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Abstract
Einstein’s 1905 application of thermodynamics and statistics to radiation,which
led to the hypothesis of the corpuscular light quantum, is rendered uncertain
by a lack of information as to how radiation behaves when undergoing a
statistical fluctuation of volume. The paper examines this issue and appraises
the particular assumption made by Einstein. We find that Einstein assumed for
radiation a type of behaviour normally reserved for a gas of particles, in which
case a conclusion about radiation behaving thermodynamically as though it
consisted of particles (of energy) is not surprising.

1. Introduction

In a paper which was published in 1905 [1] and which has been the subject of at least five
English translations [2–6], Einstein advanced the hypothesis of the corpuscular light quantum,
presented the argument (‘the line of thought and the facts’ [7]) which led him to that hypothesis
(henceforth referred to as Einstein’s argument), and indicated how light quanta could account
for a range of phenomena, notably the photoelectric effect.

Einstein’s argument has been well received. For example, the light quantum hypothesis
has been described as ‘a necessary consequence of very fundamental assumptions: in no sense
did he (Einstein) propose it in an ad hoc fashion to “explain” certain experiments’ [8]. Also,
physics teachers have been encouraged [9] to take particular interest in the ‘demonstration
from thermodynamic and statistical considerations that electromagnetic radiation might be
conceived as consisting of finite numbers of discrete corpuscles of energy hν’. Since the
corpuscular light quantum has now given way to the rather more subtle, modern photon [10],
it is pertinent to enquire whether Einstein’s argument really does support the notion of a
corpuscular light quantum and whether it deserves to be so well received.

Einstein’s argument (described in section 2) proceeds via the application of
thermodynamics and statistics to radiation. It is rendered uncertain by a lack of information
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as to how radiation behaves when undergoing a statistical fluctuation of volume. The present
paper examines this issue (section 3) and appraises the particular assumption made by Einstein
(section 4). We find (in section 5) that Einstein assumed for radiation a type of behaviour
normally reserved for a gas of particles, in which case a conclusion about radiation behaving
thermodynamically as though it consisted of particles (of energy) is not surprising.

2. Einstein’s argument

2.1. Linking the entropy spectrum to the energy spectrum

Readers interested in the background to Einstein’s argument may wish to consult [11–21].
Reasonably detailed accounts of the argument may be found in [17–25]. The following
summary suffices for our present needs.

Einstein considered radiation occupying a volume V , and assumed that ‘the observable
properties of this radiation are completely determined when the radiation density ρ(ν) is given
for all frequencies’ [26]. He commented that this was an arbitrary assumption and that ‘we shall
naturally keep this simplest assumption as long as experiment does not force us to abandon
it [26]’. On the basis that ‘radiations of different frequencies can be regarded as separable
from each other without performing any work or transferring any heat [26]’, the total entropy
of the radiation, S, may then be represented as S = V

∫
φ(ρ, ν) dν where φ is a function of

the radiation energy density ρ and of frequency ν.
Einstein suggested how cavity physics might be enlisted to reduce φ to a function of a

single variable but did not pursue this approach. Rather, he looked to the equilibrium state,
wherein

∂φ

∂ρ
= 1

T
. (1)

Also, in the equilibrium state, ρ is equal to the blackbody function, indicating that φ can be
determined by integration of equation (1) once we introduce the blackbody function for ρ. To
this end Einstein employed, not Planck’s formula, but Wien’s formula (being Planck’s formula
in the regime hν � kT ), namely

ρ = αν3 exp(−βν/T ), (2)
where α and β are constants. Einstein looked to Wien’s law as a source of new physics,
having already (in his 1905 paper) derived Planck’s law in the regime hν � kT using classical
physics. Upon substituting for T from equation (2) into (1) and integrating, we obtain

φ = − ρ

βν

(
ln

ρ

αν3
− 1

)
, (3)

where the constant of integration has been chosen (equal to zero) such that φ = 0 when ρ = 0.
Strictly speaking, the derivation of φ in equation (3) should have proceeded by employing
Planck’s formula to obtain an expression for T , by integrating equation (1), and by then going
to the Wien limit. It is non-trivial (see appendix A) that such a procedure yields the same result
as in equation (3).

Equation (3) provided Einstein with a relationship between φ and ρ, permitting φ to be
determined once ρ is known, for radiation which is monochromatic (Einstein’s term) and
of low density (within the range of validity of Wien’s radiation formula). ‘Monochromatic
radiation’ means that any change to radiation of one frequency will occur independently of
the presence or absence of radiation of other frequencies [27]. This should not be confused
with a more modern usage of the term ‘monochromatic radiation’ to mean radiation of a single
frequency [28].

Equation (3) is of a general nature and should not be seen as restricted to blackbody
radiation. There is some confusion in the literature on this point, so it may prove helpful to
cite (in appendix B) another example wherein the equilibrium state is called upon to contribute
to the derivation of a more general result.
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2.2. Entropy difference at constant energy

Following Einstein, we now introduce the energy

E(ν) = Vρ(ν) dν (4)

and entropy

S(ν) = V φ(ν) dν

of radiation in the frequency interval ν to ν + dν. Upon substituting equation (4) into (3), we
obtain

S(ν) = − E(ν)

βν

(
ln

E(ν)

V αν3 dν
− 1

)
.

This result has been described as ‘the entropy S of that part of the blackbody radiation having
frequencies in the interval ν to ν + dν’ [29]. However, we would not wish to restrict it to just
blackbody radiation.

Consider a state of the system identified by the subscript 0, wherein

S(ν, V0, E0) = − E0(ν)

βν

(
ln

E0(ν)

V0αν3 dν
− 1

)
, (5)

and another state for which

S(ν, V , E) = − E(ν)

βν

(
ln

E(ν)

V αν3 dν
− 1

)
. (6)

Now assume that

E(ν) = E0(ν), (7)

i.e. that

Vρ(ν) = V0ρ0(ν), (8)

in which case (from equations (5) and (6))

S(ν, V , E) − S(ν, V0, E) = E(ν)

βν
ln

V

V0
. (9)

This equation describes the difference in entropy between two states of the system, having the
same energy but different volumes, at frequency ν.

There is nothing in the above derivation to associate equation (9) with the change in
entropy experienced by monochromatic radiation when undergoing a statistical fluctuation of
volume. This will come later, as an assumption.

2.3. Hypothesis of light quanta

Einstein was attracted by the similarity in form between equation (9) and equation (14) for an
ideal gas (equation (14) is located in appendix C, which offers a brief account of the relevant
physics for an ideal gas). The latter, he argued, describes the change in entropy experienced by
an ideal gas when undergoing a statistical fluctuation in volume (see appendix C for details).
Prompted by the similarity in form between equations (9) and (14), Einstein proceeded on the
basis that equation (9) describes the change in entropy experienced by monochromatic radiation
when undergoing a statistical fluctuation in volume (assumption A) and that equation (9) lends
itself to a probabilistic interpretation similar to equation (14) (assumption B).

According to Einstein, if one writes equation (9) in the form

S(ν, V , E) − S(ν, V0, E) = (R/N) ln

(
V

V0

)(N/R)(E/βν)
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and compares this with the general formula for Boltzmann’s principle (equation (15)), then
one arrives at the following conclusion [30]: ‘if monochromatic radiation of frequency ν and
energy E is enclosed (by reflecting walls) in the volume V0, the probability that at a randomly
chosen instant the total radiation energy will be found in the portion V of the volume V0 is
W = (V/V0)

(N/R)(E/βν)’.
From this, Einstein further concluded that: ‘monochromatic radiation of low density

(within the range of validity of Wien’s radiation formula) behaves thermodynamically as if
it consisted of mutually independent energy quanta of magnitude Rβν/N’ (hν in modern
notation) [31].

Issues related to assumption A will occupy our attention during the remainder of the
paper. As regards assumption B, we might note the following. On the understanding that
assumption A holds, Dorling has argued that Einstein’s conclusion about light quanta follows
deductively from equation (9) without the need for an analogy with gas behaviour [32].
Dorling’s methodology is interesting but (in view of the present controversy surrounding
assumption A) might be more profitably applied to equation (14),perhaps allowing a conclusion
about an ideal gas as a gas of particles to follow deductively from equation (14).

3. Concerning a statistical fluctuation of volume

Equation (9) is pivotal to Einstein’s conclusion about light quanta. It now behoves us to explore
the assumption (assumption A) that this equation describes the change in entropy experienced
by monochromatic radiation when undergoing a statistical fluctuation of volume. We first
elaborate on what is meant by radiation undergoing a statistical fluctuation of volume and then
reflect on how the frequency of monochromatic radiation varies during a change of volume.

Einstein embraced the notion that radiation, like a gas, could undergo a statistical
fluctuation of volume. He referred to ‘the probability that at a randomly chosen instant the
entire radiation energy will be contained in the portion v of the volume v0’ [33]. Born refers to
Einstein as having obtained ‘the probability of finding the total energy E by chance compressed
in a fraction αV of the total volume V ’ [34]. Just what is meant by a ‘by chance’ or accidental
change of volume has been discussed in some detail by Stehle [35] and has been illustrated by
McEvoy and Zarate [36]. Suffice to say that it refers to a statistical fluctuation, or to what Pauli
describes as ‘the rare state in which the entire radiation energy is contained in a certain partial
volume’ [37]. There is no suggestion that the volume of the enclosure itself is changing, though
some accounts of the argument cloud the issue by including such an assumption [38–40].

How does the frequency of monochromatic radiation vary during an accidental change of
volume? The answer is, we really do not know. Yet we need to know, if we are to calculate the
change of entropy which accompanies such a change of volume. What we do know, however,
is that (unlike a molecular gas which can thermalize through inter-particle collisions) radiation
lacks an internal mechanism whereby different frequencies can exchange energy1. Whatever
may be the particulate nature of radiation, it does not impact on the frequency spectrum. And
if it does not impact on the frequency spectrum, is it likely to impact on the entropy spectrum,
which (see equation (3)) is linked to the frequency spectrum? That is, do we really expect
equation (3) to reveal information about a particulate nature for radiation?

Of associated interest is the case of radiation undergoing a reversible adiabatic change
of volume. Here, the frequency of monochromatic radiation varies as a consequence of the
Doppler shift associated with the moving wall of the enclosure [41] (or, in the case of the
cosmic background radiation, as a consequence of the gravitational redshift [42]). If we let V0
and V denote the initial and final volumes of the enclosure respectively, then the variation in
frequency is from ν0 to ν where [41]

ν3V = ν3
0 V0. (10)

1 This property, of course, underpins the assumption of monochromatic radiation, i.e. the assumption that any change
to radiation of one frequency will occur independently of the presence or absence of radiation of other frequencies.
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In this case our interest is not in the difference S(ν, V , E) − S(ν, V0, E), but in the difference

S(ν, V , E) − S(ν0, V0, E0) = − E(ν)

βν

(
ln

E(ν)

V αν3 dν
− 1

)
+

E0(ν0)

βν0

(
ln

E0(ν0)

V0αν3
0 dν0

− 1

)
.

We do not imagine that the equality indicated by equation (7) could hold for a reversible
adiabatic change of volume2. Rather, we have E(ν)/ν = E0/ν0 (the adiabatic invariant),
which, in conjunction with ν2V dν = ν2

0 V0 dν0 (from equation (10) [43]), leads to [44]

S(ν, V , E) − S(ν0, V0, E0) = 0.

This is consistent with the well known result that total entropy (entropy integrated over
frequency) remains constant during a reversible adiabatic change of volume.

4. Einstein’s assumption

What assumption did Einstein make as to how monochromatic radiation behaves when
accidentally changing volume? That is, what assumption did Einstein make when deriving
equation (9) (which he assumed to describe monochromatic radiation when accidentally
changing volume)? The answer is that he assumed no variation in frequency. Observe that
the frequency ν in equation (5) (which describes the entropy before the change) is the same as
the frequency ν in equation (6) (which is assumed to describe the entropy after the accidental
change of volume).

During an accidental change of volume, no work is performed and (in an adiabatic
enclosure3) no heat is transferred. If, additionally, there is no variation in frequency, then
the radiation energy contained within some frequency interval ν to ν + dν after the change
will be the same as before the change, in which case equation (7) will hold for all frequencies,
and thence (as assumed by Einstein) equation (9) will hold for all frequencies (at least, for all
frequencies within the range of validity of Wien’s radiation formula).

The assumption of no frequency variation during an accidental change of volume is
equivalent to assuming that, in an accidental change of volume from V0 to V , monochromatic
radiation of each frequency simply becomes more dense (V0 > V ) by the geometric factor
V0/V . This is apparent from equation (7), or rather from equation (8) when expressed as

ρ(ν) = (V0/V )ρ0(ν).

5. Investing monochromatic radiation with particulate behaviour

I can think of no other instance where radiation is assumed to behave as described in the
previous section (admittedly, an accidental change of volume is a unique situation). It is quite
unlike the type of behaviour described in section 3 for a reversible adiabatic change of volume.
One does, however, find a comparison in the world of gaseous particles. An ideal gas will, at the
conclusion of an accidental change of volume, rethermalize with no change in temperature (cf a
free expansion). The total energy carried by particles within a given (kinetic) energy interval
will be the same after the change as before the change. The number density and energy
density, within a given energy interval, will vary inversely with volume. It is the particulate
nature of a gas which is the key to this type of behaviour. By proceeding on the basis that
monochromatic radiation can behave as described in the previous section, we are, in effect,
investing monochromatic radiation with a certain gaslike or particle property. We should
not then be surprised if an analysis which incorporates such an assumption concludes that
monochromatic radiation behaves thermodynamically as if it consists of particles (of energy).

2 During a reversible adiabatic change of volume, energy is incremented by the performance of work associated with
the moving wall.
3 Einstein refers to the walls of the enclosure as ‘reflecting’ [45], presumably meaning completely reflecting.
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On what basis might one have supposed (at the turn of the 20th century) that radiation
could behave like a gas? Boltzmann (in 1884) had derived Stefan’s empirical radiation law
by applying the laws of thermodynamics to radiation, ‘treating it as a gas whose pressure
was the radiation pressure of Maxwell’s electromagnetic theory’ [46]. Wien (in 1894) had
drawn on Boltzmann’s work when deriving his displacement law for the blackbody spectrum.
Einstein (in 1917) would write ‘The formal similarity of the curve of the chromatic distribution
of black-body radiation and the Maxwell velocity-distribution is too striking to be hidden for
long’ [47]. Indeed (as noted by Einstein [47]), Wien was led by this similarity to the formula in
equation (2), which he published in 1896 [48]. He (Wien) assumed gaseous molecules to be the
source of the radiation and associated radiation of a particular frequency with molecules of a
particular velocity. Such an association may be superficial (in hindsight), but it is interesting as
a precursor to the similarity noted in the previous paragraph between the behaviour of radiation
(as assumed by Einstein) and of a gas of particles.

6. Conclusion

Physics teachers will conceivably take an interest in Einstein’s argument, but it may not be
for the reason cited in the second paragraph of section 1. Einstein’s argument is rendered
uncertain by a lack of information as to how monochromatic radiation varies in frequency
when undergoing an accidental change of volume. According to the present analysis, what
Einstein’s argument shows is that, if one chooses to invest monochromatic radiation with a type
of behaviour normally reserved for a gas of particles, then it is possible to reach the conclusion
that radiation behaves thermodynamically as if it consists of particles (of energy).

Appendix A. Deriving equation (3)

If, instead of Wien’s law in equation (2), we introduce Planck’s law

ρ = αν3[exp(βν/T ) − 1]−1, (11)

we then have

1

T
= 1

βν
ln

(
αν3

ρ
+ 1

)
.

Integration of equation (1) using the above expression for T −1 yields

φ = 1

βν
[(αν3 + ρ) ln(αν3 + ρ) − ρ ln ρ] − αν3 ln αν3

βν
, (12)

where the constant of integration has been chosen (equal to −αν3 ln αν3/βν) such that φ = 0
when ρ = 0.

In the Wien limit (βν/T � 1) we have ρ/αν3 � 1 (this follows from equation (11)) and
thence ln(1 + ρ/αν3) = ρ/αν3, in which case equation (12) reduces to

φ = − ρ

βν

(
ln

ρ

αν3
− 1

)
,

which is the same as equation (3). In the Rayleigh–Jeans limit (βν/T � 1) we have
ρ/αν3 � 1 and thence ln(1 + αν3/ρ) = αν3/ρ, in which case equation (12) reduces to

φ = αν2

β

(
ln

ρ

αν3
+ 1

)
.
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Appendix B. An example

Pursuant to the last paragraph of section 2.1, we offer the following example of how the
equilibrium state can be called upon to contribute to the derivation of a more general result.

Consider that, towards the centre of a homogeneous gaseous medium, the energy density
within an optically thick spectral line is related to the population density of the lower state
(Nm) and of the upper state (Nn) by [49]

ρ(ν) =
(

4π

c

)
Anm Nn

Bmn Nm − Bnm Nn
, (13)

where Anm, Bnm and Bmn denote the Einstein coefficients for spontaneous emission, induced
emission and induced absorption, respectively, and where (for simplicity) we have assumed
non-degeneracy. Quantum mechanics could be enlisted to obtain expressions for the above
coefficients and thence a final expression for ρ(ν). Alternatively, one can call upon the
equilibrium state, wherein (Boltzmann’s law)

Nn/Nm = exp(−hν/kT )

and (Planck’s law)

ρ(ν) =
(

8πhν3

c3

)
1

exp(hν/kT ) − 1
.

Substitution of the above two equations into (13) leads readily to the relationships Anm/Bnm =
2hν3/c2 and Bnm = Bmn. With these relationships, equation (13) may finally be written

ρ(ν) =
(

8πhν3

c3

)
Nn

Nm − Nn
.

The above equation is of a general nature and is not restricted to only that case where
Boltzmann’s law and Planck’s law prevail.

Appendix C. Entropy change experienced by an ideal gas when changing
volume

An ideal gas undergoing an irreversible, adiabatic change of volume (think of a free expansion)
will pass through non-thermal states but (as a consequence of inter-particle collisions) will
rethermalize at the conclusion of the change, with no loss of energy and no change in
temperature. Thermodynamics, when applied to an ideal gas (equation of state pV =
R(n/N)T ), indicates that the associated change of entropy is [50]

�S = R(n/N) ln(Vf/Vi). (14)

Here Vi and Vf denote the initial and final volumes respectively, n denotes the number of
particles or molecules, and N denotes the number of molecules per gram molecule.

Einstein considered a change of volume which was brought about by chance (a statistical
fluctuation) and he cited probability theory as a way of deriving the corresponding entropy
change. The probability that a particle should accidentally, or by chance, find itself within a
subvolume Vf of Vi is Vf/Vi. The probability that all n particles of a gas moving independently
of one another should accidentally find themselves within the subvolume Vf , with no other
change to the system, is W = (Vf/Vi)

n ; and the corresponding change in entropy is
(Boltzmann’s principle)

�S = (R/N) ln W (15)

= R(n/N) ln(Vf/Vi),

which is the same as equation (14).
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In contrast to the foregoing we have the comment of Pippard [51], that statistical
fluctuations in volume are part of the nature of thermal equilibrium and ‘if we ascribe a
definite value to the entropy of the gas in equilibrium we must ascribe it not to any particular,
most probable set of configurations, but to the totality of configurations of which it is capable.
Thus we see that the entropy . . . must be recognised as a property of the system and of its
constraints, and that once these are fixed the entropy also is fixed’.
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