Self Inductance Página 1 de 7

09/24/01 10:02 PM

	Coil or Conductor	Self In		ductance	
	Configuration (meters)		DC Value	High Frequency or Pulse Value	
1	Single Conductor, circular and solid section r is the conductor radius and I is the conductor length	r	$2\cdot1\left(\ln\left(\frac{2\cdot1}{r}\right)-\frac{3}{4}\right)\cdot10^{-7}\cdot\text{henry}$	$2\cdot 1\cdot \left(\ln\left(\frac{2\cdot 1}{r}\right) - 1\right) \cdot 10^{-7} \cdot \text{henry}$	
	Single conductor, rectangular section		$2 \cdot 1 \left(\ln \left(\frac{2 \cdot 1}{B + C} \right) - \ln(\epsilon) + \frac{1}{2} \right) \cdot 10^{-7} \cdot \text{henry}$ $\text{s} \text{from table 3 ref 1 page 35}$ $\frac{\text{Table 3 is on page 23 of ref}}{1}$		
, ,	Return circuit of two tubular concentric		Ref 1 page 41	$2 \cdot \left(\ln \left(\frac{r_2}{r_1} \right) \right) \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$	

		conductors	-r ₁ -		
	3 (b)	Return circuit of two tubular concentric conductors with thin conductors	-r ₁ -	$2 \cdot \left(\ln \left(\frac{r_2}{r_1} \right) + \frac{1}{4} \right) \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$	$2 \cdot \left(\ln \left(\frac{r_2}{r_1} \right) \right) \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$
4	4	Return circuit of eccentric cylindircal conductors			$2 \cdot \left(\ln \left(\frac{R^2 - a^2}{R \cdot r} \right) \right) 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$

		r + a + R		
5	Parallel pair of round conductors	\$ \$ \$ \$	$\left(4 \cdot \ln \left(\frac{S}{r}\right) + 1\right) \cdot 10^{-7} \cdot \frac{\text{henry}}{m}$	$4 \cdot \ln \left(\frac{S}{r}\right) \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$
6	Parallel conductors over conducting earth	○		$4\left(\ln\left(\frac{2\cdot h\cdot s}{r\cdot \sqrt{4\cdot h^2+S^2}}\right)\right)\cdot 10^{-7}\cdot \frac{henry}{m}$
7	Conductor near to conducting earth wich is not the		$\left[2 \ln \left[2 \cdot \frac{(h+r)}{r}\right] + \frac{1}{2}\right] 10^{-7} \cdot \frac{henry}{m}$ For DC value see one above and Note 4. For freq	$2 \cdot \ln \left(\frac{2 \cdot h}{r} \right) \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$

	return	+ r + + + + + + + + + + + + + + + + + +	giving skin depth r use this equation.	
8	Parallel pair of rectangular conductors		$4\left(\ln\left(\frac{d}{B+C}\right)+1.5+\ln(k)\right)\cdot10^{-7}\cdot\frac{henry}{m}$ k obtained from ref 1 table 2, p 20	
	Parallel Pair of strip conductors (S>>B)	B	$4\left(\ln\left(\frac{S}{B}\right) + 1.5\right) \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$	
10	Transmission line (C< >S		$\frac{4 \cdot \pi \cdot \left(S + \frac{C}{2}\right)}{B} \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$	
11	Circular turn with circular section (r is wire radius, R is major radius		$4 \cdot \pi \cdot R \cdot \left(\ln \left(\frac{8 \cdot R}{r} \right) - \frac{7}{4} \right) \cdot 10^{-7} \cdot \text{henry}$	$4 \cdot \pi \cdot R \cdot \left(\ln \left(\frac{8 \cdot R}{r} \right) - 2 \right) \cdot 10^{-7} \cdot \frac{\text{henry}}{\text{m}}$

Self Inductance Página 5 de 7

12	Rectangular Turn with circular section		$DC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot b}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot a}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot a}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + b \cdot \ln\left(\frac{2 \cdot a}{r}\right) + 2\cdot\sqrt{a^{2} + b^{2}} - AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left(\frac{2 \cdot a}{r}\right) + a \cdot a\right] + AC^{4}\left[a \cdot \ln\left($	
13	Circular turn of thin sheet		$4 \cdot \pi \cdot R \cdot \left(\ln \left(\frac{8 \cdot R}{\omega} \right) - \frac{1}{2} \right) \cdot 10^{-7} \cdot \text{henry}$	
14	Toroidal solenoid of N turns in single layer		$4 \cdot \pi \cdot N^2 \cdot \left(R - \sqrt{R^2 - r^2}\right) \cdot 10^{-7} \cdot \text{henry}$	
15 (a)	Long straight solenoid with single layer of N thin turns		$\frac{4 \pi^{2} \cdot r^{2} \cdot N^{2}}{b} \cdot 10^{-7} \cdot \text{henry}$	
(b)	Short solenoid with single layer of Nthin turns for b>2/3r		$\frac{4 \cdot \pi^{2} \cdot r^{2} \cdot N^{2}}{b + .9 \cdot r} \cdot 10^{-7} \cdot \text{henry} \qquad b < \frac{2}{3} \cdot r$	
	Short solenoid of N rund turns in single layer		See ref 1	
17 (a)	Circular coil multi layer with rectanglular winding section	•	See ref 1	
	Brooks Coil (gives			

Self Inductance Página 6 de 7

17 (b)	maximum inductance for given length of wire) b=c 2a/c=3	1.7-a-N ² -10 ⁻⁶ henry	
18	Circular coil flat (pancake)		
19	Thin conducting torus cut to produce Bz field		

Notes:

- 1. Formulae based on non-magnetic conductors and space
- 2. References in table are listed below
- 3. Further information and arrangements are given in Ref. 6, p. 47-64
- 4. Proximity of metal to conductors affects HF inductance but not DC
- 5. DC inductance of bar due to its internal flux only 50 nH/m

References:

- 1. Gover, F.W. "Inductance Calculations, Working Formulas and Tables" Pub. Dover
- 2. Say, M.G. "Electrical Engineers reference Book", Pub. newnes.
- 3. Smart, D.L. "Calculation of Forces on Ioffe Bars for MTSE II", MTSEE II Engineering Memo No. 4 pp. 2-4.
- 4. Carter, G.W. "The Electromagnetic Field in its Engineergin Aspects". Pub. Longmans.
- 5. Smythe, W.R. "Static and Dymamic Electricity". Pub. McGraw-Hill.
- 6. Terman, F.E. "Radio Engineers Handbook". Pub. McGraw-Hill.
- 7. Dwight, H.B. "mathematical Tables". Pub. Dover.

Self Inductance Página 7 de 7

8. Welsby, V.G. "Inductance Coils". Pub. Macdonald.