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Abstract
The study of electromagnetic wave propagation in a coaxial cable can be a
powerful approach to the study of waves at an undergraduate level. This study
can explore different experimental situations, going from those where the finite
velocity of propagation must be considered (distributed or transmission line
behaviour), to those where this velocity may be considered infinite (lumped
behaviour). We believe that the student observation of the existence of these two
regimes can be important for the understanding of wave phenomena in general.
In this work we show that this can be achieved using low-cost equipment and a
set of quite simple experiments, such as the measurement of wave propagation
velocity or the study of standing waves and resonance. The results obtained in
a coherent set of selected experiments are discussed.

1. Introduction

Experimental activities aimed at the exploration of the distributed or transmission line
behaviour of a coaxial cable are usually undertaken using very expensive pulse generators and
high speed oscilloscopes [1–4]. Moreover, these experimental activities are not designed to
show that in the limit of very large pulse widths (compared with transit time in the transmission
line) the physics of the coaxial cable can be well understood in the framework of circuit theory
and how both descriptions become equivalent. For these reasons, we have planned a coherent
set of simple experiments to explore both limits (propagation time higher than pulse width and
pulse width much larger than propagation time) and designed a low-cost kit specially suited
for this purpose (this can be easily done if long cables are used).

We shall start by making a quick review of some well-known fundamental properties of
a coaxial cable, that can be found in almost any course on electromagnetism [5]. A coaxial
cable can be described as a transmission line with cylindrical geometry, composed of a central
conductor, with diameter ri, and an external tube-shaped conductor, with diameter re. The
space between these two conductors is filled with a dielectric.
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Electromagnetic waves will propagate in the direction of cable length and the associated
fields will have nonzero values mainly in the dielectric, being shielded from the exterior by
the external conductor. Considering this geometry, and assuming that the boundary conditions
of the dielectric are imposed by perfectly conducting walls (the conductor surfaces), the field
lines are quite simple to predict: the electric field must be normal to these walls and will thus
have radial field lines, while the magnetic field must be tangential to the conductor surfaces,
which means that magnetic field lines are essentially circular.

Using Gauss’ theorem and Ampere’s law, the capacitance and the self-inductance of this
transmission line, per unit length, are easily calculated to be

Cl = 2πε

ln re
ri

Ll = µ

2π
ln

re

ri
(1)

where ε represents the dielectric constant and µ is the magnetic permeability of the dielectric
(which will be considered equal to the magnetic permeability of vacuum, µ0).

Since the electric (EE) and magnetic energy (EM) densities are equal we can write

EE = 1
2ClV

2 = EM = 1
2LlI

2 (2)

where V and I represent the potential and electric current at the same point, respectively.
The ratio V/I is thus a constant that depends only on the dielectric constant, the magnetic
permeability of the medium and the geometry of the cable. This constant is usually called its
characteristic impedance, Z0. Combining equations (1) and (2) we obtain

Z0 = V

I
=

√
Ll

Cl
= 1

2π

√
µ0

ε
ln

re

ri
. (3)

The velocity of propagation of the electromagnetic waves is given by

c = 1√
εµ0

= c0

n
(4)

where c0 stands for the light velocity in vacuum and n = √
εrel represents the refractive index

of the dielectric.
If the line is terminated with a purely resistive load of impedance R then waves will be

reflected at the end of the line. The reflection coefficient � depends on the boundary conditions
according to

� = R − Z0

R + Z0
. (5)

2. Experimental setup

The kit, shown in figure 1, consists of a specially built pulse generator, one (or more) 50 m
long RG58 coaxial cable(s) and ‘coupling boxes’ to adjust the impedance of the cable ends
and set the desired length.

The pulse generator was designed to meet the following requirements: low cost and simple
to build, adjustable pulse width capability, and repetition rate compatible with the use of a
low-cost 20 MHz oscilloscope. Figure 2 shows the electric schematics of the pulse generator
developed according to these requirements.

The main specifications of the pulse generator are 15 V output in open circuit conditions,
50 � output impedance, pulse width adjustable from 35 ns to 10 µs with a fall time of
10 ns, and a repetition rate that can be adjusted from 3 to 50 kHz. A pre-pulse signal for
synchronizing the oscilloscope is also available at the front panel of the unit. In figure 3 we
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Figure 1. Experimental setup: the coaxial cable wave propagation kit.

Figure 2. Schematics of the pulse generator.

(a)

(b)

Figure 3. The coupling box can be used to (a) set the terminating impedance of the coaxial cable
or (b) as a coupling circuit.

show a picture of one of the coupling boxes that can be used to insert a variable terminating
impedance for the coaxial cable (figure 3(a)) or to couple two cables together (figure 3(b)).
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Any of these two functions can easily be selected by the user by simply inserting a (variable)
resistor or a copper conductor in the appropriate position.

3. Experimental activities

3.1. Wave propagation velocity and reflection coefficient

We shall start with a classic experimental situation that clearly shows the distributed or
transmission line behaviour of a coaxial cable. This will happen if the time of propagation
of an electrical pulse in the transmission line (�/c) has at least the same order of magnitude
as the pulse width. In this limit, the coaxial cable can be described as an extended network
where electromagnetic wave propagation must be taken into account.

In figure 4 we show photographs of the signals that can be measured with a 20 MHz
oscilloscope when a voltage pulse is introduced in a 100 m long coaxial cable. Each of the
three insets corresponds to what is measured at the beginning and end of the cable for different
boundary conditions at the end of the cable (open, 50 � resistor and short circuit).

Students should be alerted to the fact that, since we are exploring the transmission line
behaviour of the coaxial cable, the conductors are not in general equipotentials and for that
reason the ground connection must be made in the end of the cable in which measurements
are being made.

The discussion of these signals can be interesting for the student since it will show the exact
meaning of having a reflection coefficient � = ±1 (open or short circuited end) and � = 0
when the purely resistive cable termination has an impedance that equals the characteristic
cable impedance. Comparing the signals measured at the end of the cable with the echoes
received at the origin will help students to understand the mirror wave concept [7] (� = ±1)

and the energy absorption that occurs when the wave enters a purely resistive medium with
the same characteristic impedance (� = 0) [7]. Note that this is precisely what happens at the
beginning of the cable because the pulse generator output impedance is adjusted to 50 �.

If a variable resistor is inserted at the cable end coupling box, students will be able
to continuously change the reflection coefficient from −1 to close to +1 and observe the
evolution of the different signals. When the terminating resistance R is larger than Z0 the
reflected impulse has the same polarity as the incident one. If R exactly matches Z0 there is
no reflected signal. If R is smaller than Z0 the reflected pulse has the opposite polarity of
the incident one. The characteristic impedance Z0 of the cable can thus be determined by
adjusting a variable resistor at the end of the cable in order to eliminate the reflected impulse.

Using the falling edges of two pulses to measure the pulse transit time and knowing the
corresponding travelled length, one can calculate the velocity of electromagnetic waves in the
transmission line. In particular, from figures 4(a) and (c) the time transit corresponding to a
200 m distance is about 1 µs. The velocity of electromagnetic waves in this transmission line
is therefore roughly

c = 2�
/
�t ≈ 200

1 × 10−6
m s−1 = 2.0 × 108 m s−1 ≈ 0.66c0.

This experimental value is to be compared with the value 1.98 × 108 m s−1 that can be
computed using equation (3) and the tabulated properties for the cable RG-58 [6], namely,
ε = 2.036 × 10−11 F m−1.

If one compares the amplitude and shape of the pulses as they travel longer distances in
the transmission line it becomes quite clear (figure 4) that high frequency Fourier components
of the pulse are preferentially attenuated, since the echoes look much less sharper than the
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(a)

(c)

(b)

Figure 4. Signals measured at the beginning (top) and end (bottom) of the cable corresponding
to different boundary conditions at the end of the cable: (a) open end; (b) 50 � resistor end;
(c) short-circuited end. The cable length is 100 m.

original pulses. This is what is to be expected in a dispersive medium where the propagation
velocity depends on the frequency.
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Figure 5. Pulse losses in the transmission line.

(a)

(b)

Figure 6. Multiple reflections in the ‘coaxial cavity’ configuration corresponding to (a) open end
and (b) short circuited end.

In figure 5 we represent the amplitude of the pulse as a function of ‘travelled’ distance.
The amplitude decays exponentially with distance and from the best line fit coefficient adjusted
to the results we can obtain a pulse loss coefficient (analogous to an absorption coefficient that
can be rigorously defined for a single frequency) which we find to be about 0.128 db m−1.

3.2. Multiple reflections

If we introduce a resistor with an impedance greater than the characteristic impedance of the
cable (for instance 1 k�) at the input of the transmission line (i.e. between the pulse generator
and the cable), we will have a reflected wave at the beginning of the cable, just as we have
at the end (since the impedance ‘seen’ by the echo is no longer the output impedance of the
pulse generator). This can be done simply by using a small coaxial cable connecting the pulse
generator to a coupling box whose other terminal is connected to the transmission line, and
inserting the resistor in place of the copper wire that is used to connect cables (figure 3(b)).
In this case the cable will act as a cavity for the electromagnetic waves. Successive echoes,
with decreasing amplitude due to attenuation along the length of the cable, will travel back
and forward in the transmission line. Figure 6 shows a photograph of the signal as measured
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Figure 7. Measured signal at the input of the transmission line for increasing pulse widths. The
solid dark line shows the fit to the experimental data using RC circuit theory.

at the input of the coaxial cable. The two lines correspond to different boundary conditions at
the cable end: (a) open end; (b) short-circuited end.

3.3. Multiple reflections in the limit of long pulse width

Now, if one increases the pulse width, the successive pulses start adding up, since the reflected
pulse arrives before the end of the input pulse. In the limit situation, when the pulses can be
well described by Heaviside-type functions (meaning that they last until the amplitude of the
reflected echoes is almost zero) the coaxial cable can be described as a capacitor, since all
points of the cable are at the same potential.

Figure 7 shows the signal measured with the oscilloscope at the beginning of the cable for
increasing pulse widths. The measured signal is clearly approaching the typical capacitance
charge curve seen for RC circuits. So, in this limit of ‘slowly’ varying potentials, circuit theory
comes in.

Assuming that we use a resistor R to create the electromagnetic cavity and that the output
of the pulse generator is a pulse with amplitude V0, the resulting pulse on the cable will have
an amplitude given by V0[Z0/(R + Z0)]. If the cable end is open (reflection coefficient at this
end equal to unity) the voltage at the beginning of the coaxial cable after n reflections will
then be

Vn = V0

[
2Z0

(R + Z0)

]
[1 + � + �2 + · · · + �n] (6)

where � represents the reflection coefficient at the beginning of the transmission line for waves
propagating from the end to the beginning of the cable. In the limit when n goes to infinity
the geometric series converges and we will have

V∞ = V0

[
2Z0

(R + Z0)

][
1

(1 − �)

]
. (7)

Using the definition of � (equation (5)), it can be easily seen that the voltage measured at
the beginning of the cable will go to V0 for large n, as it should be if the cable can be well
represented by a capacitor in this limit.
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The ratio Vn+1/Vn can be written as

V (tn+1)

V (tn)
= 1 − �(n+1)

1 − �n
where t(n+1) = tn +

2�

c
. (8)

From circuit theory we know that if we apply a Heaviside pulse of amplitude V0 in a cable
with a capacitance C, connected to the pulse generator through a resistor R, the voltage Vc(t)

is given by

Vc(t) = V0
(
1 − e− t

τ

)
(9)

where the time constant τ is equal to the RC time constant. From the circuit theory point of
view, equation (8) should then be written as

V (tn+1)

V (tn)
= 1 − e−(n+1) 2�

cτ

1 − e−n 2�
cτ

. (10)

Comparing equations (8) and (10) we must conclude that

e−n 2�
cτ = �n ⇒ τ = − 2�

c ln(�)
. (11)

For � close to unity (R � Z0) we can expand ln(�) in series retaining only the first term.
Equation (11) will then be approximated by

τ ≈ −2�

c

[
1

(� − 1)

]
= �

c

(R + Z0)

Z0
. (12)

Once again using the fact that � is close to unity, we can make another approximation taking
(R + Z0)≈ R. Under these circumstances, and using equation (4), we can rewrite equation (12)
in the form

τ ≈ �

c

R

Z0
= �

√
εµ0

Z0
R. (13)

Since from circuit theory τ = RC we conclude that the quantity (�
√

εµ0 )/Z0 must be the
capacitance of the transmission line, CTL, that we can use to model our transmission line as a
lumped network in the limit of large pulse widths.

Using equations (3) and (13) we can write CTL in the form

CTL = �
2πε

ln
(

re
ri

) (14)

which is consistent with the capacitance per unit length expressed by equation (1).
The solid dark line shown in figure 7 yields a time constant of 5.22 µs. Since a 1 k�

resistor was used to create the electromagnetic cavity this means that the measured capacitance
of the cable is about 4.96 × 10−9 F, corresponding to a capacitance of about 99 pF m−1 (the
cable is 50 m long). This value is in good agreement with what is obtained from equation (1):
100.5 pF m−1.

3.4. Resonances in the electromagnetic cavity

If we now introduce a sinusoidal signal in the electromagnetic cavity (using a common signal
generator instead of our pulse generator), wave theory tells us that standing waves will appear,
since waves travelling in opposite directions will interfere with each other. For a discrete set of
frequencies (that depend on the boundary conditions) we will have a resonance in the cavity.
If the end of the cable is left open (� = +1) this set is composed of frequencies such that the
cable length is an integer multiple of λ/2. If the cable end is short circuited (� = 0) we will
have a resonance when the cable length is an odd multiple of λ/4.
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(a)

(b)

(c)

Figure 8. Standing waves inside a coaxial cable with both ends open. The insets show signals
measured at the beginning (a), halfway (b) and end of the cable (c) for the first three resonance
frequencies.

In figure 8 we show the signals measured at the two ends and in the middle of the coaxial
cable for the first three resonance frequencies (304 kHz, 612 kHz and 925 kHz) with the cable
end open. In fact the origin of the cable is not entirely open because this cable end is ‘closed’
through a 1 k� resistor. For the top inset, the wavelength is twice the cable length, and the
node occurs at the middle. Note the 180◦ phase difference between ends. The next resonance
frequency is shown in the middle inset. Here the wavelength is equal to the cable length, and
the nodes occur now at �/4 and 3�/4. As expected the signal in the middle is at 180◦ with
the end signals. When we reach the next resonance frequency (wavelength equal to 2�/3) we
again have a node at the middle of the cable. However, the phase relationship of the potential
between ends has now changed from 0 to 180◦. It should be noted that we never have an
exact zero in the middle of the cable as should be expected since waves are attenuated as they
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(a)

(b)

(c)

Figure 9. Standing waves inside a coaxial cable with one end open and one end shorted. The
insets show signals measured at the beginning (a), halfway (b) and at the end of the cable (c) for
the first three resonance frequencies.

propagate in the transmission line and the reflection coefficient near the signal generator is
smaller than 1.

In figure 9 we show equivalent signals for the first three resonant frequencies (146 kHz,
460 kHz and 781 kHz) with the cable end shorted.

Once again the phase relationship between the signals is in good agreement with what is
to be expected as can be seen by comparison with the schemes close to the images.

Using all the measured frequencies we can compute the propagation velocity c. The
mean value obtained by this calculation is 1.8 × 108 m s−1, showing once again the internal
consistency of all the results.

When pulse attenuation was discussed it was argued that progressive pulse rounding as
they travel in the transmission line could be a consequence of an attenuation increase with
frequency. That this is the case, can be seen in figure 10 where the maximum amplitude of
the resonance is represented as a function of frequency (results obtained with a 350 m cable
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Figure 10. Amplitude of resonance as a function of frequency.

using always the same input amplitude for the sine wave). The resonance amplitude clearly
decreases with frequency showing qualitatively that we have in fact an increase in attenuation
at higher frequencies.

4. Conclusions

We have presented a low-cost kit for the study of electromagnetic wave propagation using a
coaxial cable. Different levels of experiments can be carried out, illustrating several concepts
of wave propagation such as boundary conditions, standing waves and dispersive effects. Also,
a cross bridge from wave theory to circuit theory is extremely simple to illustrate using this
equipment. We must emphasize the good internal coherency of all the results that can be
obtained using this equipment.
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