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We present calculations of the rate of deflection of light per unit central anglef in a set of stationary
frames along the light path in the gravitational field of the sun and in an equivalent~except for
curvature! set of accelerated frames in flat spacetime in a study designed to further understanding of
the equivalence principle in general relativity. The rate of deflection is emphasized in keeping with
the local restriction of the equivalence principle in a metric theory of gravitation. In the sequence of
stationary frames it is possible to distinguish the contribution from acceleration with respect to local
inertial frames~the equivalence principle! from the total rate of deflection which includes the effect
of spacetime curvature. Our results indicate that the deflection rate as a function of central angle can
be expressed asda/df52(m/R)(112q)cos3 f, wherem is the geometric mass of the sun,R is
the minimum radius atf50, andq is a curvature tagging parameter such that withq50 we have
only the effect of acceleration and withq51 we have the full Schwarzschild curvature. ©1999

American Association of Physics Teachers.
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I. INTRODUCTION

In 1911 Einstein1 published a prediction for the bending o
a ray of light from a distant star passing the sun at minim
radius R and suggested that it could be observed durin
total solar eclipse. It was in this paper that he introduced
bold assumption of the complete physical equivalence
tween a stationary frame in a homogeneous gravitatio
field and an accelerated frame in field-free space, not o
for mechanical processes but for all physical processes
cluding, in particular, the propagation of light. His calcul
tion of the total deflection, based upon the assumption o
time dilation in the radial direction and an associated gra
ent in the speed of light implied by the equivalence princip
gave a valuea522m/R, wherem5GM/c2 is the geomet-
ric mass of the sun.2 This value differed by a factor of 2 from
his later prediction,a524m/R ~521.759 for grazing inci-
dence!, calculated from a null geodesic path in the spaceti
manifold, a basic postulate for light in general relativity3

The subsequent approximate observational verifications
the later prediction by the 1919 expeditions to the to
eclipses in Sobral and Principe were a key factor in the e
acceptance of the general theory. More recently meas
ments of the deflection of radio waves, passing the limb
the sun from distant quasars, have confirmed the predic
of general relativity to better than 1%.4 Today there is wide-
spread interest in gravitational light deflection because o
involvement in gravitational microlensing events in the g
lactic halo.5 In these events typically light from a star in
nearby galaxy such as the Large Magellanic Cloud, or fro
distant star in our own galaxy, is temporarily enhanced a
observation point on earth as a result of its passing aroun
object in the galactic halo. The gravitational field of the o
ject deflects the light from the star and focuses more of it
the observation point than would normally fall there. Obs
vation of such events may reveal the existence of a sphe
distribution of dark matter about the center of our galaxy

The failure of the equivalence principle to fully accou
for the total deflection of electromagnetic waves in the su

gravitational field has been analyzed and discussed in th
journal by many authors from different points of view.6–17
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Although it might seem that after so much attention th
subject would be exhausted, we feel that there is still furt
insight to be gained by concentrating on a purely local qu
tity, namely the rate of deflection per unit central anglef in
a sequence of stationary frames along the light path in
sun’s gravitational field and in an ‘‘equivalent’’~except for
spacetime curvature! set of accelerated frames in fla
spacetime.18 As Weinberg has pointed out in his book,19 the
equivalence principle is necessarily a local concept in
context of a metric theory of gravity.

In a recent article in this journal,20 Moreau, Neutze, and
Ross showed that in a local, displaced, stationary frame, w
the origin situated at some distancer from the center of a
gravitating body such as the sun, the equivalence princ
becomes manifest, that is the metric near the origin of
displaced frame can be expressed as the metric of an a
erating frame in flat spacetime plus terms associated w
spacetime curvature. In the present study we exploit
property to answer the basic question, what fraction of
total deflection rate, at any given value of the central an
f, is due to acceleration with respect to local inertial fram
~the equivalence principle!, and what fraction is due to
spacetime curvature?

The situation is illustrated in Fig. 1 where the straight li
running across the figure represents the zeroth-order app
mation to the light path, that is no deflection at all, andS is
a local, stationary frame with its origin located at a radi
r 5R secf from the center of the sun and with itsz axis
pointing in the radial direction. In order to answer our que
tion we have calculated the deflection rate in the station
frame S at central anglef in three different ways:~1! by
mapping the events along a straight, light-like world line
an inertial frame to an accelerated frameS8 in flat spacetime
that is ‘‘equivalent’’ toS; ~2! from a null geodesic based o
the standard Schwarzschild metric;21 and~3! from a null geo-
desic in a set of displaced rectangular coordinates inS.20

The calculation~1! gives a result for the rate of deflectio
per unit central angle at central anglef,
is da

df
52

m

R
cos3 f, ~1.1!
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wherem5GM/c2 is the geometric mass of the sun andR is
the minimum radius along the light path. Calculation~2!,
based on the standard Schwarzschild metric, gives a re
for the total rate of deflection,

da

df
52

3m

R
cos3 f. ~1.2!

The deflection rate given by Eq.~1.1! includes the effect of
acceleration, but not of curvature, because the acceler
frameS8 is in flat spacetime, whereas the rate given by E
~1.2! includes the effects of both acceleration and curvatu
The purpose of the third calculation is to provide in a sin
calculation a means of interpreting, and interpolating
tween, the results of the first two calculations. In the d
placed rectangular coordinates of the stationaryS frames
along the light path in the sun’s gravitational field, it is po
sible to tag the terms in the metric with a parameterq such
that with q50 the metric is exactly the flat metric of th
corresponding ‘‘equivalent’’ accelerating frameS8 of calcu-
lation ~1!, and with q51 the metric is the Ricci flat, bu
Riemann curved Schwarzschild metric of calculation~2!.20

The deflection rate obtained from calculation~3! is given by

da

df
52

m

R
~112q!cos3 f. ~1.3!

Our results show that while one-third of the deflection rate
due to acceleration with respect to local inertial frames~the
equivalence principle!, two-thirds is due to spacetime curva
ture. Thus, even in the limit of an infinitesimal region, th
equivalence principle does not account for the total defl
tion rate, or even the major part of it.

II. DEFLECTION RATE IN AN ACCELERATED
FRAME

Referring once again to Fig. 1, we replace the station
frameSat radiusr 5R secf and central anglef in the sun’s
gravitational field with an ‘‘equivalent’’ accelerating fram
S8 in flat spacetime with rectangular coordinatesj8, h8,
andz8. With respect to an inertial frameS̄ with rectangular
coordinatesj̄, h̄, andz̄ and axes parallel toS8, the origin of
S8 is accelerating at a ratemc2/r 2 in the positivez8,z̄ direc-

Fig. 1. The zeroth-order light path~no deflection! in the sun’s gravitational
field with a minimum radiusR at central anglef50. S is a stationary frame
at radiusr and central anglef with coordinatesj, z and nondimensional
coordinatesx5j/r andz5z/r .
tion. At time t85 t̄50 the origins of the two frames coincide.
We consider a straight, light line lying in thej̄,z̄ plane inS̄
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and passing through the origin att̄50. We calculate the rate
of deflection in the acceleratingS8 frame by mapping events
along the light line intoS8. We want the slope of the ligh
line in S8 to be tanf at the origin and choose the slope inS̄
accordingly. We note in passing that the light line is a n
geodesic inS̄, and its mapped image inS8 is still a null
geodesic, since geometry is not changed by a coordin
transformation. For purposes of discussion and future re
ence, we calculate the deflection rate inS8 in two different
ways: ~1a! from a coordinate slope of the light line calcu
lated from a ratio of coordinate displacements, and~1b! from
a proper slope calculated from a ratio of proper displa
ments. In the course of discussion of the results of calcu
tions ~1a! and ~1b!, we will raise a central issue, name
matching Schwarzschild radial measure and trigonometr
the ‘‘equivalent’’ accelerating frame. We believe that th
issue is absolutely crucial in understanding the role of
equivalence principle in the gravitational deflection of lig
and in unraveling some of the past confusion in this subje

In terms of nondimensional coordinates,u85ct8/r , x8
5j8/r , y85h8/r , andz85z8/r , a nondimensional line ele
ment in the acceleratingS8 frame is given by20

ds2[
ds2

r 2 52~122m12mz8!du821dx821dy82

1~122m12mz8!21 dz82, ~2.1!

wherem[m/r . Defining similar nondimensional coordinate
in S̄, namelyū5ct̄/r , x̄5 j̄/r , etc., the coordinate transfor
mation fromS̄ to S8 is given by

u85
1

m
tanh21F ū

z̄1
1

m
A122mG , ~2.2!

x85 x̄, ~2.3!

y85 ȳ, ~2.4!

z85
m

2 F S z̄1
1

m
A122m D 2

2 ū2G2
1

2m
~122m!, ~2.5!

where it can be seen that atu85 ū50 the origins ofS8 andS̄
coincide. It can be easily shown that Eqs.~2.2!–~2.5! trans-
form the metric of the acceleratedS8 frame,

gm8n85diag@2~122m12mz8!,1,1,~122m

12mz8!21#, ~2.6!

into the Minkowski metrichm̄n̄5diag(21,1,1,1) of the iner-
tial frame S̄ according to

hm̄n̄5
]xm8

]xm̄

]xn8

]xn̄ gm8n8 , ~2.7!

wherex085u8, x0̄5 ū, x185x8, etc.
It can also be readily ascertained that the line element,

~2.1!, is appropriate for the ‘‘equivalent’’ accelerating fram
S8. First of all, the Riemann tensor elements associated w
the metric of Eq.~2.1! are all zero, as can be shown by dire
calculation or by noting that coordinate transformations

not alter the curvature of the spacetime manifold. SoS8 is a
frame in flat spacetime. Second, we can show that it is an
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accelerating frame such that a free particle near the or
has exactly the same acceleration with respect toS8 as a
similar particle in the sun’s gravitational field would hav
with respect to S. If we let ds25ds2/r 2→2dp2

52c2dt2/r 2 for time-like intervals in Eq.~2.1! along the
world line of the free, massive particle, then we can rew
Eq. ~2.1! as

15~122m12mz8!S du8

dp D 2

2S dx8

dp D 2

2S dy8

dp D 2

2~122m12mz8!21S dz8

dp D 2

. ~2.8!

In general, a free particle follows a geodesic given by

d2xl8

dp2 1Gm8n8
l8 dxm8

dp

dxn8

dp
50, ~2.9!

where, for our application,p is a nondimensional affine pa
rameter related linearly to the proper time byct/r 5Ap

1B, and the Christoffel symbolsGm8n8
l8 are related to the

metric by

Gm8n8
l8 5

1

2
gl8r8S ]gm8r8

]xn8
1

]gr8n8

]xm8
2

]gm8n8

]xr8 D . ~2.10!

From Eqs.~2.6!, ~2.9!, and ~2.10! with p5p, the geodesic
equations corresponding to the metric inS8 are given by

d2u8

dp2 1

2m
du8

dp

dz8

dp

~122m12mz8!
50, ~2.11!

d2x8

dp2 50,
d2y8

dp2 50, ~2.12!

d2z8

dp2 5

mS dz8

dp D 2

~122m12mz8!
2m~122m12mz8!S du8

dp D 2

.

~2.13!

Now consider motion of a free particle along thez8 axis
with dx8/dp5dy8/dp50 satisfying Eqs.~2.12!. Then from
Eq. ~2.13! and Eq.~2.8! with dx8/dp5dy8/dp50, we have

d2z8

dp2 52m52
m

r
52

GM

c2r
, ~2.14!

and, converting to dimensional quantities, withd2/dp2

5(r 2/c2)d2/dt2 andz85z8/r , the proper acceleration of th
free particle is

d2z8

dt2 52
GM

r 2 . ~2.15!

ThusS8 is an accelerating frame in flat spacetime in which
free particle on thez8 axis near the origin will have the sam
acceleration as a free particle on thez axis near the origin in
S, the stationary frame at radiusr in the sun’s gravitationa
field. TheS8 frame is the closest one can come in flat spa
time to duplicating the physics in the stationaryS frame in
the sun’s gravitational field.
We now begin our calculation~1a!. Let us concentrate on
a light line in the inertial frameS̄ that lies in thex̄, z̄ plane
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and passes through the origin atū50. We will determine the
light line from the equations for a null geodesic, and w
choose its slope inS̄ such that its image inS8 has a slope of
tanf at the origin. As the metric is constant and the Chri
offel symbols are all zero, Eq.~2.9! ~with bars instead of
primes! gives

d2ū

dp2 50,
d2x̄

dp2 50,
d2ȳ

dp2 50,
d2z̄

dp2 50, ~2.16!

with solutions

ū5C1p1C2 , x̄5C3p1C4 , ȳ5C5p1C6 ,
~2.17!

z̄5C7p1C8 ,

whereC1 throughC8 are constants of integration. For mo
tion in thex̄, z̄ plane we setC55C650, and since we wan
the light line to pass through the origin atū50, we setC2

5C45C850. The constantC1 normalizes the affine param
eter p and sets the unit of time. We can choose it to
anything we like, but anticipating a comparison we wish
make with the light line in the stationaryS frame in the sun’s
gravitational field, we setC151/A122m.

Equations~2.17! are not independent. The solutions mu
satisfy the line element inS̄, and in this case it is null,

ds252dū21dx̄21dz̄250. ~2.18!

Dividing through bydp2, setting dū/dp51/A122m, and
rearranging, we have

SA122m
dx̄

dpD 2

1SA122m
dz̄

dpD 2

51. ~2.19!

We see thatA122mdx̄/dp and A122mdz̄/dp must form
two sides of a right triangle of which the hypotenuse equ
one. Therefore in Eq.~2.17! C35dx̄/dp5cosb/A122m
and C75dz̄/dp5sinb/A122m whereb can be any angle
But for our case we must have

C35
cosb

A122m
5

cosf

A122m cos2 f
, ~2.20!

C75
sin b

A122m
5

1

A122m

sin f

A122m cos2 f
, ~2.21!

in order for the slope of the light line inS8 at the origin to be
tanf as required from Fig. 1. That Eqs.~2.20! and ~2.21!
give the required relationship betweenb andf will be seen
by the result for the slope of the light line inS8, Eq. ~2.26!
below. Substituting Eqs.~2.20! and~2.21! into Eq.~2.17! for
C3 andC7 , we have

x̄5
p cosf

A122m cos2 f
, ~2.22!

1 p sin f

z̄5

A122m A122m cos2 f
. ~2.23!
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We now transform the light line, Eqs.~2.22! and ~2.23!,
into the acceleratedS8 frame with the coordinate transforma
tion given by Eqs.~2.3! and ~2.5! with ū5p/A122m. The
result is

x85
p cosf

A122m cos2 f
, ~2.24!

and, after expanding and canceling terms,

z852
m

2

p2 cos2 f

~122m cos2 f!
1

p sin f

A122m cos2 f
. ~2.25!

Equations~2.24! and ~2.25! represent a null geodesic inS8,
since they are the result of a coordinate transformation
null geodesic inS̄, and a coordinate transformation neith
changes intervals nor geometry. We wish to determine
rate of deflection inS8.

For calculation~1a! we take the coordinate slope of th
light line in S8 to be given by

tan a5
dz8

dx8
5

dz8

dp

dx8

dp

52
mp cosf

A122m cos2 f
1tan f

52mx81tan f, ~2.26!

where, from the line element inS8, Eq. ~2.1!, we note that
bothdz8 anddx8 are coordinate displacements, but onlydx8
also measures a proper distance. At the origin the sl
tana5tanf as promised, and it decreases with increasingx8
as the light line deflects in the negativez8 direction, that is
opposite to the direction of the acceleration ofS8 with re-
spect toS̄. The rate of deflection per unit propagation d
tance is obtained by differentiating Eq.~2.26! with respect to
s giving

sec2 a
da

ds
52m

dx8

ds
52m cosa, ~2.27!

and evaluating the result at the origin wherea5f, we have

S da

ds D
0

52m cos3 f. ~2.28!

Converting to dimensional quantities, Eq.~2.28! becomes

da

ds
5

ds

ds

da

ds
5

1

r

da

ds
52

m

r 2 cos3 f52
m

R2 cos5 f.

~2.29!

Finally, sinces5R tanf as shown in Fig. 1, the deflectio
rate per unit central angle is

da

df
5

ds

df

da

ds
52

m

R
cos3 f. ~2.30!

We now do calculation~1b!, replacing the coordinate dis
placementdz8 in the slope by the corresponding proper d
placement
dsz85
dz8

A122m12mz8
, ~2.31!
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which is obtained from Eq.~2.1! by settingdu85dx85dy8
50. Using the proper displacementdsz8 in the calculation it
is more convenient to chooseC151 in Eq.~2.17!, and in this
case we get the correct slope at the origin inS8 if we set
C35cosf and C75sinf. Then in S̄ we have simplyx̄
5p cosf and z̄5p sinf and correspondingly inS8,

x85p cosf, ~2.32!

and

z852 1
2mp2 cos2 f1p sin fA122m. ~2.33!

This time, defining tana to be the proper slope of the ligh
line in S8, we write

tan a5

dsz8
dp

dx8

dp

5

dsz8
dz8

dz8

dp

dx8

dp

52
mp cosf

A122m12mz8

1A 122m

122m12mz8
tan f

52
mx8

A122m12mz8

1A 122m

122m12mz8
tan f,

~2.34!
where tana5tanf at the origin. The rate of deflection pe
unit propagation distance is given by

sec2 a
da

ds
52

m

A122m12mz8

dx8

ds

1
m2x8

~122m12mz8!3/2

dz8

ds

2
mA122m

~122m12mz8!3/2 S dz8

ds D tan f. ~2.35!

From Eq.~2.1!, with du85dy850, we can write

15S dx8

ds D 2

1
1

~122m12mz8! S dz8

ds D 2

, ~2.36!

and therefore

dx8

ds
5cosa,

dsz8
ds

5
1

A122m12mz8

dz8

ds
5sin a.

~2.37!

Substituting Eqs.~2.37! into Eq. ~2.35! and dividing through
by sec2 a, we have

da

ds
52

m

A122m12mz8
cos3 a

1
m2x8

~122m12mz8!
sin a cos2 a
2
mA122m

~122m12mz8!
sin a cos2 a tan f. ~2.38!
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We now evaluateda/ds to first order inm at the origin of
S8 wherea5f, as shown by Eq.~2.34!,

S da

ds D
0

52
m cosf

A122m
52m cosf1O~m2!. ~2.39!

Converting to dimensional quantities withda/ds5(ds/ds)
3(da/ds)5(1/r )(da/ds) and assumingm!1, we have
for the rate of deflection per unit propagation distance inS8,

da

ds
52

m

r 2 cosf52
m

R2 cos3 f. ~2.40!

Furthermore, again noting thats5R tanf along the zeroth-
order light path in Fig. 1, we find that the deflection rate p
unit central angle is

da

df
5

ds

df

da

ds
5R sec2 f

da

ds
52

m

R
cosf, ~2.41!

which agrees with Einstein’s~1911! calculation. Finally, we
integrate Eq.~2.41! along the light path to obtain Einstein’
result for the overall deflection,

a52
2m

R E
0

p/2

cosf df52
2m

R
. ~2.42!

It is very interesting that when we calculate the slope inS8
with proper displacements we obtain Einstein’s results
the deflection rate and the overall deflection. We will expla
why this is so in our conclusions.

From our calculations~1a! and~1b! we have obtained two
different expressions for the rate of deflection per unit cen
angle in the set of ‘‘equivalent’’ acceleratedS8 frames at
various central anglesf, Eq. ~2.30! and Eq.~2.41!, the first
falling off as cos3 f and the second less rapidly as cosf.
The ~1a! result is based on a coordinate slope inS8 calcu-
lated as the ratio of coordinate displacementsdz8/dx8, while
the ~1b! result is based on a proper slope calculated as
ratio of proper displacementsdsz8 /dx8. Which is correct?
One would think that the tangent of an angle should alw
be the ratio of two proper lengths, and the line element inS8,
Eq. ~2.1!, shows thatdsz8[dz8/A122m12mz8 and dx8
are both proper lengths. But we have not asked the r
question. Since at any givenf the accelerated frameS8 is
supposed to be the ‘‘equivalent’’ of the corresponding s
tionary frameS in the sun’s gravitational field, a more ap
propriate question would be which calculation is compati
with radial measure and trigonometry in Schwarzsch
space and which is not? We shall see that it is the calcula
~1a! and not~1b!. In fact, we shall see that the~1b! result,
while certainly correct in the limited context of an accele
ated frame in flat spacetime, leads to a contradiction w
we try to interpret it in terms of the equivalence princip
Specifically, we shall find that for values of central anglef
.cos21(1/)) the rate of deflection due to acceleration giv
by the~1b! result turns out to be greater than the total rate

deflection which we now proceed to calculate in calculatio
~2! with the full Schwarzschild metric.
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III. DEFLECTION RATE IN SCHWARZSCHILD
SPACE

The Schwarzschild line element, which arises from t
exterior solution of Einstein’s field equations for a sphe
cally symmetric, nonrotating central body of geometric ma
m, is given by

ds252S 12
2m

r D c2 dt21S 12
2m

r D 21

dr21r 2~dx

1sin2 x df2!, ~3.1!

where r is a radial coordinate andx and f are the usual
spherical angular coordinates. According to general rela
ity, light follows a null (ds250) geodesic path in the space
time manifold. Our main purpose in this section is to calc
late the rate of deflection in thex5p/2 plane as a function
of central anglef using the full Schwarzschild metric. Bu
before proceeding we want to examine radial measure
trigonometry in Schwarzschild coordinates in order to su
port our rejection of result~1b! for the rate of deflection in
the accelerated frameS8 at central anglef.

Misner, Thorne, and Wheeler22 point out that although the
radial Schwarzschild coordinater does not measure prope
distance from the origin, nevertheless the proper area
spherical surface at coordinate radiusr is 4pr 2, as can be
seen by settingc2dt25dr250 in Eq. ~3.1! and integrating
ds2 over solid angle. An infinitesimal solid angle i
Schwarzschild space~measured in ordinary steradians! is
given by

dV5
ds2

r 2 , ~3.2!

where ds2 is an element of proper area on the spheri
surface atcoordinateradiusr. Since we are only interested i
motion in the planex5p/2, let us simplify the discussion by
setting sinx51 and dx50 in Eq. ~3.1!. Then the proper
circumference of the circle at coordinate radiusr is 2pr , and
an infinitesimal central angle~in radians! is given by

df5
ds

r
, ~3.3!

whereds is an element of proper length on the circle, and

r 5E
0

r

dr8ÞE
0

r 0Ab~r 8!dr81E
r 0

r dr8

A12
2m

r 8

~3.4!

is definitely the coordinate radius and not the proper rad
which is given by the final expression in whichr 0 is the
coordinate radius of the central body of geometric massm,
andb(r ) is the radial metric of the interior solution of Ein
stein’s field equations. Thus the radian measure of the cen
anglef in Schwarzschild space is the ratio of a circumfe
ential proper length and a radial coordinate length. But tha
not the whole story. The coordinate radius is an essential
of trigonometry in Schwarzschild space. Thus, referring
Fig. 1,R andr are coordinate radii such thatR/r 5cosf and
s/R5tanf. In general, an infinitesimal distancedsalong the
nlight path has a radial component that is coordinate and a
circumferential component that is proper.
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Referring back to Fig. 1, we see that thez, z coordinates in
S are radial, and thej, x coordinates are circumferentia
Then, sinceS8 is the ‘‘equivalent’’ of S, we should treat
z8,z8 as radial andj8,x8 as circumferential. Taking thes
points about radial measure and trigonometry in Schwa
child space into consideration and bearing in mind that
want the ‘‘equivalent’’S8 frame to be as equivalent as po
sible, it seems reasonable to calculate the slope of the
line in S8 as tana5dz8/dx8 rather thandsz8 /dx8. In fact, it
is not only reasonable but also essential. We will show
Sec. IV that the metric ofS8 is ‘‘equivalent’’ to the metric of
S, a stationary frame in Schwarzschild space. Therefore
order to realize the ‘‘equivalence’’ ofS8 and S one must
employ the same radial measure and trigonometry inS8 as
that used in Schwarzschild space.

After this preamble on radial measure and trigonometry
Schwarzschild space, we now move on to the main topic
this section, the calculation of the deflection rate in the f
Schwarzschild metric. We use the standard dimensio
Schwarzschild coordinates of Eq.~3.1! for this calculation
with x5p/2. The situation is shown in Fig. 2 wheret~f! is
a unit tangent vector to the light line at central anglef which
we will use to calculate the rate of deflection.

Instead of solving the null geodesic equations from
beginning, we pick up the calculation from Weinberg,21 who
gives the rate of change of radius with respect to cen
angle as

dr

df
5r 2 AS 1

R22
1

r 2D12mS 1

r 32
1

R3D , ~3.5!

whereR is the minimum radius atf50. Equation~3.5! is
exact. Referring again to Fig. 2, the rate of change of
radius vector with respect tof is given by

dr

df
5 iS dr

df
cosf2r sin f D1 j S dr

df
sin f1r cosf D ,

~3.6!

Fig. 2. Deflection of the null geodesic with the standard Schwarzsc
metric. At central anglef the angle of deflectiona ~negative for deflection
toward the center! is the angle between the tangent vectorst~f! and t(f
50).
and the unit tangent vector atf is
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t~f!5
dr

df
Y U dr

df
U

5

iS dr

df
cosf2r sin f D 1 j S dr

df
sin f1r cosf D

AS dr

df
D 2

1r 2

.

~3.7!

The angle of deflectiona ~negative for deflection toward th
center! is the angle between the tangent vectorst~f! and
t(0)5 j . The sine of the deflection angle is given by

2k sin a5t~0!3t~f!52k

S dr

df
cosf2r sin f D
AS dr

df
D 2

1r 2

,

~3.8!

and the cosine by

cosa5t~0!–t~f!5

dr

df
sin f1r cosf

AS dr

df
D 2

1r 2

. ~3.9!

Dividing Eq. ~3.8! by Eq. ~3.9! gives

tan a5

dr

df
cosf2r sin f

dr

df
sin f1r cosf

. ~3.10!

The rate of deflection per unit central angle atf is given
by the derivative of Eq.~3.10!,

da

df
5

S dr

df
sin f1r cosf D 2

F S dr

df
D 2

1r 2G
d

df F dr

df
cosf2r sin f

dr

df
sin f1r cosf

G ,

~3.11!

where we have brought sec2 a over to the right-hand side a
cos2 a and substituted Eq.~3.9!. The result of the differen-
tiation in Eq.~3.11! is a long-winded expression involvingr,
drdf, andd2r /df2. For dr/df andd2r /df2 we substitute
Eq. ~3.5! and its derivative,

d2r

df2 5m2r 12~R22m!S r

RD 3

. ~3.12!

d

Carrying out the derivative, making these substitutions, and
simplifying, Macsyma23 gives
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da

df
52

3m

2m1~R22m!S r

R
D 3 . ~3.13!

Equation ~3.13! is exact. Evaluating it atf50 where r
5R, we have for the maximum rate of deflection,

S da

df D
max

52
3m

R
. ~3.14!

Finally, to obtain the deflection rate as a function of cent
angle, we substitute the zeroth-order approximation to
light line, r 5R/cosf ~see Fig. 1!, into Eq. ~3.13!, giving

da

df
52

3m cos3 f

RF122
m

R
~12cos3 f!G

52
3m

R
cos3 f1OS S m

RD 2D . ~3.15!

We conclude this section by comparing our final results
calculation~2!, Eqs.~3.14! and~3.15!, for the rate of deflec-
tion in the full Schwarzschild metric with our two corre
sponding results in the ‘‘equivalent’’ accelerated frames,
~2.30! from calculation~1a! and Eq.~2.41! from ~1b!. Equa-
tion ~3.14!, (da/df)max523m/R, is an exact result for the
maximum total rate of deflection at minimum radius in t
full Schwarzschild metric. Atf50 both our results in the
‘‘equivalent’’ accelerated frame giveda/df52m/R. Thus
we can reasonably conclude that of the total maximum
of deflection, one-third is due to acceleration with respec
local inertial frames~the equivalence principle!. For the gen-
gxz5qmF 2x

122m
2

4~12m!xz

124m14m22
~3210m18m !~x 1y

126m11

247 Am. J. Phys., Vol. 67, No. 3, March 1999
l
e

f

.

te
o

~2.30! of calculation ~1a! and Eq. ~2.41! of ~1b! give
da/df52(m/R)cos3 f and da/df52(m/R)cosf, re-
spectively. Since 3 cos3 f approaches zero faster than cosf
as f→p/2, if we accept the~1b! result, then for f
.cos21 (1/)).54.7° the deflection rate due to accelerati
is greater than the total deflection rate; that is, the par
greater than the whole. For this reason and to be consis
with radial measure and trigonometry in Schwarzsch
space, as explained at the start of this section, we must
cept the~1a! result and reject the~1b!.

With the results of calculations~1a! and ~2! we have an-
swered the basic question posed in Sec. I. At any given va
of the central angle, one-third of the rate of deflection is d
to acceleration~the equivalence principle! and two-thirds are
due to spacetime curvature. This~1/3, 2/3! split persists at all
points along the light path. However, this conclusion is u
satisfying from the point of view of understanding th
equivalence principle because the results were obtained f
two separate calculations. Any ‘‘equivalence’’ between t
flat metric of the accelerated frames and the Schwarzsc
metric remains hidden in the latter. Our final calculation~3!
of the rate of deflection in a set of stationary frames along
light path in the sun’s gravitational field clarifies this iss
and serves as a unifying bridge between the first two ca
lations.

IV. RATE OF DEFLECTION IN THE DISPLACED
STATIONARY FRAMES

We consider a set of displaced, stationary framesS at ra-
dius r and central anglef along the light path in the sun’s
gravitational field as shown in Fig. 1. In terms of nondime
sional coordinates,u5ct/r , x5j/r , y5h/r , andz5z/r , a
element
the

displaced
e

eral case, Eq.~3.15! of calculation ~2! gives da/df
52(3m/R)cos3 f for the total rate of deflection, while Eq.

nondimensional line element in a givenS frame at coordinate
radiusr and central anglef is given by20

ds2[
ds2

r 2 52F12
2m

a
Gdu21dx21dy21

@a322m~x21y2!#dz214m@xy dx dy1x~11z!dx dz1y~11z!dy dz#

a2~a22m!
,

~4.1!

where a[A112z1x21y21z2 and m[m/r . The Ricci tensor associated with the metric given by Eq.~4.1! has been
calculated and found to be zero, as it should be since the above line element is simply the Schwarzschild line
transformed into the displaced rectangular coordinates.24 Thus the metric in the displaced, stationary frame satisfies
vacuum Einstein field equations exactly.

The conceptual advantage of the displaced rectangular coordinates is that the effects of acceleration of the
stationary frame with respect to falling local inertial frames~the equivalence principle! and spacetime curvature can b
distinguished.20 Consider the following Taylor expansions of the metric tensor elements about the origin.

guu52~122m12mz!1qm@2~x21y2!12z213~x21y2!z22z31¯#, ~4.2!

gzz
215122m12mz1qm@~324m!~x21y2!22z21~16m29!~x21y2!z12z31¯#, ~4.3!

gxy5qmF 2xy

122m
2

2~324m!xyz

124m14m2 1¯G , ~4.4!

2 2 2 2 2
!x2~6212m18m !xz

2m228m3 1¯G , ~4.5!
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andgyz5gxz (x↔y). We have included a curvature taggin
parameterq in these expansions such that withq50 the
Riemann tensor is zero, and withq51 we have the full
spacetime curvature of the Schwarzschild metric. Referr
to Eq. ~2.6!, it will be noticed that the metric in a displace
stationary frameS at radiusr and central anglef, given by
Eqs.~4.2!–~4.5! with q50, corresponds exactly to the metr
in the corresponding ‘‘equivalent’’ accelerating frameS8 in
flat spacetime. The reason that we expandedgzz

21 in Eq. ~4.3!
instead ofgzz was to make this ‘‘equivalence’’ manifest.

We now proceed with the calculation of the deflection r
in a given S frame at radiusr and central anglef. Light
follows a null geodesic pathxl(p) in spacetime determine
by the geodesic equations,

d2xl

dp2 1Gmn
l

dxm

dp

dxn

dp
50, ~4.6!

where~exactly as in the case of the Minkowski metric in Se
II ! p is a nondimensional affine parameter related linearly
proper time byct/r 5Ap1B ~for a null geodesicA50!, and
the Christoffel symbolsGmn

l are related to the metric inSby

Gmn
l 5

1

2
glrS ]gmr

]xn 1
]grn

]xm 2
]gmn

]xr D , ~4.7!

where the metric tensor elements are given by Eqs.~4.2!–
~4.5!. Just as in the case of the inertial frameS̄, the four Eqs.
~4.6! are not independent and the solution must be c
strained by the null line element,ds250.

In order to calculate the deflection rate at the origin ofS,
we have to determine the geodesic equations and the
line element to first order inx, y, andz. Being that the geo-
desic equations involve the first derivatives of the me
with respect to the spacetime coordinates through the Ch
offel symbols, we would have to use a metric that is valid
second order. We have attempted this calculation and h
not been able to solve the resulting equations. Instead
consider a weak-field approximation in whichm5m/r !1.
For light deflection at the limb of the sunm is of the order of
1026, andm is even smaller forr .R. Now, in the immedi-
ate vicinity of the origin ofS where we are calculating th
deflection rate, we have four small quantities, (m,x,y,z)
!1, and we truncate the Taylor expansions of the me
elements to second order in these quantities. The resu
geodesic equations are then first order in (m,x,y,z), since
any third-order term, likemx2, for example, upon differen
tiation becomes 2mx, which is second order in small quan
tities.

As can be seen from Eqs.~4.2! to ~4.5!, all of the terms in
guu andgzz

21 tagged with the parameterq, and all of the terms
in gxy , are third order and higher. The metric elementsgxz

and gyz have leading second-order terms 2qmx and 2qmy,
respectively. We therefore consider the metric tensor,

gmn5S 2b~z! 0 0 0

0 1 0 2qmx

0 0 1 2qmyD , ~4.8!
0 2qmx 2qmy
1

b~z!
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whereb(z)[122m12mz, and the corresponding line ele
ment,

ds252bdu21dx21dy21
1

b
dz2

14qm~x dx dz1y dy dz!. ~4.9!

The associated geodesic equations, Eqs.~4.6! with l
50,1,2,3, are given by25

ü1
1

b

db

dz
żu̇50, ~4.10!

@4q2m2b~x21y2!21# ẍ14q2m2bx~ ẋ21 ẏ2!

1qmx
db

dz S bu̇22
ż2

b D50, ~4.11!

@4q2m2b~x21y2!21# ÿ14q2m2by~ ẋ21 ẏ2!

1qmy
db

dz S bu̇22
ż2

b D50, ~4.12!

@4q2m2b~x21y2!21# z̈22qmb~ ẋ21 ẏ2!

2
1

2

db

dz S bu̇22
ż2

b D50, ~4.13!

where dots denote derivatives with respect to the affine
rameterp. The null constraint is provided by settingds2

50 in Eq. ~4.9! and dividing through bydp2. The result is

2bu̇21 ẋ21 ẏ21
ż2

b
14qm~xẋ1yẏ!ż50. ~4.14!

Now we want to solve Eqs.~4.10!–~4.13!, subject to the
constraint Eq.~4.14!, for a null geodesic path in thex,zplane
in S that comes in from the negativex,z quadrant, goes
through the origin with a slope tanf, and goes out in the
positive x,z quadrant, all the while being deflected in th
negativez direction. Although Eqs.~4.10!–~4.14! contain
terms of higher order, we must not forget that they are ba
upon a metric that is truncated to second order in (m,x,y,z)
and are thus only valid to first order in the vicinity of th
origin of S. Therefore, we will solve them to first order i
(m,x,y,z), which is adequate to determine the deflection r
at the origin.

Equation ~4.10! can be rewritten asd/dp ln(bu̇)50 and
integrated to give

u̇5
1

b
, ~4.15!

where we have normalized the affine parameterp by setting
the integration constant to zero. Furthermore, Eq.~4.12! is
trivially satisfied by

ÿ50, ẏ50, y50, ~4.16!

for motion in the xz plane. Substituting Eqs.~4.15! and

~4.16! into Eqs. ~4.11!–~4.14!, we have for the geodesic
equations inx andz,
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~4q2m2bx221!ẍ14q2m2bxẋ21qm
1

b

db

dz
x~12 ż2!50,

~4.17!

~4q2m2bx221!z̈22qmbẋ22
1

2

1

b

db

dz
~12 ż2!50, ~4.18!

and the null constraint becomes

ẋ214qmxẋż2
1

b
~12 ż2!50. ~4.19!

Substituting the null constraint, Eq.~4.19!, anddb/dz52m
into Eqs.~4.17! and ~4.18!, we obtain

~4q2m2bx221!ẍ14q2m2bxẋ212qm2x~ ẋ214qmxẋż!50,
~4.20!

~4q2m2bx221!z̈22qmbẋ22m~ ẋ214qmxẋż!50. ~4.21!

Finally, neglecting terms higher than first order
(m,x,y,z), Eqs.~4.20! and ~4.21! become

ẍ50, ~4.22!

z̈1m~112q!ẋ250, ~4.23!

and the null constraint, Eq.~4.19!, becomes

ẋ25
1

b
~12 ż2!. ~4.24!

As Eqs. ~4.22! and ~4.23! are second-order differentia
equations, we need four conditions at the origin correspo
ing to the particular null geodesic we are seeking. Tak
p50 at the origin, the conditions on the coordinates are

x~0!50, z~0!50. ~4.25!

The conditions on the coordinate velocities are determine
follows. First of all, we want the slope at the origin to be

dz

dx
~0!5

ż~0!

ẋ~0!
5tan f. ~4.26!

Next we evaluate the null constraint, Eq.~4.24!, at the origin,
substitute Eq.~4.26! for ż(0), andsolve for ẋ(0) to obtain

ẋ~0!5
cosf

A122m cos2 f
. ~4.27!

Finally, substituting Eq.~4.27! into Eq. ~4.26!, we have

ż~0!5
sin f

A122m cos2 f
. ~4.28!

The solution of Eq.~4.22!, with the conditions Eqs.~4.25!
and ~4.27! imposed, is

ẋ5
cosf

A122m cos2 f
, ~4.29!

x5
p cosf

A122m cos2 f
. ~4.30!

Then, substituting Eq.~4.29! into Eq. ~4.23! gives
2

z̈1m~112q!
cos f

122m cos2 f
50. ~4.31!
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The solution of Eq.~4.31!, with the conditions Eqs.~4.25!
and ~4.28! imposed, is

ż52m~112q!
p cos2 f

122m cos2 f
1

sin f

A122m cos2 f
,

~4.32!

z52
m

2
~112q!

p2 cos2 f

~122m cos2 f!
1

p sin f

A122m cos2 f
.

~4.33!

At this point we note that Eqs.~4.30! and ~4.33! with q50
are identical to Eqs.~2.24! and ~2.25! which were obtained
by a coordinate transformation of the straight line null ge
desic in an inertial frameS̄ to the accelerated frameS8.

From Eqs.~4.29! and ~4.32! the slope near the origin is
given by

tan a5

dz

dp

dx

dp

52
m~112q!p cosf

A122m cos2 f
1tan f

52m~112q!p cosf1tan f1O~m2!,

~4.34!

where tana5dz/dx is consistent with Schwarzschild radia
measure and trigonometry. Upon differentiation with resp
to nondimensional propagation distance, Eq.~4.34! gives

sec2 a
da

ds
52m~112q!

dp

dx

dx

ds
cosf

52m~112q!cosa1O~m2!, ~4.35!

where we have substituted the inverse of Eq.~4.29! for
dp/dx anddx/ds5cosa. Converting to dimensional quan
tities and neglectingO(m2), we have

da

ds
5

ds

ds

da

ds
5

1

r

da

ds
52

m

r 2 ~112q!cos3 a, ~4.36!

and evaluating at the origin ofS wherea5f,

S da

dsD
0

52
m

R2 ~112q!cos5 f, ~4.37!

sincer 5R secf ~see Fig. 1!. Finally, the deflection rate pe
unit central angle is given by

da

df
5

ds

df

da

ds
52

m

R
~112q!cos3 f, ~4.38!

since from Fig. 1,s5R tanf andds/df5R sec2 f. For q
51 Eq. ~4.38! agrees with Eq.~3.15!, the deflection rate of
calculation~2! with the full Schwarzschild metric in the stan
dard Schwarzschild coordinates. Both results are first or
in m/R. For q50 it agrees with Eq.~2.30!, the deflection
rate of calculation~1a! in the ‘‘equivalent’’ accelerated
frame in flat spacetime.

It only remains to calculate the overall deflection by int
grating Eq.~4.38! over the central angle. In this integration
shouldnot be imagined that anS frame in Fig. 1 is ‘‘moving
with a photon’’ and thus rotating as the central angle

creases. Rather Eq.~4.38! gives the deflection rate with re-
spect to a set ofstationary Sframes along the light path as a
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function of central angle. The deflection rate was obtained
considering ‘‘the motion of a photon’’ with respect to ea
stationaryS frame. Furthermore, in integrating the deflecti
rate to obtain the overall deflection, it is immaterial that thS
frames vary in orientation. The overall deflection is given

a52
m

R
~112q!E

2p/2

1p/2

cos3 f df

52
2m

R
~112q!E

0

p/2

~12sin2 f!cosf df

52
4m

3R
~112q!

5H 2
4m

3R
~q50!

2
4m

R
~q51!.

~4.39!

While we obtain the standard result forq51, our equiva-
lence principle result withq50 is two-thirds of Einstein’s
1911 result as a consequence of our deflection rate falling
as cos3 f instead of cosf. We have established the impo
sibility of the latter and have shown that it results from
failure to match Schwarzschild radial measure and trigono
etry in the equivalence principle calculation.

V. CONCLUSION

The results of three separate calculations of the deflec
rate of light per unit central angle along the light path in t
gravitational field of the sun have been presented in an
ercise aimed at further understanding of the equivale
principle in general relativity. The calculations were bas
upon the following theoretical principles:~1! coordinate
transformations of null~light! geodesics from a set of inertia
frames to a set of accelerated frames in flat spacetime,
appropriate orientation and acceleration along the light p
~2! a null geodesic associated with the standard Schwa
child metric; and~3! null geodesics in a set of displace
stationary frames along the light path in the sun’s grav
tional field. The rate of deflection rather than the over
deflection has been emphasized, in keeping with the lo
restriction of the equivalence principle in connection w
real gravitational fields. Calculation~1! was performed in
two ways: ~1a! with a coordinate slope, and~1b! with a
proper slope, the latter calculation being rejected becau
is inconsistent with Schwarzschild radial measure and tri
nometry.

The results of all three calculations are in complete acc
and show that at all values of the central angle one-third
the total rate of deflection is due to acceleration with resp
to local inertial frames and two-thirds is due to spaceti
curvature. The agreement of the calculations~1a! and ~3!
with q50 is very satisfying because it confirms the loc
equivalence of the accelerating frames in flat spacetime
the corresponding stationary frames in the gravitational fi
in the limit of zero curvature. The agreement of calculatio
~2! and~3! with q51 verifies that the approximations mad
in the latter are valid in calculating a local quantity like th
rate of deflection.
As far as we are aware, we are the first authors to reco
nize the importance of matching Schwarzschild radial mea
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sure and trigonometry in calculations of light deflectio
based upon the equivalence principle. Matching Schwa
child measure leads to a deflection rate that falls off
cos3 f while the failure to do so results in a cosf behavior.
The latter, when compared to the 3 cos3 f behavior of the
deflection rate obtained in calculation~2! with the standard
Schwarzschild metric, leads to the impossible result of
part being greater than the whole forf.cos21(1/)). While
it is certainly valid to measure an angle in an accelera
frame in flat spacetime as the ratio of two proper lengt
when the accelerated frame is being considered as
‘‘equivalent’’ of a stationary frame in Schwarzschild spac
then it is important to be consistent in order for the calcu
tions to make any sense. Schwarzschild radial measure
trigonometry in the accelerated frame is a part of t
‘‘equivalence,’’ and, judging from our results, a rather im
portant part.

Our conclusions are not in agreement with some of
previously published results that we have referenced in S
I. In our notation, a survey of these earlier results revea
general agreement among the authors on a deflection
from the equivalence principle~or due to time dilation only!
of da/df52(m/R)cosf and a total deflection rate o
da/df52(2m/R)cosf. In the respective references, the
results are based upon: Newtonian and relativis
treatments;8,11 rotation of the polarization vector of an elec
tromagnetic field;12 deflection with respect to an infinitely
fast particle;13 time-like and space-like terms in the metric;14

and deflection due to three-space curvature.16 We assess the
validity of these results by subjecting them to the same
that we have used to judge our own, namely comparison w
the total deflection rate,da/df52(3m/R)cos3 f, calcu-
lated from the standard Schwarzschild metric, our most e
ily defended result. We have already made the first comp
son, because the earlier result from the equivalence princ
is identical to our result~1b!. At the central anglef
5cos21(1/)).54.7° where cosf53 cos3 f the deflection
rate due to acceleration with respect to local inertial fram
starts to become greater than the total deflection rate. C
paring the two results for total deflection rate, the earl
result is two-thirds of the correct value atf50 and becomes
greater than the correct value atf5cos21(A2/3).35.3°. It
is remarkable that both results for total deflection rate g
the same overall deflection:

a52
2m

R E
2p/2

1p/2

cosf df52
4m

R
, ~5.1!

a52
3m

R E
2p/2

1p/2

cos3 f df52
4m

R
. ~5.2!

A final question needs to be answered. Why do Einste
~1911! results for deflection rate and overall deflection ag
with our calculation~1b!? Under the assumption that an a
celerated frame is equivalent to a uniform gravitational fie
Einstein carried out his calculation in a Euclidean space
which the coordinates all measure proper distance. Our
of the proper displacementdsz8 in place of the coordinate
displacementdz8 in the calculation of the slope effectivel
canceled out any matching with Schwarzschild and m
calculation~1b! a Euclidean calculation as well.
g-
-

Due to a fluke of mathematics, exemplified by Eqs.~5.1!
and ~5.2!, Einstein’s~1911! result for the overall deflection,
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R E
2p/2

1p/2

cosf df52
2m

R
, ~5.3!

has long been considered to be an incomplete part of
total, overall deflection,a524m/R, given by general rela-
tivity. By investigating the associated rates of deflection,
have shown that Einstein’s~1911! calculation is inconsisten
with general relativity. Therefore, we believe thata
52(4m/3R), given by Eq.~4.39! with q50, should be con-
sidered as the valid overall deflection based upon the equ
lence principle, since its associated deflection rate is ba
upon a consistent treatment of radial measure and trigon
etry and is consistent consequently with the total deflec
rate based upon the standard Schwarzschild metric.
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ANOTHER REASON TO REPEAT AN EXPERIMENT

That night I could not sleep. After a delay of five years my idea had paid off with only a few
hours’ work: I had identified the first gland that contributes to ant communication. More than that,
I had discovered what seemed to be a new phenomenon in chemical communication. The phero-
mone in the gland is not just a guidepost for workers who choose to search for food, but the signal
itself—both the command and the instruction during the search for food. The chemical was
everything. ... Over the next few days I confirmed the efficiency of the trail pheromone assay over
and over. In science there is nothing more pleasant than repeating an experiment that works.
C, 1994!, pp. 291–292.
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