should go like (kT)3. Thus we conclude

Λ(T ) ∼ (kT )5G2
F
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As discussed in class GF has the dimensions of 1/mass2, as it represents the exchange of

a W boson: so there is a coupling constant on each end and a propagator that goes like

1/M2
W (since all momenta of the scattering particles are much, much less than MW ). So we

can look up the numerical value in old papers that measured the strength of β decay of the

neutron. A easy way to remember the approximate result is

GF ∼ 10−5

M2
N

where MN is the nucleon mass. Thus

Λ(T ) ∼ (kT )510−10

M4
N

Note that this has the units of mass (we are free to insert c2 with each factor of MN ). But

Λ must have the dimensions of 1/sec, as it is a rate. So setting

MN ∼ 103MeV

and inserting one factor of

1

h̄
=

1

6.6 · 10−22MeVsec

to provide the needed units leads to

Λ(T ) ∼ 0.15

sec
(

kT

MeV
)5.

At 3 ·1010 K this gives a rate of 17/sec. That is, the typical lifetime of a neutron in such

a thermal bath is about 0.06 sec. Of course, we dropped all sorts of πs and 2’s in this

calculation. Had we done things more carefully the result would be (see Weinberg’s book)

Λ(T ) ∼ 0.76/sec(
kT

MeV
)5

So this would give a neutron lifetime at 3 · 1010K of about 0.011 sec.

Let’s pause here for a remark. Even though we haven’t yet discussed to what we will com-

pare this rate, it should be clear that weak rates evolve VERY rapidly in the early universe,
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dropping as T 5. We don’t have any other quantity (t, R, etc) that changes so fast. So clearly

at some point we will reach a T where weak rates are so slow that they can’t keep up with

the other changes in the universe. Furthermore, the transition (range of T) over which this

“freezeout” occurs should be rather narrow, since the functional dependence on T is steep.

The first guess for a comparison timescale is the age of the universe, which at this epoch is

approximately

τuniverse ∼ 0.81sec(
MeV

kT
)2

or about 0.12 sec. So this is ∼ 10 times longer than our neutron lifetime: we conclude the

weak rates are easily keeping the chemical equilibrium between neutrons and protons at this

time.

Actually a better comparison rate is the Hubble parameter, which clearly has dimensions of

1/sec and which clearly does describe the rate of change of the universe at any given time.

It is given by

√
8πGρ(t)

3

and

ρ(T ) = N
π2

30
(kT )4 ∼ 3.5(kT )4

So

Hubble rate ∼ 5.4(kT)2
√

G

The value of G in MeV units is 6.7 ·10−45MeV−2. Thus, inserting the needed h̄ we have

Hubble rate ∼ 4.4 · 10−22〈 kT

MeV
〉2MeV

h̄
∼ 0.67

sec
〈 kT

MeV
〉2

We see this is close to our more naive guess based on
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1

τuniverse
∼ 1.23

sec
〈 kT

MeV
〉2

C) Epoch of decoupling

As we have these nice formulas, let’s cut to the chase and find the temperature characterizing

the epoch of decoupling. This should be when the neutron lifetime and the Hubble rate are

comparable. From what we have done above, this is easy:

0.67

sec
〈 kT

MeV
〉2 ∼ 0.76

sec
〈 kT

MeV
〉5

which yields

kT = 0.96MeV

So that’s a nice round number to remember (∼ 1 MeV). Now that we have the tempera-

ture at which the n ↔ p system breaks out of chemical equilibrium, we can evaluate the

corresponding n/p ratio at this point:

n

p
∼ e∆m/kT ∼ 0.25

Note this is not 1/7, but it is also not too far from it. It is also “on the right side”: we expect

it too continue to drop. Why? First, we’ve just calculated the point where the Hubble rate

and weak rates are comparable. As the temperature drops a bit, the ν-induced reactions

continue to push things toward the proton-rich side. Indeed, if we look in Weinberg’s book,

in the next 10 seconds (1 MeV is about 1 second after the big bang) the n/p ratio will drop

to about .17 ∼ 1/6. And after that there continues to be a slow decrease in the neutron

percentage because of neutron β decay - but this has the timescale of 10 minutes.

So the next issue is to figure out when the nuclei form; and the answer better be in less

than 10 minutes, since we can’t tolerate much β decay and still get 1/7 for the n/p ratio.

The nucleon gas in the early universe is relatively dilute, with the consequence that nuclei
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must be made by two-body reactions. The nucleon force has a range of only a few fermis

(1f = 10−13 cm), and the chance of getting three or more fusing nuclei within this radius is

negligible.

The only two-nucleon bound state is the deuteron, with a binding energy of 2.24 MeV. But

2.24 MeV! We just found out that n ↔ p chemical equilibrium persisted to about 1 MeV.

With a 2.24 MeV binding energy, wouldn’t all the neutrons want to be in deuterium at or

before that time? (therefore freezing the n/p ratio at some value above 1/4)

The answer is no, for reasons having to do with the nucleon to photon ratio. For reasons

we don’t fully understand, when the very early universe cooled, it left over a net baryon

number. That is, we have neutrons and protons in our universe, not antineutrons and

antiprotons. Presumably at very early times there were approximately equal numbers of

quarks and antiquarks, but not precisely equal numbers. As the universe cools, quarks

and antiquarks (nucleons and antinucleons) annihilated each other. At the end - for reasons

connected with baryon number violation, CP violation, and nonequilibrium physics - a small

residual baryon number excess remained. The resulting baryon/photon number-density ratio

is (deduced from nucleosynthesis arguments we are about to describe)

nN

nγ
= η ∼ 10−9 − 10−10

So consider the two possible states of n+p

n + p ↔ d + γ

This reaction is electromagnetic and therefore fast, so we can reasonably assume it is in

equilibrium in the early universe. The equilibrium condition is

(no. of n + p) × | < dγ|T|np > |2 ∼ (no. of d + γ) × | < np|T|dγ > |2

Now detailed balance tells us that the transition probabilities are equal and cancel. The
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phase space on the left-hand size is simple: any n+p pair can form a deuteron, emitting a

γ. Thus the number of such pairs per unit volume V is

V nnnp

But on the right-hand side only those photons with enough energy to break up a deuteron

can initiate reactions – an energy greater than ∆md = 2.24 MeV. In a thermal gas photons

have a Bose-Einstein distribution

nγ =
∫ ∞

0

8πε2dε

eε/kT − 1

Very crudely, then, if kT is small compared to ∆md, the number of photons participating

in the reaction above is

neff
γ ∼

∫ ∞

∆md

8πε2exp−ε/kT dε

Again very crudely this is about

∼ e−∆md/kT nγ

(We will do this calculation correctly in a couple of lectures, using the Saha equation to

describe the relative abundances of nuclear species. The point of the current approach is to

emphasize that the low temperature of deuterium formation is due to the very large number

of photons relative to nucleons.) This then yields

npnn ∼ ndnγe
−∆md/kT

Now np/nγ ∼ η. The time when deuterium forms can be defined as the time when nn ∼ nd,

that is, when half of the neutrons are in deuterium nuclei. It follows that the epoch of

nucleosynthesis is given by

e−2.24MeV/kT ∼ η

This equation relates two unknowns, η and the temperature T = Td for deuterium forma-

tion. If one has an independent measurement of η, then this determines Td and thus the
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temperature/time at which deuterium forms. This formation triggers rapid formation of

other nuclei (mostly 4He), and thus leads to a characteristic pattern of light big-bang nuclei,

as we discuss below. Today we have such an independent measurement of η, from fluctu-

ations in the cosmic microwave background radiation temperature (discussed briefly in the

next chapter).

Conversely, if one has some way to determine Td, one can then determine an important

cosmological parameter η. This we can do, and is the reason for the importance of BBN.

Basically the abundance of 4He – the fact that n/p = 1/7 at Td – determines Td.

Unfortunately to do this well requires a computer because the weak interactions that govern

the n/p ratio have fallen out of equilibrium. The last simple time was at T ∼ 1 MeV and

t ∼ 1 sec – when things fell out of weak equilibrium. Again, we view the n/p system as

a two-state problem, with the p state being energetically prefered. After weak equilibrium

is broken there still are some reactions that transform protons into neutrons: they just

operate slowly compared to the Hubble time. And there are reactions that push neutrons

into protons. In fact it should be clear that two of these

νe + n → p + e−

n → p + e− + ν̄e

are likely the most important rates after falling out of weak equilibrium. Both reactions run

”downhill” – to the lower energy state. Thus the first reaction can be induced by very low

energy νes. The second is free decay.

With a bit of work to get these cross sections (plus the neutron-producing ones) and to

code them up, we could follow n/p evolution with increasing T until He forms, for a series

of η values. The game would be to find that η that gives us the amount of 4He we need
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to ensure n/p=1/7. This value would be characterized by some (correct) Td. Wish we had

the time! Instead, let’s consider the second reaction above, as we know the rate of neutron

decay, which will overestimate the time to deuterium formation – but we will keep this in

mind.

To reduce n/p = 0.25 to 1/7 requires that the neutron number be reduced to 0.62 of its

starting value. As the neutron half life is about 10.4 minutes. Thus the required decay time

is given by

0.62 = exp(t ln2/10.4min)

yielding t ∼ 7.1 minutes. And had we done the correct calculation instead of this partial

one, the answer would have been t ∼ 3.0 minutes, or Td ∼ 1.1 × 109K. This is an energy of

about 95 keV, much below ∆md.

So we then find

η ∼ e−∆md/0.095MeV ∼ 10−10

In fact, the pros do a much more elegant analysis, calculating not only 4He (the end of the

chain discussed below) but also the minor productions of d, 3He, and 7Li. A careful fit to

the all the observationally deduced abundances gives the best value for η.

The long wait from T ∼ ∆md to deuterium formation is called the deuterium bottleneck.

Only when the temperature drops to ∼ 100 keV does the number of effective photons – those

with enough energy to break up deuterium – drop to a low enough level to allow deuterium

to exist at an appreciable abundance.

It is clear that more baryons – the larger η – the higher Td. Alternatively one can state:

the smaller the baryon number of the universe
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the later the epoch of nucleosynthesis
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Figure 4: The predictions of Big Bang nucleosynthesis for light element abundances: 4He, D,

3He, and 7Li as a function of η, the baryon-to-photon number-density ratio. Because these

elements trend in different ways, observations that allow one to deduce primordial abun-

dances then determine η. This is traditionally what has been done in BBN simulations.

However now there is an independent, even more accurate determination of η: WMAP, a

probe of the cosmic microwave background. (This will be discussed in Chapter 2.) Thus

there is now a parameter-free BBN prediction of abundances that can be compared to ob-

servation. From Cyburt et al., astro-ph/0302431/.

Figure 5: Here the WMAP results are used to determine η, which then produces BBN pre-

dictions (no free parameter!) that can be compared to observations. In the upper right good

agreement is obtained with one deuterium abundance determination, reasonable agreement

with another (the dashed line). WMAP prefers larger values for 4He (Yp) and for 7Li, rela-

tive to observation. The Li tension is significant. From Cyburt.

Figure 6: This figure shows the scatter of recent deuterium abundance determinations. The

new method that produced these data – a determination of deuterium abundances in gas

clouds believed to contain almost primordial material - will be discussed in the next chapter.

From Steigman, astro-ph/0309347/.

Figure 7: The WMAP CMB power spectrum fit with different values of η. (ωB is propor-

tional to η.) Clearly 20% variations in η destroy any agreement with the WMAP results.

WMAP determines η to a precision of about ± 4%. From Steigman.
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F ig ur e : Abunda nce pr edict io ns f o r st a nda r d BBN [1 2]; t he widt h o f t he cur ves g ive t he
1 − σ error range. The WMAP η range (eq. 1) is shown in the vertical (yellow) band.
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F ig ur e : Pr imo r dia l lig ht element a bunda nces a s pr edict ed by BBN a nd WMAP ( da r k
shaded regions). Different observational assessments of primordial abundances are plotted
as follows: (a) the light shaded region shows D/H = (2.78± 0.29)× 10−5 [20]-[23], while the
dashed curve shows D/H = (2.49 ± 0.18) × 10−5 [21, 22]; (b) no observations plotted (c)
the light shaded region shows Yp = 0.238± 0.002± 0.005 [25], while the dashed curve shows
Yp = 0.244± 0.002± 0.005 [26]; (d) the light shaded region shows 7Li/H = 1.23+0.34

−0.16 × 10−10

[27], while the dashed curve shows 7Li/H = (2.19 ± 0.28) × 10−10 [28].
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ISM

SUN

Figu r e: T h e d eu ter iu m ab u n d an ce by nu mb er w ith r es p ect to hy d r ogen ver s u s th e m etallicity
(relative to solar on a log scale), from observations (as of early 2003) of QSOALS (filled circles). Also
shown for comparison are the D abundances for the local ISM (filled square) and the solar system
(“Sun”; filled triangle). The dashed horizontal lines represent the range of the ±1σ estimate for the
primordial deuterium abundance (yD = 2.6 ± 0.4) based on the QSOALS data.

In pursuit of the most nearly primordial value of the D abundance, it is best to concentrate on
those systems which have experienced the least stellar evolution. Thus, while observations of D in
the solar system and/or the local ISM provide useful lower bounds to the primordial D abundance, it
is the observations of deuterium in a few high redshift, low metallicity, QSO absorption-line systems
(QSOALS) which provide the most useful data. Presently there are only five QSOALS with reasonably
firm deuterium abundance determinations [6]; the derived abundances of D are shown in Figure 1 along
with the corresponding solar system and ISM D abundances.

As is clear from Figure 1, there is significant dispersion among the derived D abundances at low
metallicity. The QSOALS data fail to reveal the anticipated deuterium plateau, suggesting that sys-
tematic errors may be present, contaminating some of the determinations of the D I and/or H I column
densities. Since the D I and H I absorption spectra are identical, except for the wavelength/velocity off-
set resulting from the heavier reduced mass of the deuterium atom, an H I “interloper”, a low-column
density cloud shifted by ∼ 81 km s−1 with respect to the main absorbing cloud, would masquerade
as D I. If this is not accounted for, a D/H ratio which is too high would be inferred. Since there
are more low-column density absorbers than those with high H I column densities, absorption-line
systems with somewhat lower H I column density (e.g., Lyman-limit systems) are more susceptible to
this contamination than are the higher H I column density absorbers (e.g., damped Lyα absorbers).
It is intriguing that the two QSOALS with the highest D/H have the lowest H I column densities. In
contrast, for the damped Lyα absorbers an accurate determination of the H I column density requires
an accurate placement of the continuum, which could be compromised by interlopers. This might lead
to an overestimate of the H I column density and a concomitant underestimate of D/H (J. Linsky,
private communication). Again, it is intriguing that the lowest D/H is found for the system with the
highest H I column density. Although these hints are suggestive, there is no observational evidence
to support the exclusion of any of the current deuterium abundance determinations. Following the
approach of O’Meara et al. [6] and Kirkman et al. [6], the weighted mean of the D abundances for the
five lines of sight [6] is adopted for the primordial abundance, while the dispersion in the data is used
to set the error: yD = 2.6 ± 0.4. For the same data Kirkman et al. [6] derive a slightly higher mean



Figu r e: T h e C BR tem p er atu r e fl u ctu ation an is otr opy s p ectr a f or th r ee ch oices of th e b ar yon d en s ity
parameter ωB = 0.018, 0.023, 0.028, in order of increasing height of the first peak. The WMAP data
points [2] are shown.

≈ 0.16 (S−1). Using D as our baryometer and 4He as our chronometer, the BBN constraints on η and
S are shown in the S−η plane in Figure 2, employing approximations to the D and 4He isoabundance
contours [16] which are typically good to a few percent or better.

It is clear from Figure 2 that the adopted D and 4He abundances favor a slower-than-standard
expansion rate. The best fit point is at S = 0.94 (∆Nν = −0.7). However, the 2σ range in Nν extends
from Nν = 1.7 to Nν = 3.0, consistent with the standard case of Nν = 3.

In Figure 3 are shown the corresponding 7Li – 4He isoabundance contours in the S − η plane,
along with the best fit point and 1σ error from the adopted D and 4He abundances. The constraints
on S and η derived from D and 4He lead to a predicted primordial lithium abundance in the range
2.5 ∼< [Li]P ∼< 2.7, not very different from the range for SBBN. It is clear that BBN with a nonstandard

expansion rate, consistent with D and 4He, cannot relieve the tension between the BBN-predicted 7Li
abundance and that inferred from metal-poor stars in the Galaxy. As mentioned earlier (§2.2), the
solution likely lies with the stellar astrophysics.

3.2 Joint BBN and CBR Constraints on S and ωB

The CBR temperature anisotropy and polarization spectra are sensitive to the baryon density and to
the early-Universe (RD) expansion rate (see, e.g., Barger et al. (2003b) [17], and references to related
work therein). Increasing the baryon density increases the inertia of the baryon-photon fluid, shifting
the positions and the relative sizes of the odd and even acoutic peaks; see Figure 4. Changing the
expansion rate (or, the relativistic particle content) changes the redshift of matter-radiation equality,
also shifting the locations of the peaks. Since any change in ∆Nν (or S) can be mimicked by a
corresponding change in the total matter density wM ≡ ΩMh2, there is a degeneracy in the CBR
anisotropy spectrum between S and wM which can be broken using the HST Key Project determination
of the Hubble parameter [17]. CBR temperature anisotropy spectra for four choices of Nν are shown
in Figure 5. Although the CBR temperature anisotropy spectrum is a less sensitive early-Universe
chronometer than is BBN (4He), the WMAP data may be used to identify allowed regions in the
∆Nν (or S) – η plane, similar to those from BBN using D and 4He. There is excellent overlap between
the η – ∆Nν (S) likelihood contours from BBN and those from the CBR (see Barger et al. (2003b)
[17]); this variant of SBBN (S 6= 1) is consistent with the CBR. In Figure 6 (from Barger et al. (2003b)
[17]) the confidence contours in the η – ∆Nν plane are shown for a joint BBN – CBR fit. Although the
best fit value for ∆Nν is negative (driven largely by the adopted value for YP), the standard-model
value of ∆Nν = 0 (S = 1) is quite acceptable.



The rest of the story involves the subsequent reaction network. One can look at the various

steps:

• n+p → d + γ n/p ∼ 1/7

• d(n,γ)3H and d(d,p)3H

d(p,γ)3He and d(d,n)3He

3He(n,p)3H (at long times 3H β decays to 3He)

• 3H(p,γ)4He and 3H(d,n)4He

3He(n,γ)4He and 3He(d,p)4He and 3He(3He,2p)4He

Note: center of mass energies 100 kev ⇒

Coulomb suppression effects

• trace amounts of 7Li,7Be

4He(3H,γ)7Li and 4He(3He,γ)7Be

(7Be later decays to 7Li, but only when it becomes an atom

that is, after recombination: interesting story here)

• the usual explanation for the termination of the reaction network with the species men-

tioned above is that there are no stable nuclei with A=5 and A=8. Thus the obvious

potential reactions for going further, 4He+4He and 4He+p, are ineffective. Actually, this

common explanation is not quite true. If one cheats and makes up stable isotopes at these

mass numbers with modest binding energies, the chain still largely terminates as above. The

reason is that the Coulomb barriers at these low temperatures (100 keV) become increas-

ingly hard to penetrate as Z increases.

The repulsive Coulomb barrier near a nucleus is
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α
Z1Z2

r
∼ 1.44Z1Z2

1fm

r

So if Z1 = Z2 = 2 and r ∼ 2fm, this is about 3 MeV. So it is very hard for charged particles

with kinetic energies of ∼ 100 keV to tunnel through the Coulomb barrier to the regions

where the strong nuclear force can bind the reacting particles to form a new nucleus.

•Once the bottleneck to forming deuterium is broken, the rest of the network described

above proceeds quickly to produce 4He.

**********

Now some comments about systematics:

1) The larger η, we showed the larger Tnucleosynthesis, and thus the larger n/p ratio. Therefore

larger η lead to larger 4He abundance.

2) One can think of d, 3He as “catalysts” in the network: they are produced and then

consumed, and thus reach an equilibrium value that depends on the competition between

production and consumption. What happens is Tnucleosynthesis is increased? The production

channel is effectively n+p, where there is no Coulomb barrier. Destruction channels include

reactions like d+d,d+p, etc, which are Coulomb inhibited. So increasing the T effects the

destruction channels more, since Coulomb barrier penetration is exponential, enhancing the

destruction. The conclusion is that higher Tnucleosynthesis should produce lower d, 3He.

3) For low η (and therefore low T) 7Li is made and destroyed by:

4He(3H, γ)7Li 7Li(p, α)4He

The second reaction has the more effective Coulomb barriers (effecting both initial and final

states). Thus a lower T will more effectively turn off the destruction of 7Li than its produc-

tion. Thus a lower T (with low η) means more 7Li.
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But it turns out that for high η, the primary way to make 7Li changes. High η means more

3He, as we have noted, so

4He(3He, γ)7Be

becomes important. This production clearly benefits by high T because of the Coulomb

barrier. Furthermore there are very few neutrons around to kill this isotope by (n,α). Thus,

7Li produced as 7Be begins to turn up again at high T and high η. This physics is discussed

in some detail in Kolb and Turner.

Another interesting issue is the dependence on number of relativistic species: adding another

neutrino species increases the energy density and therefore the Hubble rate. Therefore weak

interactions fall out of equilibrium earlier, when the n/p ratio is higher. It follows that this

forces 4He production upward. And conversely...
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