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The purpose of this work is to present a simple and inexpensive experiment to study 
the drainage of a cylindrical vessel. The experimental set up consists of a transparent 
cylinder and a web cam or a digital camera connected to a computer.  The model 
proposed to explain the results makes use of Bernoulli’s equation for real flows that 
includes energy losses. The experiment allows us to test thoroughly the implication of the 
model and to extract the relevant parameter associated with the energy losses. The 
experimental results can be nicely explained by the model, which is a generalization of 
Torricelli’s expression, and clearly illustrate the utility of the extended Bernoulli equation 
for real fluids. 

 

I. – Introduction 
 

The Bernoulli equation including losses is an useful and important expression of wide 
application in many branches of science and engineering.1,2,3 General forms of 
Bernoulli’s equation, also known as the extended Bernoulli’s equation,   valid for viscous 
fluids, have been discussed previously in this journal4. Nonetheless, there are relatively 
few experiments,5,6 accessible to beginner and intermediate students that illustrate its use 
and applications. In this work we present a conceptually simple and inexpensive 
experiment to study the drainage of a cylindrical vessel that, we believe, clearly 
illustrates an application of Bernoulli’s equation for real liquids.  It is essentially a 
recreation of  Torricelli’s experiment, profiting from  the advantages of new technologies. 
The experimental set up consists essentially of a transparent cylinder and a web cam 
connected to a computer.  In the first part of this study we present a model based on the 
Bernoulli equation for real flows. Then we present the basic characteristic of the 
experiment and the experimental results. The experiment allows us to thoroughly test the 
implications of the model and to extract the relevant parameter associated with the energy 
losses. Within this context, we find this experiment pedagogically useful to introduce the 
Bernoulli equation for real flows to beginner students. The experiment involves concepts 
that are relatively simple to discuss theoretically, the physics is easy to visualize and it is 
quite straightforward to quantitatively test the implication of the model. 
 
 
 



II. Theoretical considerations 
 

For Newtonian fluids the shear stress is proportional to the velocity gradient, therefore the 
velocity of the fluid on the surface of a solid must be zero, otherwise the velocity gradient and the 
shear stress will be infinite. Only for an ideal fluid, that is a fluid with zero viscosity, η=0, is it 
possible to have finite velocity on the surface of a solid. Therefore, when a real fluid flows 
through the interior of a tube or between two surfaces, there are two effects that are a 
consequence of the viscosity. The velocity profile presents a maximum at the center of the tube. 
The other important consequence of the viscosity is the nonconservation of mechanical energy in 
the system or the presence of energy losses.   
 

 

 
Figure 1: Schematic diagram of the experimental setup 

 
In its simplest form, the Bernoulli equation is basically a statement of the conservation of 

mechanical energy per unit of volume along a stream line.1,2 In the presence of viscosity, 
Bernoulli’s equation becomes an expression of the energy balance, often expressed in terms of 
energy per unit of volume or pressure (or energy per unit of weight or head) between two points 
in the flow of fluid. The Bernoulli equation for a steady flow of real fluids in a pipe can be 
written in the following form:1,2,3,4 
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Indexes 1 and 2 refer to two different points in the flow, 1 being upstream of 2, g represents the 
local acceleration of gravity, P the pressure, z the vertical height of the point, and u the average 
velocity of the flow along the tube. If the fluid is incompressible, then ρ1=ρ2. The average 
velocity is defined in terms of the flux Q as: 
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Where S is the area of the normal cross section of the flow  (or pipe) and v is the local velocity. 
Expression (2) can be regarded as the definition of the average velocity u. The kinetic energy 
coefficients αi in Eq. (1) represent the ratio between actual kinetic energy that flows through a 
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normal cross section in the flow and the kinetic energy of the same flux, but with uniform 
velocity profile equal to u, more specifically α is defined as 1,3 
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Only for a uniform profile α is equal to 1, for any non uniform profile α >1. For a parabolic 
profile of velocity (laminar flow) α=2. The term ∆wloss in expression (1) represents the head loss 
that is proportional to the mechanical energy loss between the points 1 and 2.  For a great variety 
of actual situations, ∆wloss can be expressed as the sum of two terms, one dependent of the square 
of the average velocity and one independent of the velocity. The term proportional to u2 is often 
referred to as minor losses (which occur at bend, orifice, change of diameter, etc.) and large 
losses, like the loss along a pipeline. 
 

In particular, if we apply Bernoulli’s equation to our system, figure 1, taking into account 
that the pressure on the free surface and at exit orifice are the atmospheric pressure P0,  we have: 
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here  the term k is the coefficient of minor losses at the exit orifice, point 2 in our case,1,2 and ∆Z 
represents the part of the energy loss independent of velocity. As justified in appendix A, the 
velocity coefficient α2 is equal to 1 for the exit jet through the orifice. The variable h (=z1-z2) 
represents the height of the free surface relative to the position of the exit orifice.  
The velocities u1 and u2 are related by the continuity equation (conservation of mass). For an 
incompressible fluid, (ρ1=ρ2 ) we have: 
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here d1 and d2 represent the diameters of the vessel and the orifice respectively. Cv is the 
coefficient of Vena Contracta, 1,2,3 that is related to the fact that the cross section of the exit jet in 
general is smaller than that of the exit orifice. Combining Eqs. (4) and (5) we obtain: 
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Since in our case, d1 is considerably larger than d2 (d2/d1 ≈ 0.03) and Cv < 1; expression (6) can be 
simplified to: 
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The implication of this expression is that, if we can measure the velocity of the exit jet u2 as a 
function of h, according to our model, we should expect a linear relationship between u2

2 and  h. 
The slope and intersection with the axis would allow us to determine experimentally the 
coefficients k and ∆Z.    
 

From this same model, it is possible to determine the motion of the free surface (u1) and 
the evacuation time te.6 Combining Eqs. (5) and (7) we have: 
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where we have introduced the coefficient µ=1/(1+k). The sign in this equation is related with the 
orientation chosen to define the positive direction of h and u1. Introducing a new constant A as: 
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we can write a differential equation for h, which is: 
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This expression can be easily integrated to give: 
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where h0 is the height of the free surface for t=0 and te is the empty time, which, according to 
Eqs. (9) and (11), is given by: 
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Therefore, by measuring h as a function of time, if the model presented here is correct, the plot of 
Zh ∆− as a function of t should be linear. The parameters of this straight line could provide us 

the value of te and allow us to find the value of Cv.  For t≈te, there is still some fluid above the 
orifice (h ≈ ∆Z), but there is no jet, the liquid just leaks out of the tank.  
 

To determine the value of u2,  we shall assume that the motion of the water particles that 
comprise the jet, follow the same equation of motion as those of the horizontal projectile with 
initial velocity u2, so we have that: 
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where H is the height of the exit orifice relative to the origin of coordinate chosen, see figure 2.  
Combining these two expressions, we obtain the equation for the trajectory of the jet:  
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Therefore, if we can determine experimentally the form of the trajectory of the exit jet of water, 
by fitting expression (14) to the experimental data, we could obtain the value of u2.  
 

 

 

 



 

 

Figure 2: Schematic diagram of the experimental setup 
 

III. Experiment 
 

The experimental setup consisted of a transparent cylindrical tank with a lateral 
drainage orifice close to the bottom and a web cam connected to a computer. The vessel 
was 11 cm in diameter and 25 cm high, the diameter of the orifice was 3 mm and the wall 
thickness of the vessel was 2 mm. The tank was filled with tap water with a few drops of 
blue ink to facilitate the visualization of the exit jet. The vessel was positioned in front of 
a board on which we had drawn a grid with lines every 10 cm to provide an absolute 
scale for the photographs. The exit jet was parallel to the gridded board. The web cam 
was placed just in front of the vessel, at about 1.5 m. In this manner we were able to 
photograph the jet of water with the gridded board in the background. Pictures were taken 
every time the free surface dropped by about 1 cm. Clearly a digital camera could also be 
use for this purpose. In this manner, each  photograph recorded the height of water h in 
the cylinder and the trajectory of the exit jet of water from the orifice. To determine the 
trajectory of the jet it is possible to use almost any graphics program, such as Microsoft 
Photo Editor®, to obtain the location of any point in the picture. Furthermore, using the 
background grid, it is possible to transform the coordinate of any pixel in the photo to the 
grid coordinate.  Another alternative, is to use the picture as a background of a plot, as 
described bellow.  

The procedure we followed to obtain u2 from the experimental data, consisted in 
overlapping the digital photograph of the jet to a Microsoft Excel® graph, with a 
transparent background.7 The grid of the Excel graph is set to coincide with the mesh grid 
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used in the background of the picture. The graph is moved and stretched so that the mesh 
grid of the picture exactly coincides with the corresponding grid in the Excel graph.  
Once this situation is achieved, the origin (vertex) of the theoretical parabola, described 
by Equation (14), is chosen to  coincide with the exit orifice. Then the value of u2 is 
varied so that the theoretical curve described by Eq. (14) coincides with the 
experimentally observed trajectory. Figure 3 is an example that illustrates this procedure. 

 
We also tracked the position of the free surface of the water in time. To facilitate the 

measurement of the height of liquid h, we drew horizontal marks every 0.5 cm, starting at 
the position of the drainage orifice.  We used a stop watch to measure the time it took for 
the free surface of the water to reach each horizontal mark. In this manner we measured h 
as a function of time. 
 

 
Figure 3: a) Actual digital photograph of the exit jet. b) The same photograph in the 

background overlapped with a plot of the theoretical trajectory (dotted line) of the jet as 
described by expression (14). 

 

IV. Results and Discussion 
 

In figure 3.a) we present an actual digital photograph of the vessel and the exit jet. In 
figure 3.b) we show the same digital photograph of the exit jet in the background 
overlapped with a plot of the theoretical trajectory of the jet as described by expression 
(14). By adjusting the value of u2, we “fitted” the theoretical trajectory to the actual 
trajectory of the jet. The grid lines in the Excel plot were chosen to coincide with the grid 
lines in the background of the picture7. This figure also shows, that the trajectory of the 
jet is very well  reproduced by Eq. (14). This agreement is a clear indication that the 



liquid particles that conform the jet follow the same trajectory as the solid particles do. 
Therefore the liquid elements of volume are described by the same physical laws of 
mechanics that govern the motion of solids. This result may be useful to confronting the 
Aristotelian misconception, still  prevalent in some students,  that liquids and solids 
follow different laws.  
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Figure 4: The circles represent the experimental results of u2

2 as a function of the height 
h, the straight line is a linear fit to the data. The square symbols indicate the values of the 
Reynolds number (right vertical scale) at the orifice for the different values of h used in 
our experiment. By choosing a taller cylinder it is possible to further explore turbulent 
regime.  
  
 In figure 4, we present the plot of u2

2 as a function of h. The fact that the 
relationship between u2

2 and h is linear, indicates that the main assumptions of the model 
proposed, expressed by Eqs. (6) and (7), are in good agreement with the experimental 
results. Furthermore, by fitting the theoretical expectation, Eq. (7), to the data, we can 
obtain the values of the parameters ∆z and k. In table 1 we present the results of these 
parameters for different runs of the experiment. We performed several runs of the same 
experiment to test the consistency of our results and the robustness of the parameters of 
the model. 

 In figure 5 we present the results for the height of the free surface h as a function 
of time. To test the validity of our model, expression (11), we plotted the modified 
variable  )/()( 0 ZhZh ∆−∆−  as a function of time. The fact that this plot has a clear 
linear trend, indicates the validity of the model to describe the physics of the problem. 
Furthermore, the parameter of the fitted line allows us to obtain the values of the empty 
time te and the coefficient of vena contracta Cv. In table 1 we present the values of the 
relevant parameters of the model for several runs of the experiment. We notice that the 



values of the measured parameters are consistent for the different runs of the experiment. 
Furthermore, the value of k (coefficient of minor losses) and Cv are consistent with the 
values reported in the literature. 1,2,3  In figure 4, on the right vertical axis we plotted the 
value of the Reynolds number, Re, at the orifice for the different values of  h used in our 
study. We see that in our experiment the value of Re varies between 4000 and nearly 0, 
indicating that the flow regime spans beginning of the turbulent, transitional and laminar 
flows. The fact that the model is able to reproduce the experimental data in all these 
regions of Re, indicates that hypothesis made in our model, namely the type of losses 
proposed and the expanded Bernoulli’s equation, are valid for these regimes of flows.  
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Figure 5: The circles represent the experimental results of )/()( 0 ZhZh ∆−∆−  as a 
function of time, the straight line is a fit to the data.  
 

Parameter Run 1 Run 2 Run 3 

∆Z (cm) 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 

µ  0.91 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 

k 0.09 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 

Cv 0.46 ± 0.03 0.47 ± 0.03 0.44 ± 0.03 

Table 1: Parameters obtained for several runs.  The values of µ and Cv are consistent with 
those reported in the literature.1,2,3  

 
 



 
 

V.  Conclusions 
 

The experiment carried out in this study is simple and inexpensive. Also it is 
accessible to beginner students and it clearly illustrates the importance and usefulness of 
Bernoulli’s equation for real fluids including energy losses, for a wide range of Reynolds 
numbers. The validity of the type of energy losses proposed and the expanded Bernoulli’s 
equation, spans the beginning of the turbulent regime, as well as the transitional and 
laminar regimes. All that is needed to further explore the turbulent regime is a taller 
cylinder.   

 

The experiment also verifies that liquid particles follow the same trajectory as 
solid particles, indicating that  they obey the same physical laws. 

The proposed model, based on the extended Bernoulli’s equation, is adequate to 
describe qualitatively and quantitatively the physics of drainage of a vessel. Furthermore, 
the fitting of the theoretical model to the data allows us to extract the relevant parameters 
of the model, namely the coefficients ∆Z and k, of Eq. (4), and the coefficient of vena 
contracta Cv. Our results are consistent with values of these parameters that are 
independent of the Reynolds number in the region explored in this study.  

The motion of the free surface is well reproduced by the model, in particular its 
dependence with time. Furthermore, this study allows us to measure the coefficient of 
vena contracta in the exit jet and the coefficient of losses in our system.  
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Appendix A 
 
When a laminar flow enters to a pipe, it does not immediately develop the parabolic 
velocity profile that prevails well inside the pipe. There is a transition region or entrance 
length1,3 (Le) over which the velocity profile changes from a rather planar to the fully 
developed parabolic profile. There is a semi empirical relation that allows us to estimate 
this entrance length given by:8 

dCL ee .Re⋅= ,     (A1) 

here Re(=ρ.u.d/η) is the Reynolds number, d the inner diameter of the pipe and Ce is a 
constant. Several authors have proposed different values for this constant,1,3,8 but all 
range between 0.029 and 0.06 for laminar flows. If we apply this expression to the exit 
orifice, in all cases studied here, we obtained values of  Le  that were much larger than the 
wall thickness. Therefore, the velocity profile of the exit jet can be regarded as planar in 



this case, i.e. α2 ≈ 1.  On the other hand, for the case of the cylinder, the average velocity 
is so small, (u1 ≈ 10-2 cm/s) the value of α1 is approximately 2.  
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Figure 1: Schematic diagram of the experimental setup.  
Figure 2: Schematic diagram of the experimental setup 
Figure 3: a) Actual digital photograph of the exit jet. b) The same photograph in the 
background overlapped with a plot of the theoretical trajectory (dotted line) of the jet as 
described by expression (14). 
Figure 4: The circles represent the experimental results of u2

2 as a function of the height 
h, the straight line is a linear fit to the data. The square symbols indicate the values of the 
Reynolds number (right vertical scale) at the orifice for the different values of h used in 
our experiment. By choosing a taller cylinder it is possible to further explore turbulent 
regime.  
 Figure 5: The circles represent the experimental results of )/()( 0 ZhZh ∆−∆−  as a 
function of time; the straight line is a fit to the data.  
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