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To dispel a widespread but erroneous belief among physicists that the penetration of ac magnetic

fields into normal metals is determined by the usual skin depth  alone, a simple analysis is

presented of two problems in each of which a different length scale determines the effective

screening. For a cylindrical can of thickness d   and radius R  where  is the wavelength, it is

shown that the critical thickness for effective screening is  =  For a planar film with

thickness   =  where  the conductivity. An exact analysis is also’presented of the

screening for a cylinder of arbitrary thickness, as well as an analogy between screening by normal

metals and screening by superconductors.

It is widely and erroneously believed by physicists that

problems of the penetration of alternating magnetic fields

into normal metals may be discussed in terms of a single

length, the skin depth  defined in Gaussian units as

 = (  
where  is the electrical conductivity. For brevity, we have

taken the permeability as unity and we have also assumed

that the carrier mean free path  6, in order to exclude the

regime of the anomalous skin effect. Very roughly,   1 cm

at  60  Hz  fo r  copper  a t  room tempera tu re ,  wi th

 = 5.4x  

 a very thin can may screen a magnetic field applied

by the solenoid. If A is the nominal penetration depth of the

London equation, then we can show that the critical wall

thickness required for screening is

 = 
This result was discussed  together with the im-

portant limitations that fluxoid motion imposes on its ap-

plicability.

A variety of fundamental lengths describe the shielding

and penetration problems of interest in physics. We present

here an explication of two fundamental lengths that are

very important yet have escaped emphasis in textbooks.

The historical skin depth calculation that leads to (  re-

fers to a circular wire that carries an electromagnetic field

along the wire, with wavelength/z  R, where R is the radi-

us of the wire. In the limit   R, the field falls off exponen-

tially from the outside of the wire, with a characteristic

length given by  1) . This result is derived in several text-

books, in detail by Smythe.’ Most textbooks treat only the

penetration of an ac magnetic field into a semi-infinite solid

bounded by a plane; this is simple mathematically and does

not involve the Kelvin functions, but the postulated limit

  R is necessarily violated when we consider the plane as

the limit of a cylinder. This violation creates difficulties for

the conventional problem of the semi-infinite solid.

The-physics is quite different when the magnetic field is

applied by a solenoid of circular cross section enclosing a

circular cylindrical shell of inner radius R and outer radius

R   The simple argument below, based on the Faraday

and Ampere laws, shows that the interior of the tube is

effectively screened from the applied field when   

where

Consider a third example: A thin metallic film will re-

flect and absorb a large fraction of the radiation normally

incident when the film thickness d   with

 = 
Recall that the conductivity  has the dimensions of fre-

quency in Gaussian units, so that  is just the fundamen-

ta l  l eng th tha t  en te r s the Maxwell  equation,

curl H =   +    In the example given by

 a 2-nm film of tin transmitted only  of the inci-

dent radiation, independent of  at a frequency such that

the skin depth  100 nm. This is quite a different class of

problem in which the skin depth has nothing to do with the

response of the system.

I. SCREENING BY A THIN CAN IN A
LONGITUDINAL AC MAGNETIC FIELD

We give a direct physical argument for the result (2)

above, in the limit  The magnetic field  inside the

can of circular cross section is  =    where  is
the applied field external to the can and  is the screening

field produced by the back emf  the circumference

of the can. The time dependence is exp (   Let R and

R + d be the inner and outer radii of the can. We assume

that R   d is generally satisfied. Then the back emf is, by

the Faraday law,’

 =  
with  defined by  1) . The applied field may be screened

when the can thickness is much less than a skin depth:  

 = 100, the screening starts to be effective when 

 =  Do not resist this result; for example, it may come

into play whenever thin aluminum shielding cans are used

in the laboratory to screen 60-Hz disturbances. The Max-

well’ moving image theory of eddy currents displays the

importance of the specific geometry of an eddy current

problem.

 

 

which creates a current

 = (   = 
per unit length of the can. By the Ampere law,

  J  

C
   

If the metal can in this example is made of a 

The screening factor is given by
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Kin the metal when      1, so that our physical argu-

ment that leads to ( 8) applies in the regime   as expect-

ed.

What happens when propagation is taken into 

That is, when the wavelength  of the radiation is less than

the radius of the cylinder? Instead of all the flux in the

cylinder being added or removed every quarter cycle, only

the flux within a distance  of the wall of the cylinder is

added or removed. In this limit, the rate of change of the

flux is proportional to  instead of R  we   with

 in the screening result (8). The screening parameter Rd 
   which is of the order   -da/c,

just as in the thin film transmission example treated in de-

tail below.

IL CRITICAL TRANSMISSION THICKNESS OF A
METALLIC FILM

A metallic film can reflect and absorb most of the inci-

dent light at a thickness much less than the skin depth 

Most of the radiation is transmitted when the thickness is

less than the critical thickness  =  given by (4)

above. For copper at room temperature  = 5 x  

so that   cm; or, with the adjustment to  referred

to in Ref. 4, the thickness will be an order of magnitude

greater. The ratio of  to the skin depth  is 

  =  1 in the infrared, with  
- 1
 .

The physical argument for the effect of thin films is that

as d increases and approaches  the electric field E in the

film creates a current sheet that, by Ampere’s law, causes a

magnetic field  of the same magnitude as the magnetic

field in the incident radiation. The two magnetic fields in-

terfere to cancel the transmitted beam.

The solution of the complete problem as given in stan-

dard optics texts can be simplified considerably for the thin

films of interest, of thickness much less than the skin depth

6. The standard solution starts by writing, with all coeffi-

cients having the time-dependence exp(   the mag-

netic field (taken in the z direction) of the incident and

reflected waves in the vacuum region 1 for 

     exp(  

in the film, called region 2, for 

 =      
 the transmitted wave in vacuum (region 3) for

H(x) =  (27)

The wave equation in the vacuum gives the dispersion rela-

tion  = ck; and in the metal  = n    where the com-

plex refractive index is

n(w) = (1  
from the usual expression of the first Maxwell equation,

curl H(w) =  
The boundary conditions on the magnetic field compo-

nents are, at  = 0,

   (29)

  +     =  
(30)
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It simplifies the problem if we consider the physics that led

to these boundary conditions.

In the vacuum regions, the electric field  is related to ,

 

   
Y

 C

At x =  from 

   

whence

(31)

E,(O) =     

(33)

where the reflection amplitude R is defined as

(34)

In the vacuum region 3,

E,(d) =   
=  (35)

where the transmission amplitude T is defined as

(36)

Now kd =  by the dispersion relation in vacuum,

and by our initial assumption  so that (35) becomes

in this limit

 (37)

In the same limit, the spatial average electric field in the

film is

(38)

and the surface current density in the film is

  - R +  (39)

Now apply the Ampere law to a thin rectangular path

around a unit length of the film

=   - R  +  
(40)
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Fig. 2. Transmission, reflection, and absorption of radiation by a thin film,

as a function of the film thickness in units of  where  is the conduc-

tivity of the film.
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Fig. 1. Screening of the external applied field  by a cylinder shell of

radius R =  where  is the skin depth, as a function of the shell thick-

ness d measured in units of 

or

 =    

It follows that the applied field is screened when d  

(see Fig. 1).

We now give the exact solution to this problem, simplify-

ing the method due to L. V.  (The “physical” solu-

tion above has not been found by us in the literature on the

subject.  The first Maxwell equation is

 = 
apart from the displacement current. The second Maxwell

equation is

 = 
if H has the time dependence exp    We combine the

equations to obtain

 = ( 

where  = (   is the skin depth. The analogous

equation, arising from the London equations for the 

conductor, is

 = 

where  is the London penetration depth. For fields with

cylindrical symmetry, Eq.  12a) reduces to

 (13)

This applies within the metal,  which means for

 (13) becomes

the modified Bessel equation of order zero:

The general solution of this equation is given by

 =  + (15)

where  and  are the modified Bessel functions of order

zero.

The tangential components of the magnetic 

fields are continuous across the metal/vacuum interfaces.

The boundary condition at the outer wall is

 H ( R + d - )  = H ( R + d + )  
 the inner wall we apply the Faraday law to 

  =   (17)

Now eliminate E from (10) and (17) to obtain, with

curl H =   the boundary condition at r = R  on

the inner wall:

 

If we write all quantities in terms of the complex variable 

the boundary conditions take the form

H ( z )   

   

 = (1  = (1 

It is straightforward to show that the values of a, and 

that satisfy the boundary conditions give a solution of the

differential equation of the form,

 =     

    .

This equation is simplified using standard Bessel function
relations,’

  =    
  =    
    = l/z.

Then the radial dependence of the field in the metal can is

given by

 =   
   .

The ratio of the inside field  to outside field  is given

          

an exact result first obtained by King
4
 by a more complicat-

ed method in which four boundary conditions are used in-

stead of our two. In the limit R  we can use the asympto-

tic forms

 (z)  (  

 

valid when the  (z)  TO recover (8) for the screening

factor from (23 ) , we make a linear approximation to  and



which may be written as

(41)

where a    ‘measures d in units of   
Finally, we apply the Faraday law to a similar, but per-

pendicular path. By (33) and 

E , ( O )  - E , ( d )   -R)  

=  (B     ( 1  R + 
(42)

whence

(43)

sinceod  =    1. We solve (4 1) together with (43 

to obtain

 + a ) ,  T =   + a ) . (44)

Both amplitudes R and Tare real in this limit.

The reflectance and transmittance are

 + a ) * ,    + a ) * . (45)

The power absorbed in the film is proportional to

(46)

which is a maximum P = 0.5 when a = 1, that is, when

d =  (see Fig. 2). When a  1 the film is too thin to

absorb much of the incident energy, which is chiefly trans-

mitted; when a   there is an impedance mismatch at the

outside of the film and most of the incident energy is re-

flected. The extreme example of the impedance mismatch

effect occurs for films that are thick in comparison with the

skin depth:  this limit  6, the reflectance is given by the

 relation,’

  = 1  (47)

Because there is no transmission in this limit, the power

absorption is proportional to 1    or

P =   = (48)

In the infrared, this may be of the order of 0.01, as com-

pared with 0.5 for the maximum power absorbed in the thin

film (46). Thus the thick film absorbs much less energy

overall than the thin film, all because the thin film offers a

good impedance match to free space whereas the thick film

is a poor match. Curves of transmission, reflection, and

absorption versus  are shown in Fig. 2. A poor match

means that most of the incident radiation is 

although what is not reflected is absorbed and a larger

thickness is available for the absorption, the reflection

dominates.
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