Student experiments on parametric resonance
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Some experimerits on parametric effects, to be constructed by the students
themselves, are described together with the discussion and questions given.
Parametric oscillations were produced on a string, in a resonance circuit and a
spring pendulum. The importance of phase relations for excitation of the
oscillations and of nonlinearities in their stabilization was emphasized. The
experiments were so organized that the students would meet unknown phenomena
and problems; actually we discovered an unexpected recurrence effect in the

spring pendulum.

I. INTRODUCTION

The experiments discussed in this paper are intended
to be designed partly by the students themselves. The pri-
mary aim is to show how complicated phenomena such as
parametric interactions and nonlinearities can be introduced
to the students and discussed in a very simple manner.

The opportunity to prepare the experiments occurred
when departments at Chalmers University of Technology
were asked to perform introductory laboratory experiments
with the new students. The students’ knowledge of mathe-
matics is limited to basic calculus, but if one wants to
stimulate their interest the experiments must concern
modern and active physics. It seems worthwhile to look for
suitable experiments since many laboratory courses are now
modernized along these lines.

Laboratory courses in physics traditionally repeat clas-
sical experiments and measurements. However, many of
these experiments, such as Cavendish’s weighing the earth
or Millikan’s oil drop experiment are essentially demon-
strations and better suited to the lecture room, since the
student’s work does not add to his understariding of the
phenomenon. Students who hope to find in physics some-
thing new are not satisfied by measuring well-known con-
stants and it is often tempting to omit measurements which
fail to produce the expected result. To avoid this possibility
the experiments weré based on physical principles the stu-
dents would not know, but which are amenable to simple
mathematical explanations. Apart from parametric reso-
nance, experiments were also made on different aspects of
Huygen’s principle. The idea was to let different groups
demonstrate the principles in quite different physical con-
texts; finally all groups demonstrated their experiments to
the others. The element of exploration, which is missing in
most laboratory experiments, was present, since the effects
were often quite hard to find; the students also had to dis-
cover the form and parameters of the experiment which
produced the best demonstration of the effect.

It is interesting that most students prefer to take part in
building up the experiment instead of coming to a ready
apparatus; it only takes good nerves on the part of the
teacher since not all effects are easily reproducible. Ques-
tions and problems were given to the students during the
course to fix the important ideas at each stage and are dis-
cussed in the text.

The three experiments given on parametric resonance

- (the spring pendulum, parametric excitation on astring,and
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in an eleetric circuit) together with the introduction given
to the students will be described.

II. TEACHER’S INTRODUCTION

The idea of parametric amplification was introduced by
demonstrating how pendulum oscillations amplify when the
pendulum length / is suitably varied. Children’s swings! and
the more exotic incense swing? are interesting applications
to mention. Since students believe firmly in conservation
of energy, they are immediately convinced of the possibility
of introducing energy by pulling the rope when it feels heavy
and slackening when it feels light. The net energy gain is
easily calculated for small upward jerks Al at the middle
position and similar drops at maximum amplitude.! The
gainis AE = 6 EAl/ per period which gives a nearly expo-
nential growth. It is important to stress the phase relation
involved in the energy gain: one should do work on the
system, i.e., vary the parameter /, when it is hardest during
the oscillation.

Maximum work can be done on the system at two sym-
metrical points during the oscillation, so if it is necessary
to vary the parameter periodically it should be done at the
frequency 2wy, twice the oscillation frequency wp. It may
be confusing to the students and must not be stressed
unduly, but depending on the form of the oscillations and
the parameter variations there are many frequency ratios
that give over all energy gain; when both are sinusoidal the
well-known condition w = 2wp/n occurs. The natural os-
cillation will then adjust its phase so that a positive energy
transfer takes place.

II. SPRING PENDULUM

A particularly impressive demonstration of the effect is
given by the spring pendulum.3 The weight on a spring is
adjusted so that the spring frequency w; is twice the pen-
dulum frequency w,. If the spring oscillation is initiated the
pendulum length varies with frequency w; = 2w, and the
pendulum oscillation quickly grows parametrically ac-
cording to the discussion in Sec. II. From this mode energy
flows back to the spring oscillations, which are excited
subharmonically by the pendulum movement, w, = w,/2.
For a well-adjusted spring this process will repeat itself
several times which makes a spectacular impression.

The spring is best adjusted to the condition w; = 2w, by
comparing the oscillation times for small linear oscillations;
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since only relative changes in w are interesting, this is a good
point to derive the oscillation frequencies by dimensional
analysis. Part of the mass is in the spring and w; ~ m~1/2
and w, ~ /=12 are only used for rough guesses. The actual
coupling between the two oscillations is provided by the
small nonlinear terms in the equations?

¥+ wix = Axz, (1)
74+ wiz = (N2)x2 (2)

It was effective to have the students compare this system
with the double pendulum and the pendulum with free
support,* which are also conservative oscillating systems
with two degrees of freedom. They are however linear and
though the amplitude may grow rapidly when the oscilla-
tions are moving into phase, the solution is a superposition
of sines and cannot show the nearly exponential parametric
growth.

This example was given to the students to demonstrate
the usefulness of nonlinearities, which are usually treated
as unpleasant complications among the linear solutions; in
the following sections their importance in stabilizing the
parametric growth will be emphasized.

Finally, it must be mentioned that of course not all as-
pects of this system can be understood from a qualitative
picture. For instance, we noticed that energy seems to pass
from the spring mode to the pendulum mode and back again
in a far more complete manner than one would expect from
the simple parametric picture; this point required a closer
investigation of Egs. (1) and (2).3

IV. PARAMETRIC WAVES ON A STRING

This form of parametric oscillation was mentioned by
Rayleigh in his Theory of Sound.® He referred to the ex-
periment by Melde who excited transversal waves on a
string by stretching it longitudinally with a tuning fork.
(Rayleigh also gave many other examples and a delightful
reference to Faraday, who experimentally discovered that
his “crispations,” capillary waves, had frequencies !/, of the
exciting frequency, i.e., were parametric.)

We constructed the experiment somewhat differently in
order to demonstrate clearly the details of the oscillations,
particularly the phase relation (Fig. 1). The string was a

Fig. 1. Parametric oscillations on a string photographed in stroboscopic
light: two strings are seen oscillating when the driving wheel is frozen. The
fine wire between the string and the excentrically mounted screw is in-
visible.
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Fig. 2. Parametrically produced oscillations in a higher mode.

rubber band which made large amplitudes possible at low
frequencies (about 10 Hz). The relative change in the ten-
sion S (the parameter of the oscillation) must be sufficiently
large to overcome losses; this was achieved very simply by
mounting a screw excentrically on a wheel and threading
a thin wire over it and through the string. The speed of the
wheel (which is actually used to chop laser light) could be
regulated rather precisely electronically; this is an advan-
tage for a weak motor, since the parametrically excited
wave will affect the speed of the wheel.

In stroboscopic light the stabilized wave form and its
phase relation to the pulling force are demonstrated with
convincing clarity (Figs. 1 and 2); the slow oscillations are
spectacular and much of the effect, as so often, depends on
the “artistic” side of the arrangement.

Oscillations are only excited if an integer number of
half-wavelengths covers the length of the string. One can
try to satisfy this condition by plucking the string (mea-
suring the resonance frequency with the stroboscope) and
adjusting the length to a good resonance. The students were
then worried by the fact that the variation in tension AS
given by the wheel was by no means small: at the two ex-
treme positions the string was very taut and almost slack,
respectively. How can the string “remember” its resonance
frequency wo = (S/p)!/2 under such circumstances? This
question will be treated quantitatively in Sec. V, but the
answer is essentially that the string moves to a new fre-
quency which depends also on AS'. Consequently a better
way to find the resonance is to run the wheel at constant
speed, varying tension and length until the parametric os-
cillation occurs. In this way a motor with constant speed can
be used.

Under stroboscopic light the phase relationship between
the wheel and string is clearly followed. Other waves often
appear at the exciting frequency so one must check that two
strings are seen when the wheel is frozen (Fig. 1). The phase
relation between the wave and the wheel is not quite so easy
to explain as one would expect; the string should be pulled
when the wave has maximum amplitude and slackened at
minimum to do work on the system. However, when the
tension is very unsymmetrical the taut position will alone
transfer energy and determine the energy balance. The
phase then seems to be unstable and makes sudden jumps,
while the wave has a constant amplitude.

The amplitude of oscillation was quite large and it was
interesting to discuss with the students possible saturation
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mechanisms in a qualitative way. Most students favor dif-
ferent loss mechanisms, such as friction against the air and
internal heating. Judging from the amplitude, however, it
is much easier to argue for nonlinear effects: for large am-
plitudes the tension is a nonlinearly increasing function of
string length and nonlinear terms which are usually ne-
glected in the string equation must be included (cf. the large
angle between the string and the equilibrium position in Fig.
1). The nonlinear terms not only make it impossible to pass
a certain amplitude, they also destroy the excitation

mechanism by introducing frequency shifts in the wave. In :

the electric example we could study these saturation effects
in a quantitative way.

V. PARAMETRIC CIRCUIT OSCILLATIONS

This experiment is very simple in principle: a variable
capacitance diode is used to vary the capacitance in a res-
onance circuit at twice the resonance frequency wo. In
practice it turned out that with the material we had avail-
able the parametric effect was just about possible to pro-
duce. This was an advantage because it made it necessary
for the students to do several simple and instructive calcu-
lations to optimize the circuit.

We used a BB104 silicon variable capacitance diode with
a maximum capacitance 40 pF (Fig. 3). A sufficient circuit
Q value was possible only at maximum oscillator frequency
$0 fo =~ 500 kHz. The circuit was designed by the students,
who usually had had some experience with electronic ele-
ments, to provide both a driving voltage at 2f; and the re-
verse voltage for the diode. After some trial and error we
arrived at the final circuit shown in Fig. 4. Actually, the
circuit contained many stray capacitances at megahertz
frequencies so it became necessary to use both capacitances
in the diode to reach a satisfactory ratio AC/C. With
damping in the circuit this ratio must be big enough to
overcome losses. The equation for the circuit current is

I+ (R/L)I+ (LO)~'T = 0. (3)
The condition for parametric growth is’
Awo/wo > 2R/Lw0 = 2/Q, (4)

where Awg sin2wyqt is the variation of wg due to the modu-
lation in C; w} = 1/LC and consequently Awg/wo = (1/
2)AC/C so

AC/C > 4/Q. (5)

These estimates indicated that a low resistance 1-mH
ferrite coil would satisfy the condition with C =~ 100 pF
calculated from the resonance frequency. The parametric
oscillations were found as predicted and Fig. 5(a) shows the
superposition of the oscillator signal and the excited oscil-
lations with period twice as large.

Several statements about nonlinear saturation in Secs.
I-IV were checked on the oscilloscope. The oscillations were
clearly limited by the nonlinearity because the voltage

capacitance
pF

75+
501 Fig. 3. Characteristic of the
capacitance diode BB 104.
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Fig. 4. Circuit for parametric oscillations.

amplitude was always so big that it took C to the steep part
of the characteristic. A very nice way of demonstrating this
effect is to ask the students how one should change the re-
verse voltage Uy in order to increase the oscillation ampli-
tude for a given oscillator signal. The answer usually was
that one should improve AC by reducing the reverse voltage
(cf. Fig. 3); but such an answer, quite excusably of course,
confuses the excitdtion of the oscillation with the saturation
mechanism; once the parametric growth has started it
would go on to infinity in the linear approximations for any
sufficient ratio AC/C. Instead the oscillation amplitude will
increase when the reverse voltage is increased, because we
are then on a part of the characteristic where C is a more
linear function of U (note that U/ has logarithmic scale in
Fig. 3); consequently deviations may become greater before
the nonlinearities set in.

The independence of excitation efficiency and maximum
amplitude also appears when the parametric oscillation is
started with the least possible oscillator signal. Once the
parametric oscillation has started the oscillator amplitude
may be decreased well below this level without the wave
being much affected.

It is also very interesting that the parametric oscillations
continue and even increase in amplitude if the oscillator
frequency is decreased, but quickly disappear when the
frequency is increased. This is due to the existence of a
nonlinear frequency shift and may be considered the deci-
sive proof that the stabilization is caused by nonlinearities.
The frequency shift 6w depends on oscillation amplitude
as 6w ~ u? and it was quickly confirmed that the possible
frequency range increased with amplitude. The effect was
so interesting that a quantitative analysis was made.

A simple equation including nonlinear terms is obtained
by considering the oscillating charge g of the capacitance;

Fig. 5. (a) Oscillator signal (upper
trace) and the capacitance voltage
with a parametrically excited com-
ponent at half the oscillator fre-
quency (lower trace); 10 V/unit
scale. (b) Decreasing the oscillator
frequency (upper trace) increases the
amplitude of the parametric oscilla-
tions (lower trace). (¢) Subharmon-
ically generated oscillations.
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the stray capacitances may be included in the constant ca-
pacitance C” used to vary wg. The total capacitance of C’
and the diode is a nonlinear function of the voltage U (Fig.
3), which we expand around the working point Uy (u = U
- Uo)i

C=Co+au+bu?+.--.. (6)
Now g = Cu but the reverse relation is needed
u=q(/Co+ Aq+ Bg?+-..). @)

A simple inversion of the series shows that
= —a/C3, B = —b/C} + 2a%/C3. ®)
Now
u+ L+ Rg=Vcos(Ruo + €)1,
ie.,
G+ (w/Q)g + wiq + ag® + Bg*
= fcosQwo + €)t, (9)
where
‘w(Z)LCo =1, a= A/L, 8= B/L,
The nonlinear terms give a frequency shift’
bw = [38/8wo — (5a%/12w3)195 = kg3,  (10)

where qo is the amplitude of oscillations. The stabilized
amplitude becomes (x < 0; cf. Sec. 29 of Ref. 7)

g5 = (1/01(1/2)e — [(af /6w3)? = (wo/ Q)?]'/3.
(1)

Ta use these results numerically we notice that the char-
acteristic in Fig. 3 is well described by

= "Cl ll’lU/U]
Expanding around Uy,

C= C] [anl/Uo - u/U() + (1/2)(u/Uo)2 + .- -],
(13)

we identify the coefficients in (6). Inserting into (10),
« = (woC1/9UGCH(C1/Co — 27/16). (13)

We measured U; = 108 V, C; = 9.7 pF for Uy = 18 Vin

Fig. 3; Co ~ 100 pF so the frequency shift is always negative

in agreement with observation. The amplitude becomes
v

explicitly
1|1 2 1 /2
R L. _ LA e
L ‘2 T [(6C0U0) 402 ]

Inserting ¥ =~ 15 V and Q = 52 we confirmed that the root
is real which is the condition for parametric oscillations. The
amplitude of the oscillation is

u = q/Co = T.4Uo[0.010 — ¢/2wo]'/2,  (15)

after introducing the numerical values. Putting ¢ = 0 we
obtain ¥ =~ 13 V which should be compared with the am-
plitude in Fig. 5(a) u ~ 10. {Superimposed on the para-
metric oscillation in Fig. 5(a) is the oscillator signal over
the diode, ¥/3 cos [(2wp + €)t + w}; the voltage difference
at two minima of the oscillator signal immediately gives the
peak-to-peak voltage 20 V of the parametric oscillation.
This is very good agreement, probably slightly fortuitous
in view of the rough approximations; ¢.g., we have not taken

f=V/L

(12)
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into account the strong asymmetry in the characteristic, Fig.
3, the same problem which occurred when we excited the
string. Anyway, the theory described the parametric be-
havior very well. According to (15) the amplitude will in-
crease further when the frequency is decreased. This was
indeed confirmed [Fig. 5(b)] and it was possible to give the
diode forward voltage for part of the period. It is, however,
typical of parametric phenomena that this must be done by
decreasing the frequency continuously from the frequency
where the instability occurred. It is impossible to reach these
high amplitudes discontinuously. We could not find a
continuous decrease of the stabilized amplitude to zero by
increasing the frequency, however, as pictured in Ref. 7.
Instead the oscillations would suddenly disappear. After
these experiments we also took the opportunity to look at
subharmonic resonances at the oscillator frequencies wo/n
[Fig. 5(c)]; these are simply overtones produced in the
nonlinear element coinciding with the resonance frequen-
cy.
It is obvious that the circuit experiment gave incompa-
rably the best opportunities to study the parametric effects
from the quantitative side. At the same time, there is a
danger in this since the students quite soon forget what is
going on in the elements and concentrate on the oscilloscope
traces. We therefore finished by repeating the energy and
phase argument: at which points during the resonant os-
cillation should the capacitance be increased and decreased
in order that work be done on the system?

Modern students are apt to ask about the usefulness of
the investigated effects. We therefore concluded by briefly
describing parametric amplifiers and the enormous im-
portance of parametric effects in nonlinear optics, plasma
physics, etc.

VI. CONCLUSION

A rather complete description has been given of some
experiments on parametric oscillations. Although we have
gone into some analytical detail in the case of the resonance
circuit, the experiments were designed to be constructed by
the students with only a qualitative picture of the theory.
In this picture the oscillator gains energy for a certain phase
relation to the parameter variations. The emphasis was on
building up the system to discover a presumably unknown
effect. Actually, we discovered an interesting recurrence
phenomena in the spring pendulum.
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