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We present calculations of the rate of deflection of light per unit central ahigle set of stationary
frames along the light path in the gravitational field of the sun and in an equiv@roept for
curvature set of accelerated frames in flat spacetime in a study designed to further understanding of
the equivalence principle in general relativity. The rate of deflection is emphasized in keeping with
the local restriction of the equivalence principle in a metric theory of gravitation. In the sequence of
stationary frames it is possible to distinguish the contribution from acceleration with respect to local
inertial framegthe equivalence principlédrom the total rate of deflection which includes the effect

of spacetime curvature. Our results indicate that the deflection rate as a function of central angle can
be expressed ada/d¢p=—(m/R)(1+2q)cos ¢, wherem is the geometric mass of the suRjs

the minimum radius a#)=0, andq is a curvature tagging parameter such that wjithO we have

only the effect of acceleration and with=1 we have the full Schwarzschild curvature. 1999
American Association of Physics Teachers.

[. INTRODUCTION Although it might seem that after so much attention this
subject would be exhausted, we feel that there is still further
In 1911 Einsteihpublished a prediction for the bending of insight to be gained by concentrating on a purely local quan-
a ray of light from a distant star passing the sun at minimuntity, namely the rate of deflection per unit central angle
radius R and suggested that it could be observed during @ sequence of stationary frames along the light path in the
total solar eclipse. It was in this paper that he introduced theun’s gravitational field and in an “equivalentexcept for
bold assumption of the complete physical equivalence bespacetime curvatuyeset of accelerated frames in flat
tween a stationary frame in a homogeneous gravitationapacetimeé® As Weinberg has pointed out in his bobkthe
field and an accelerated frame in field-free space, not onlgquivalence principle is necessarily a local concept in the
for mechanical processes but for all physical processes, ircontext of a metric theory of gravity.
cluding, in particular, the propagation of light. His calcula- In a recent article in this journaf, Moreau, Neutze, and
tion of the total deflection, based upon the assumption of &oss showed that in a local, displaced, stationary frame, with
time dilation in the radial direction and an associated gradithe origin situated at some distancdrom the center of a
ent in the speed of light implied by the equivalence principle,gravitating body such as the sun, the equivalence principle
gave a valuer=—2m/R, wherem=GM)/c? is the geomet- becomes manifest, that is the metric near the origin of the
ric mass of the suAThis value differed by a factor of 2 from displaced frame can be expressed as the metric of an accel-
his later predictionp=—4m/R (=—1.78 for grazing inci-  erating frame in flat spacetime plus terms associated with
dence, calculated from a null geodesic path in the spacetimégpacetime curvature. In the present study we exploit this
manifold, a basic postulate for light in general relativity. property to answer the basic question, what fraction of the
The subsequent approximate observational verifications dptal deflection rate, at any given value of the central angle
the later prediction by the 1919 expeditions to the total®. is due to acceleration with respect to local inertial frames
eclipses in Sobral and Principe were a key factor in the earljthe equivalence principle and what fraction is due to
acceptance of the general theory. More recently measurépacetime curvature? o ) _
ments of the deflection of radio waves, passing the limb of The situation is illustrated in Fig. 1 where the straight line
the sun from distant quasars, have confirmed the predictiofinning across the figure represents the zeroth-order approxi-
of general relativity to better than 196Today there is wide- mation to the light path, that is no deflection at all, &
spread interest in gravitational light deflection because of it& local, stationary frame with its origin located at a radius
involvement in gravitational microlensing events in the ga-r =R sec¢ from the center of the sun and with isaxis
lactic halo® In these events typically light from a star in a pointing in the radial direction. In order to answer our ques-
nearby galaxy such as the Large Magellanic Cloud, or from dion we have calculated the deflection rate in the stationary
distant star in our own galaxy, is temporarily enhanced at aframe S at central angles in three different ways(1) by
observation point on earth as a result of its passing around anapping the events along a straight, light-like world line in
object in the galactic halo. The gravitational field of the ob-an inertial frame to an accelerated fraffein flat spacetime
ject deflects the light from the star and focuses more of it orthat is “equivalent” toS; (2) from a null geodesic based on
the observation point than would normally fall there. Obser-the standard Schwarzschild metficand(3) from a null geo-
vation of such events may reveal the existence of a sphericakesic in a set of displaced rectangular coordinateS
distribution of dark matter about the center of our galaxy. The calculation1) gives a result for the rate of deflection
The failure of the equivalence principle to fully account per unit central angle at central ange
for the total deflection of electromagnetic waves in the sun’s
gravitational field has been analyzed and discussed in this 92 M cos ¢ (1.1)
journal by many authors from different points of Vi€’ d¢ R ' '
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and passing through the origintat 0. We calculate the rate
of deflection in the acceleratirf§ frame by mapping events
along the light line intoS’. We want the slope of the light

line in S’ to be tang at the origin and choose the slopeSn
accordingly. We note in passing that the light line is a null

geodesic inS, and its mapped image 8’ is still a null
geodesic, since geometry is not changed by a coordinate
transformation. For purposes of discussion and future refer-
ence, we calculate the deflection rateShin two different
ways: (1a) from a coordinate slope of the light line calcu-
lated from a ratio of coordinate displacements, @it from
a proper slope calculated from a ratio of proper displace-
Fig. 1. The zeroth-order ||ght pa(lmo deflection in the sun’s gravitational ments. In the course Of discussion of the resu'ts Of Calcu|a_
field w_ith a minimum radiuR at c_entral angleb=0.$isastatiopary fr.ame tions (1a and (1b), we will raise a central issue, namely
at rad_lusr arld central ainglegs with coordinatest, ¢ and nondimensional matching Schwarzschild radial measure and trigonometry in
coordinatex= ¢/r andz={/r. . . " . . .
the “equivalent” accelerating frame. We believe that this
issue is absolutely crucial in understanding the role of the
equivalence principle in the gravitational deflection of light

the minimum radius along the light path. Calculatit®). and in unraveling some of the past confusion in this subject.

based on the standard Schwarzschild metric, gives a result ") tern?s OT nond|m?nsu,)nal coord|_nates,_=ct /r, X
for the total rate of deflection =¢&'Ir,y'=7"lr, andz’'={'/r, a nondimensional line ele-

ment in the accelerating’ frame is given b$’

wherem=GM/c? is the geometric mass of the sun aRds

da 3m S ¢ (1.2 ds?
—=——2=CO0 . .
d¢ R do-ZEr—2= —(1-2u+2pz')do'2+dx' 2+ dy’?
The deflection rate given by EL.1) includes the effect of
acceleration, but not of curvature, because the accelerated +(1-2u+2pz') "t dz'? 2.1

ffamf:‘s is in flat spacetime, whereas the rate given by Eqwhere,uzm/r. Defining similar nondimensional coordinates
(1.2) includes the effects of both acceleration and curvature, — — 2T )

The purpose of the third calculation is to provide in a single!" S namelyg=ct/r, x=§/r, etc., the coordinate transfor-
calculation a means of interpreting, and interpolating bemation fromSto S’ is given by

tween, the results of the first two calculations. In the dis- —

placed rectangular coordinates of the station8rjrames ' = i tanh L 4 2.2
along the light path in the sun’s gravitational field, it is pos- o _ 1 ' '
sible to tag the terms in the metric with a parametesuch zt —N1-2pu

that with q=0 the metric is exactly the flat metric of the o
corresponding “equivalent” accelerating fran% of calcu- X' =X 2.9
lation (1), and withq=1 the metric is the Ricci flat, but

Riemann curved Schwarzschild metric of calculati@n?® y =y (2.4
The deflection rate obtained from calculati®) is given by _ 1 2 _ 1
. 2 =% z+;\/1—2,u) —92}—5(1—2@, 2.5
o
— =——(1+2q)cos ¢. (1.3 _ _
dé R where it can be seen that @t= 6=0 the origins ofS’ andS

Our results show that while one-third of the deflection rate iscoincide. It can be easily shown that E¢.2—(2.9) trans-

due to acceleration with respect to local inertial frantee  form the metric of the accelerate®l frame,

equivalence principle two-thirds is due to spacetime curva- o ,

ture. Thus, even in the limit of an infinitesimal region, the 9w =diad —(1=2p+242"),1,1{1 =24

equivalence principle does not account for the total deflec- +2uz') "1, (2.6)

tion rate, or even the major part of it. ) )
diag(—1,1,1,1) of the iner-

into the Minkowski metricy

Il. DEFLECTION RATE IN AN ACCELERATED tial frame S according to

FRAME —0)('“, L?XV,
Referring once again to Fig. 1, we replace the stationary ™ g X

frameSat radiusr =R sec¢ and central anglé in the sun’s o o 1

gravitational field with an “equivalent” accelerating frame Wherex™ =6', x°=#6, x> =x’, etc.

S’ in flat spacetime with rectangular coordinatg's 7', It can also be readily ascertained that the line element, Eq.

and¢’. With respect to an inertial fram® with rectangular 2+ iS appropriate for the “equivalent” accelerating frame
. - — - , L S’. First of all, the Riemann tensor elements associated with
coordinatest, #», and{ and axes parallel t8', the origin of

o ) 5. o . the metric of Eq(2.1) are all zero, as can be shown by direct
S’ is accelerating at a ratac’/r? in the positive{’, direc-  calculation or by noting that coordinate transformations do
tion. Attimet’ =t=0 the origins of the two frames coincide. not alter the curvature of the spacetime manifold.S5ds a

We consider a straight, light line lying in thg{ plane inS  frame in flat spacetime. Second, we can show that it is an

py

gM’V’ ' (27)
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accelerating frame such that a free particle near the origiand passes through the origint 0. We will determine the

has exactly the same acceleration with respec8'tas a light line from the equations for a null geodesic, and will
similar particle in the sun’s gravitational field would have chgose its slope i such that its image i’ has a slope of

. 2 __ 2 _ 2 .. .. .
with respect to S If we let do?=ds’/r®——dm® (304 ot the origin. As the metric is constant and the Christ-

= —c2d7?/r? for time-like intervals in Eq.(2.1) along the qgfe| symbols are all zero, E¢2.9) (with bars instead of
world line of the free, massive particle, then we can rewriteprimeg gives

Eqg.(2.1) as
2 2, 2 7=
0'\2 [dx'\? dy’2 dﬁ_ dX_ dy_ dZ_
- ' =0, =0, =0, =0, 21
1‘<1‘2“+2“2>(a;) - a;) —(a;) % a2 % a0 ap (216
"\?2 with solutions
—(1_2M+2MZ’)_1(E (2.9

3=C1p+C2, X=C3p+C4, Yy=Csp+Cq,

In general, a free particle follows a geodesic given by _ (2.1
! ’ ! Z:C7p+C8'
di o dx* dx”
dpz R d_p _dp =0, (2.9 whereC, throughCg are constants of integration. For mo-

tion in thex, z plane we se€Cs=Cg=0, and since we want

the light line to pass through the origin =0, we setC,
_ N =C,=Cg=0. The constan€,; normalizes the affine param-
+B, and the Christoffel symbol$", , are related to the eterp and sets the unit of time. We can choose it to be

where, for our applicatiorp is a nondimensional affine pa-
rameter related linearly to the proper time by/r=Ap

metric by anything we like, but anticipating a comparison we wish to
1 make with the light line in the stationafframe in the sun’s
N =Zgt &g/"{" + ag/’"j'_ &g”’f' _ (2.10  gravitational field, we se€;=1/J1—2xu.
w2 ax¥ IXH IxP Equations(2.17) are not independent. The solutions must

From Eqs.(2.6), (2.9), and(2.10 with p=, the geodesic satisfy the line element i, and in this case it is null,
equations corresponding to the metricS3hare given by

do?= —d62+dx2+dZ2=0. (2.18
de’ dz' —
d2e’ 2p a7 dm Dividing through bydp?, settingdé/dp=1/\1—2u, and
+ (=27 242" =0, (2.11) rearranging, we have
—2p+2u
, , dz 2
' d¥y (\/1 2u 1 Vi—2u ) ~1. (2.19
d? =0, dm? =0. 213 @
dz'\ 2 We see that/1—2udx/dp and y1—2udz/dp must form
42z’ ,u(d—) N2 two sides of a right triangle of which the hypotenuse equals
22: 7 : M(1—2M+2MZ')( ) one. TherEfore in Eq(2.17) Cy=dx/dp=cosp/\V1—-2u
dm®  (1-2u+2u2") d and C,=dz/dp=sin 8/\1—2u whereg can be any angle.

(2.13 But for our case we must have
Now consider motion of a free particle along the axis

with dx’'/d7=dy’/d7=0 satisfying Eqs(2.12. Then from c cospB cos ¢ (2.20
: ’ — ’ — 3= = , .
Eq. (2.13 and Eq.(2.8) with dx'/dw=dy’'/d7=0, we have \/1_2,“ \/1_2M o2 ¢
d?z' m GM
an? R TT T T (214 sing 1 sin ¢
Cr= = : (2.2
and, converting to dimensional quantities, wittf/d? Vi-2u V1-2u V1—2u cod ¢
=(r?/c?)d?/d+? andz’ =¢'Ir, the proper acceleration of the S o
free particle is in order for the slope of the light line i’ at the origin to be
5. tan¢ as required from Fig. 1. That Eq&2.20 and (2.2))
d*¢ _ G_M give the required relationship betwegrand ¢ will be seen
- = (2.195
dr? r? by the result for the slope of the light line B, Eq.(2.26)

ThusS' is an accelerating frame in flat spacetime in which abelow Substituting Eq¢2.20 and(2.21) into Eq. (2.17) for

; . TR C; andC,, we have
free particle on the’ axis near the origin will have the same 3 !
acceleration as a free particle on thaxis near the origin in

S the stationary frame at radiusin the sun’s gravitational Y pcosé (2.22
field. TheS' frame is the closest one can come in flat space- V1-2u cod ¢’ '
time to duplicating the physics in the stationé@yrame in
the sun’s gravitational field. 1 p sin ¢

We now begin our calculatioflLa). Let us concentrate on 7= ) (2.23
a light line in the inertial frames that lies in thex, z plane V1-2u V1-2u cog ¢
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We now transform the light line, Eq$2.22 and (2.23,  which is obtained from Eq2.1) by settingd’ =dx’' =dy’
into the accelerate@’ frame with the coordinate transforma- =0. Using the proper displacemenh,, in the calculation it

tion given by Egs(2.3) and (2.5 with 9= p/\1—2u. The is more convenient to choosy =1 in Eq.(2.17), and in this

result is case we get the correct slope at the originSinif we set
cos ¢ Cs=cos¢ and C;=sin¢. Then in S we have simplyx
X' = p—, (2.24) =p cos¢ andz=p sin ¢ and correspondingly ii%’,
V1-2u cos ¢
x'=p cos ¢, (2.32
and, after expanding and canceling terms, and
2 .
gt _PCSd PSS o5 2= iup?cod ¢+p sin gy~ 2. (2.33
2 (1-2ucoS ¢)  \1-24 cof ¢ o » _
This time, defining tarx to be the proper slope of the light
Equations(2.24) and (2.295 represent a null geodesic 8, line in ', we write
since they are the result of a coordinate transformation of a ,
null geodesic inS, and a coordinate transformation neither ﬂ doy d_z
changes intervals nor geometry. We wish to determine its ~ dp  dz' dp Mp COS ¢
rate of deflection irS'. ana= - r=—gr =~ I—2p+ 20z
For calculation(1a) we take the coordinate slope of the d_p d_p

light line in S’ to be given by

1-2u
dz' I el
il NT 2,7 207 B¢

dz d cos
dx' dx' 1-2u cod ¢ _ BX
dp Vi-2u+2uz'
=—ux'+tan ¢, (2.26 1-2u
where, from the line element i8’, Eq. (2.1), we note that * 1-2u+2uz’' tan ¢’(2 34

bothdz' anddx’ are coordinate displacements, but odk/
also measures a proper distance. At the origin the slop
tan a=tan ¢ as promised, and it decreases with increasing

g/here tanw=tan ¢ at the origin. The rate of deflection per
unit propagation distance is given by

as the light line deflects in the negatizé direction, that is da “ dx’
opposite to the direction of the acceleration $f with re- seCa—=———-————
= : . o do 1-2u+2uz do
spect toS. The rate of deflection per unit propagation dis-
tance is obtained by differentiating E@.26) with respect to w2’ dz
o giving +(1—2M+2MZ')3/2E
da dx’ ’
se @ -—=—u ——=—u COSa, (2.27) V12 daz’
dO' dO' (1_2M+2MZ,)3/2 dO’ tan ¢ (233

and evaluating the result at the origin where ¢, we have From Eq.(2.1), with d¢’ =dy’ =0, we can write

da) "2 "2
—| =—u cos ¢. (2.28 _(¥ 1 dz’
do/, 1 do * (1-2u+2uz') \do (2.36
Converting to dimensional quantities, E-28 becomes and therefore

da doda 1lda m m

T = _ dx’ do, 1 dz'

ds dsdo rdo r—zcos?¢ §200§ ¢- o —Cosa, dz = - o —sina.

(2.29 o o J1-2u+2uz' 4o
(2.37

Finally, sinces=R tan¢ as shown in Fig. 1, the deflection . . -
rate per unit central angle is Substituting Eqs(2.37) into Eqg.(2.395 and dividing through

by seé a, we have
da dsda m 3 23

———————co0S a

do [1-2p+2uz

We now do calculatiorilb), replacing the coordinate dis-

placemendz’ in the slope by the corresponding proper dis- w2x’ ]
placement + A=2p+2u7) sin a cog a
dz' 124
do,=—, 23 M 2 .
"1 2nt2pz (2.3D A—2p207) sina cod atang.  (2.38
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We now evaluatela/do to first order inu at the origin of  1ll. DEFLECTION RATE IN SCHWARZSCHILD

S’ wherea= ¢, as shown by Eq2.34), SPACE
d cos The Schwarzschild line element, which arises from the
Jdey __ K - 2 exterior solution of Einstein’s field equations for a spheri-
(do) 0 1-2u p COSH+O(n%). (239 cally symmetric, nonrotating central body of geometric mass

m, is given by

Converting to dimensional quantities witt/ds= (do/ds) 2m| , 2m) 1 )
X(da/do)=(1/r)(da/do) and assumingu<1, we have ds*=— 1= ——jctdti+|{1———] dri+ri(dy
for the rate of deflection per unit propagation distanc&'in

+sir? x d¢?), (3.2
da m m wherer is a radial coordinate ang and ¢ are the usual
ds_ 12 Cos =~ R? cos’ ¢. (2.40 spherical angular coordinates. According to general relativ-

ity, light follows a null (ds>=0) geodesic path in the space-

Furthermore, again noting that R tan ¢ along the zeroth- time manifold. Our main purpose in this section is to calcu-

order light path in Fig. 1, we find that the deflection rate per'@t€ the rate of deflection in the= /2 plane as a function
unit central angle is of central angle$ using the full Schwarzschild metric. But

before proceeding we want to examine radial measure and
der m trigonometry in Schwarzschild coordinates in order to sup-
=Rse@ ¢ —=—— cos ¢, (2.41) port our rejection of resul(lb) for the rate of deflection in
ds R the accelerated fram®' at central angleb.
Misner, Thorne, and Wheefémpoint out that although the
which agrees with Einstein’€1911) calculation. Finally, we radial Schwarzschild coordinatedoes not measure proper
integrate Eq(2.41) along the light path to obtain Einstein's distance from the origin, nevertheless the proper area of a

da_ ds da
d¢ do ds

result for the overall deflection, spherical surface at coordinate radius 47r?, as can be

seen by setting?dt?=dr?=0 in Eq. (3.1) and integrating
2m (w2 2m ds®> over solid angle. An infinitesimal solid angle in
¥R fo cos ¢ d¢=—ﬁ- (2.42 Schwarzschild spacémeasured in ordinary steradianis

given by

It is very interesting that when we calculate the slop&in 40 = ds’ 3.2

with proper displacements we obtain Einstein’s results for T2 '

the deflection rate and the overall deflection. We will explain . )

why this is so in our conclusions. where ds? is an element of proper area on the spherical

From our calculation$la) and(1b) we have obtained two surface atoordinateradiusr. Since we are only interested in
different expressions for the rate of deflection per unit centramotion in the planey= /2, let us simplify the discussion by
angle in the set of “equivalent” accelerate®l frames at setting siny=1 anddx=0 in Eq. (3.1). Then the proper
various central angleg, Eq. (2.30 and Eq.(2.41), the first  circumference of the circle at coordinate radius 27r, and
falling off as cos ¢ and the second less rapidly as ghs an infinitesimal central anglén radiang is given by
The (18 result is based on a coordinate slopeShcalcu- ds
lated as the ratio of coordinate displacemeatz¥dx’, while dp=—, (3.3
the (1b) result is based on a proper slope calculated as the r

ratio of proper displacementto,, /dx’. Which is correct? \neredsis an element of proper length on the circle, and
One would think that the tangent of an angle should always

be the ratio of two proper lengths, and the line elemel®'in r o r dr’
Eq. (2.1), shows thatdo, =dz'/\1—2u+2uz and dx’ r=f0dr’¢f0 \/b(r’)dr'+fr > (3.9
0 m

are both proper lengths. But we have not asked the right
guestion. Since at any gives the accelerated fram@' is r’

supposed to be the “equivalent” of the corresponding sta- o ] . )
tionary frameS in the sun's gravitational field, a more ap- is definitely the coordinate radius and not the proper radius
propriate question would be which calculation is compatiblewhich is given by the final expression in whiah is the

with radial measure and trigonometry in Schwarzschildcoordinate radius of the central body of geometric mass
space and which is not? We shall see that it is the calculatioandb(r) is the radial metric of the interior solution of Ein-
(1@ and not(1b). In fact, we shall see that thdb) result, stein’s field equations. Thus the radian measure of the central
while certainly correct in the limited context of an acceler-angle ¢ in Schwarzschild space is the ratio of a circumfer-
ated frame in flat spacetime, leads to a contradiction wheential proper length and a radial coordinate length. But that is
we try to interpret it in terms of the equivalence principle. not the whole story. The coordinate radius is an essential part
Specifically, we shall find that for values of central angle of trigonometry in Schwarzschild space. Thus, referring to
>cos (1#/3) the rate of deflection due to acceleration givenFig. 1,Randr are coordinate radii such thRfr =cos¢ and

by the(1b) result turns out to be greater than the total rate ofs/R=tan ¢. In general, an infinitesimal distands along the
deflection which we now proceed to calculate in calculationlight path has a radial component that is coordinate and a
(2) with the full Schwarzschild metric. circumferential component that is proper.
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dr / dr
7(¢)—@ @

_(dr _
i @cosdwr sin ¢

*]

dr
Esm ¢+r cosg¢

Te=0)

- (dr
X _
de¢

2
+r?

(3.7

The angle of deflectioa (negative for deflection toward the
centej is the angle between the tangent vectaef(g) and
7(0)=j. The sine of the deflection angle is given by

Fig. 2. Deflection of the null geodesic with the standard Schwarzschild dr .
metric. At central anglep the angle of deflectiom (negative for deflection @ cos¢—r sin ¢
toward the centgris the angle between the tangent vecte(®) and (¢ _ ; _ x __

o). k sina=70)x7¢) k

/(dr 2
— | +r2
do

3.8

Referring back to Fig. 1, we see that thez coordinates in (39

S are radial, and the, x coordinates are circumferential. and the cosine by

Then, sinceS' is the “equivalent” of S, we should treat

{’,z' as radial and¢’,x’ as circumferential. Taking these dr

points about radial measure and trigonometry in Schwarzs- — sin ¢+r cos¢

child space into consideration and bearing in mind that we d

want the “equivalent’S’ frame to be as equivalent as pos- ¢S~ 70)-7(¢)= ar |2 (3.9

sible, it seems reasonable to calculate the slope of the light \ /(_r +r2

line in S’ as tane=dZ/dx’ rather thardo,, /dx’. In fact, it do¢

is not only reasonable but also essential. We will show in

Sec. IV that the metric d&' is “equivalent” to the metric of  Dividing Eg. (3.8) by Eq. (3.9 gives

S a stationary frame in Schwarzschild space. Therefore, in

order to realize the “equivalence” of’ and S one must dr _

employ the same radial measure and trigonometr®'iras dé Cos¢—r sin ¢

that used in Schwarzschild space. tan a= . (3.10
After this preamble on radial measure and trigonometry in — sing+r cosd

Schwarzschild space, we now move on to the main topic of do

this section, the calculation of the deflection rate in the full

Schwarzschild metric. We use the standard dimensional The rate of deflection per unit central angledats given
Schwarzschild coordinates of E(B.1) for this calculation by the derivative of Eq(3.10),

with y=7r/2. The situation is shown in Fig. 2 whetég) is

a unit tangent vector to the light line at central angleshich dr 2 dr
we will use to calculate the rate of deflection. (— sin ¢+r cos ¢) — COS¢—r sin ¢

Instead of solving the null geodesic equations from theda de¢ dé
beginning, we pick up the calculation from Weinbétgyho do = dr\ 2 do | dr ,
gives the rate of change of radius with respect to centra?I {(_ 412 — sing+r cos¢
angle as do
(3.11
dar \/ 1 1 1
@=r RZ T2 +2m BT R3) (3.5  where we have brought see over to the right-hand side as

cog « and substituted Eq:3.9). The result of the differen-
tiation in Eqg.(3.11) is a long-winded expression involving

whereR is the minimum radius atp=0. Equation(3.5) is ) 5 5 5 :
rd¢, andd“r/d¢“. Fordr/d¢ andd<r/d¢- we substitute

exact. Referring again to Fig. 2, the rate of change of thed

radius vector with respect t¢ is given by Eq. (3.5 and its derivative,
dr dr dr dr (r s
— =il — —rsi il —gj —==m—r+2(R—2m)| = 3.1
dé |<d¢cos¢ rsing|+j d¢sm¢+rcos¢), 442 ( = (3.12
(3.6
Carrying out the derivative, making these substitutions, and
and the unit tangent vector dtis simplifying, Macsym&® gives
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da 3m (2.30 of calculation (18 and Eg. (2.41) of (1b) give
— == 3 (313 dal/dp=—(m/R)cos’ ¢ and da/dp=—(m/R)cos¢, re-
do 2m+ (R—2m) L) spectively. Since 3 cdsp approaches zero faster than gbs
R as ¢— /2, if we accept the(lb) result, then for ¢

. . L _ >cos ! (1/3)=54.7° the deflection rate due to acceleration
Equation (3.13 is exact. Evaluatmg I at;S—O_ where r is greater than the total deflection rate; that is, the part is
=R, we have for the maximum rate of deflection, greater than the whole. For this reason and to be consistent

da 3m with radial measure and trigonome_try in _ Schwarzschild
_) ———— (3.14 space, as explained at the start of this section, we must ac-
deé/ .. R cept the(1a) result and reject thélb).
Finally, to obtain the deflection rate as a function of central With the results of calculationéld) and (2) we have an-

angle, we substitute the zeroth-order approximation to thgwered the basic question posed in Sec. I. At any g_iver_1 value
light line, r = R/cos ¢ (see Fig. 1, into Eq.(3.13, giving of the central angle, one-third of the rate of deflection is due

to acceleratiorithe equivalence principleand two-thirds are

da 3m co$ ¢ du_e to spacetime curvature. THE3, 2/3 s.plit persist_s at'all

— = points along the light path. However, this conclusion is un-

dé satisfying from the point of view of understanding the

equivalence principle because the results were obtained from

9 two separate calculations. Any “equivalence” between the

(T) ) (3.19 flat metric of the accelerated frames and the Schwarzschild
R/ |’ ' metric remains hidden in the latter. Our final calculati@n

pf the rate of deflection in a set of stationary frames along the

: light path in the sun’s gravitational field clarifies this issue

calculation(2), Egs.(3.14 and(3.15, for the rate of deflec- o ] :

tion in the( fl)J|| gch(war?schilé mg)tric with our two corre- ;’;m_d serves as a unifying bridge between the first two calcu-
ations.

sponding results in the “equivalent” accelerated frames, Eq.
(2.30 from calculation(1a and Eq.(2.41) from (1b). Equa-
tion (3.14), (dci/ d¢>maijj—ffm/3 is an exact res“ét. for theh IV. RATE OF DEFLECTION IN THE DISPLACED
maximum total rate of deflection at minimum radius in the

full Schwarzschild metric. Ap=0 both our results in the STATIONARY FRAMES

“equivalent” accelerated frame givéa/d¢=—m/R. Thus We consider a set of displaced, stationary frarSex ra-
we can reasonably conclude that of the total maximum ratélius r and central angles along the light path in the sun’s
of deflection, one-third is due to acceleration with respect tgyravitational field as shown in Fig. 1. In terms of nondimen-
local inertial framegthe equivalence principleFor the gen-  sjonal coordinatesi=ct/r, x=£&/r, y=ylr, andz={Ir, a
eral case, E(.(3.15 of calculation (2) gives da/d¢  nondimensional line element in a giv&irame at coordinate
= —(3m/R)cos ¢ for the total rate of deflection, while Eq. radiusr and central angle is given by?°

m
R[l—zﬁ(l—co§ ¢)}

3m
:_FCOS? ¢+O

We conclude this section by comparing our final results o

[a—2u(x?+y?)]dZ2+4u[xy dx dy+x(1+2)dx dz+y(1+2)dy dZ]

de?+dx%+dy?+

(4.

ds? 2u
d()'2E r—2= —1- ;

a’(a—2u)

where a= 1+ 2z+x°+y?+2z? and u=m/r. The Ricci tensor associated with the metric given by Efl) has been
calculated and found to be zero, as it should be since the above line element is simply the Schwarzschild line element
transformed into the displaced rectangular coordin#téghus the metric in the displaced, stationary frame satisfies the
vacuum Einstein field equations exactly.

The conceptual advantage of the displaced rectangular coordinates is that the effects of acceleration of the displacec
stationary frame with respect to falling local inertial framgse equivalence principleand spacetime curvature can be
distinguished® Consider the following Taylor expansions of the metric tensor elements about the origin.

Ugo= — (1=2u+2p2) +qu[ — (X2+y?) + 222+ 3(x?+y?)z— 223+ -], (4.2
O,,=1-2u+2uz+qul(3—4u)(x3+y?) —22%+ (16u—9) (x> +y?)z+ 223+ -], 4.3
[ 2xy  2(3—4u)xyz
= - + 4.4
Oxy qM_l—Z,LL 1_4M+4,U«2 4.9
2X 4(1—p)xz  (3—10p+8u?)(X%+y?)x—(6—12u+8u?)xz?
= — — oo, 4.
S A o 1 aptap? 1-6p+1242—84° 49
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andg,,=0dx, (X<Y). We have included a curvature tagging whereb(z)=1-2u+2uz, and the corresponding line ele-

parameterq in these expansions such that with=0 the
Riemann tensor is zero, and with=1 we have the full

spacetime curvature of the Schwarzschild metric. Referring

to Eq.(2.6), it will be noticed that the metric in a displaced
stationary frameS at radiusr and central anglep, given by

Egs.(4.2—(4.5 with g=0, corresponds exactly to the metric

in the corresponding “equivalent” accelerating fraré in
flat spacetime. The reason that we expanglgin Eq. (4.3
instead ofg,, was to make this “equivalence” manifest.

We now proceed with the calculation of the deflection rate.

in a givenS frame at radiug and central anglep. Light

follows a null geodesic patk*(p) in spacetime determined

by the geodesic equations,
d? o dx* dx”
v + e = 0,
dp »v dp dp

(4.6

where(exactly as in the case of the Minkowski metric in Sec
II) pis a nondimensional affine parameter related linearly t

proper time byc7/r =Ap+B (for a null geodesid=0), and
the Christoffel symbol:’il”w are related to the metric i by

agpv_ £7g,bw
Ix* gxP )’

1 a9
N A mp
=59

> X’ (4.7

where the metric tensor elements are given by E4®)—
(4.5). Just as in the case of the inertial fra®ethe four Egs.

ment,
1
do?=—bd@?+dx>+dy>+ 5 dZ
+4qu(x dx dz+y dy d2. 4.9

The associated geodesic equations, Ed@s6) with \
=0,1,2,3, are given 1§y

1OIb"—o 4.1
6+BEZG_ , (4.10
[402ub(x2+y?) — 1]%+ 402 ubX(x2+Y?)
b b6? z =0 4.1
J4a?u?b(x*+y?) — 11§+ 49 u by (X +y?)
db b6? z =0 4.1
[402u2b(x?+y?) —1]2—2qub(X*+Y?)
db(b'2 z =0 4.1
“2dz|P )70 “13

(4.6) are not independent and the solution must be conwhere dots denote derivatives with respect to the affine pa-

strained by the null line elemerdg?=0.
In order to calculate the deflection rate at the origirSpf

rameterp. The null constraint is provided by settirdy?
=0 in Eq. (4.9 and dividing through bydp?. The result is

we have to determine the geodesic equations and the null

line element to first order i, y, andz Being that the geo-

desic equations involve the first derivatives of the metric

52

. . . yA . ..
—b02+x2+y2+H+4q,u(xx+yy)z=0. (4.14

with respect to the spacetime coordinates through the Christ-

offel symbols, we would have to use a metric that is valid to  Now we want to solve Eq94.10—(4.13, subject to the
second order. We have attempted this calculation and havgynstraint Eq(4.14), for a null geodesic path in thezplane
not been able to solve the resulting equations. Instead Wg s that comes in from the negativez quadrant, goes

consider a weak-field approximation in whigh=m/r<1.
For light deflection at the limb of the symis of the order of
10" %, andu is even smaller for>R. Now, in the immedi-
ate vicinity of the origin ofS where we are calculating the
deflection rate, we have four small quantitiegs,X,y,2)

through the origin with a slope ta$, and goes out in the
positive X,z quadrant, all the while being deflected in the
negative z direction. Although Eqs(4.10—(4.14) contain
terms of higher order, we must not forget that they are based
upon a metric that is truncated to second orderuinx(y,z)

<1, and we truncate the Taylor expansions of the metricand are thus only valid to first order in the vicinity of the
elements to second order in these quantities. The resultingrigin of S. Therefore, we will solve them to first order in

geodesic equations are then first order jnx,y,z), since
any third-order term, likeux?, for example, upon differen-
tiation becomes @2x, which is second order in small quan-
tities.

As can be seen from Eqgl.2) to (4.5), all of the terms in
Og0 andgz_z1 tagged with the parametgr and all of the terms
in gyy, are third order and higher. The metric elemegyts
andg,, have leading second-order termg2x and Zjuy,
respectively. We therefore consider the metric tensor,

-b(z) © 0 0
0 1 0  ux
9= 0 0 1 2uy|, (4.9
1

0 2qux  2quy b(2)
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(m,X,Y,2), which is adequate to determine the deflection rate
at the origin. _

Equation(4.10 can be rewritten asl/dp In(b8)=0 and
integrated to give

(4.15

where we have normalized the affine parametéy setting
the integration constant to zero. Furthermore, Eql2 is
trivially satisfied by

(4.19

for motion in the xz plane. Substituting Eqsi4.15 and
(4.16 into Egs. (4.1)—-(4.14, we have for the geodesic
equations ik andz,

y=0, y=0, y=0,
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_ 1db .
(402u2bx2—1)X+ 4092 ubx X%+ qu b 4z x(1-2%)=0,

(4.1
11db
2 2hv2 1\5_ 2 — T (1-92y=
(49°ubxc—1)z—2qubx 5 b dz (1-z9)=0, (4.18
and the null constraint becomes
. o1 .
x2+4quxxz— — (1—7%)=0. (4.19

b

Substituting the null constraint, E.19, anddb/dz=2u
into Egs.(4.17 and(4.18, we obtain

(49%u?bX% = 1)X+40%u?b X3¢ + 2q u®Xx(X + 4quxxz) =0,

(4.20

(49%u’bx?—1)2—2qubx?>— u(x?+4quxxz)=0. (4.21)
Finally, neglecting terms higher than first order i
(m,X%,Y,2), Egs.(4.20 and(4.21) become

x=0, (4.22

Z+ u(1+2q)x?=0, (4.23
and the null constraint, Eq4.19, becomes

>'<2=% (1-2%). (4.24

The solution of Eq.(4.31), with the conditions Eqs(4.25
and(4.28 imposed, is

_ p coS ¢ sin ¢
e T T R ey
(4.32
z=—ﬁ(1+2q) P cos ¢ + psn? :
2 (1-2u co ¢) \/Tcos;(?33

At this point we note that Eqg4.30 and(4.33 with q=0
are identical to Egs(2.24 and(2.25 which were obtained
by a coordinate transformation of the straight line null geo-
desic in an inertial framé& to the accelerated frant® .

From Egs.(4.29 and (4.32 the slope near the origin is
given by

dz

dp  wm(1+2q)p cos¢
tana=—=—

dx V1-2u cod ¢
dp
=—u(1+2q)p cos¢-+tan ¢+O(u?),
(4.39

where tane=dzdx is consistent with Schwarzschild radial

+tan ¢

As Egs. (4.22 and (4.23 are second-order differential neasure and trigonometry. Upon differentiation with respect

equations, we need four conditions at the origin correspondey nondimensional propagation distance, 434 gives
ing to the particular null geodesic we are seeking. Taking ’

p=0 at the origin, the conditions on the coordinates are

x(0)=0, z(0)=0. (4.25

The conditions on the coordinate velocities are determined as
follows. First of all, we want the slope at the origin to be

dz . _ 2(0)

dx (0)= m =tan ¢.
Next we evaluate the null constraint, £4.24), at the origin,
substitute Eq(4.26 for z(0), andsolve forx(0) to obtain

(4.2

Cos ¢
Vi-2pcod ¢
Finally, substituting Eq(4.27) into Eq. (4.26), we have

sin ¢
Vi-2ucod ¢

The solution of Eq(4.22), with the conditions Eq94.25
and(4.27) imposed, is

x(0)= (4.27)

2(0)= (4.28

] Cos ¢ 4.29
X= .
V1-2u cog ¢
p cos¢
X=— (4.30

Ji-2ucog ¢
Then, substituting Eq4.29 into Eq. (4.23 gives
cos ¢

5+ u(1+2q) — =0
wA+20) T od 8

(4.3)
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2 da 142 dp dx
se aa——,u,( + q)&ﬁcosd)

=—u(1+2q)cosa+0(u?), (4.39

where we have substituted the inverse of E4.29 for
dp/dx anddx/do=cosa. Converting to dimensional quan-
tities and neglectin@®(u?), we have

da doda 1da

ds dsde rdo
and evaluating at the origin @ wherea= ¢,
da
ds

m
s (1+2q)cos a, (4.3

m
== (1+2q)cos ¢,

0

sincer =R sec¢ (see Fig. 1 Finally, the deflection rate per

unit central angle is given by

da_dsda_ 43
d¢ g ds (439

since from Fig. 1s=R tan¢ andds/d¢=R se¢ ¢. For q

=1 Eq.(4.38 agrees with Eq(3.15), the deflection rate of
calculation(2) with the full Schwarzschild metric in the stan-
dard Schwarzschild coordinates. Both results are first order
in m/R. For g=0 it agrees with Eq(2.30, the deflection
rate of calculation(1a in the “equivalent” accelerated
frame in flat spacetime.

It only remains to calculate the overall deflection by inte-
grating Eq.(4.38 over the central angle. In this integration it
shouldnot be imagined that a®frame in Fig. 1 is “moving
with a photon” and thus rotating as the central angle in-
creases. Rather E.38 gives the deflection rate with re-
spect to a set aftationary Sframes along the light path as a

(4.37)

m
—§(1+2q)cos°’ o,
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function of central angle. The deflection rate was obtained bygure and trigonometry in calculations of light deflection
considering “the motion of a photon” with respect to each based upon the equivalence principle. Matching Schwarzs-
stationaryS frame. Furthermore, in integrating the deflection child measure leads to a deflection rate that falls off as
rate to obtain the overall deflection, it is immaterial that®he cos’ ¢ while the failure to do so results in a cgsbehavior.
frames vary in orientation. The overall deflection is given byThe latter, when compared to the 3 2g@sbehavior of the
m 2 deflection rate obtained in calculati@¢®) with the standard
a=—=(1+ 2q)f cos ¢ de¢ Schwarzschild metric, leads to the impossible result of the
R — w2 part being greater than the whole f¢r>cos }(1#/3). While
om 2 it is certainly valid to measure an angle in an accelerated
- —(1+ 2q)f (1—sir? ¢)cos¢ do frame in flat spacetime as the ratio of two proper lengths,
R 0 when the accelerated frame is being considered as the

am “equiya}lept” of a stationary frame in Schwarzschild space,
=—_—— (1+20q) then it is important to be consistent in order for the calcula-

3R tions to make any sense. Schwarzschild radial measure and
trigonometry in the accelerated frame is a part of the

4am o ,, L -
—— (g=0) equivalence,” and, judging from our results, a rather im-
3R
_ (4.39 portant part.
B am ' Our conclusions are not in agreement with some of the
"R (q=1). previously published results that we have referenced in Sec.

I. In our notation, a survey of these earlier results reveals a
While we obtain the standard result fqe=1, our equiva- general agreement among the authors on a deflection rate
lence principle result witlq=0 is two-thirds of Einstein’s from the equivalence principl@r due to time dilation only
1911 result as a consequence of our deflection rate falling offf da/dé¢=—(m/R)cos¢ and a total deflection rate of

as cos ¢ instead of cosp. We have established the impos- da/d¢=—(2m/R)cos¢. In the respective references, these
sibility of the latter and have shown that it results from aresults are based upon: Newtonian and relativistic
failure to match Schwarzschild radial measure and trigonomtreatment$;™ rotation of the polarization vector of an elec-

etry in the equivalence principle calculation. tromagnetic field? deflection with respect to an infinitely
fast particle!® time-like and space-like terms in the mettfc;
V. CONCLUSION and deflection due to three-space curvatfirdle assess the

validity of these results by subjecting them to the same test

The results of three separate calculations of the deflectiothat we have used to judge our own, namely comparison with
rate of light per unit central angle along the light path in thethe total deflection rateda/d¢=—(3m/R)cos ¢, calcu-
gravitational field of the sun have been presented in an eXated from the standard Schwarzschild metric, our most eas-
ercise aimed at further understanding of the equivalencéy defended result. We have already made the first compari-
principle in general relativity. The calculations were basedson, because the earlier result from the equivalence principle
upon the following theoretical principlesl) coordinate is identical to our result(lb). At the central angle¢
transformations of nulllight) geodesics from a set of inertial — cos {(1n3)=54.7° where cog=3 coS ¢ the deflection
frames to a set of accelerated frames in flat spacetime, witfyte due to acceleration with respect to local inertial frames
appropriate orientation and acceleration along the light pathstarts to become greater than the total deflection rate. Com-
(2) a null geodesic associated with the standard Schwarzgsaring the two results for total deflection rate, the earlier

child metric; and(3) null geodesics in a set of displaced, yegyt is two-thirds of the correct value ét=0 and becomes

stationary frames along the light path in the sun’s grawta-greater than the correct value &t cos 1(\2/3)=35.3°. It

tional field. The rate of deflection rather than the overaIIi remarkable that both results for total deflection rate give
deflection has been emphasized, in keeping with the Ioce{ﬁe same overall deflection:

restriction of the equivalence principle in connection with

real gravitational fields. Calculatiofil) was performed in om [ +ml2

two ways: (18 with a coordinate slope, anflb) with a a=—— cos¢ dp=——, (5.7

proper slope, the latter calculation being rejected because it R J-mr R

is inconsistent with Schwarzschild radial measure and trigo-

nometry. __3m f”’z 34d __4m (5.2
The results of all three calculations are in complete accord “T7R —al2 cos’ ¢ dg= R’ '

and show that at all values of the central angle one-third of
the total rate of deflection is due to acceleration with respect A final question needs to be answered. Why do Einstein’s
to local inertial frames and two-thirds is due to spacetime(1911) results for deflection rate and overall deflection agree
curvature. The agreement of the calculatighs) and (3)  with our calculation(1b)? Under the assumption that an ac-
with q=0 is very satisfying because it confirms the local celerated frame is equivalent to a uniform gravitational field,
equivalence of the accelerating frames in flat spacetime aninstein carried out his calculation in a Euclidean space in
the corresponding stationary frames in the gravitational fieldvhich the coordinates all measure proper distance. Our use
in the limit of zero curvature. The agreement of calculationsof the proper displacememnto,, in place of the coordinate
(2) and(3) with q=1 verifies that the approximations made displacementlz’ in the calculation of the slope effectively
in the latter are valid in calculating a local quantity like the canceled out any matching with Schwarzschild and made
rate of deflection. calculation(1b) a Euclidean calculation as well.

As far as we are aware, we are the first authors to recog- Due to a fluke of mathematics, exemplified by E¢s1)
nize the importance of matching Schwarzschild radial meaand (5.2), Einstein’s(1911) result for the overall deflection,
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ANOTHER REASON TO REPEAT AN EXPERIMENT

That night | could not sleep. After a delay of five years my idea had paid off with only a few
hours’ work: | had identified the first gland that contributes to ant communication. More than|that,
| had discovered what seemed to be a new phenomenon in chemical communication. The|phero-
mone in the gland is not just a guidepost for workers who choose to search for food, but the [signal
itself—both the command and the instruction during the search for food. The chemical was
everything. ... Over the next few days | confirmed the efficiency of the trail pheromone assay over
and over. In science there is nothing more pleasant than repeating an experiment that works.

Edward O. WilsonNaturalist (Island Press, Washington, DC, 1998p. 291-292.
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