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An extension of a standard air track experiment is described in which the effects of air resistance can
be studied. A circular disk is placed on one end of an air track cart to provide air drag. The data
analysis consists of subtracting the ‘‘ideal’’ velocity for a frictionless situation from the measured
velocity and plotting the difference as a function of the ideal velocity. The resulting curve is fitted
with a modified power-law and the coefficient of the cubic term is studied as a function of the area
of the disk, a behavior that can be predicted theoretically. Frictional effects in addition to the air
drag on the disk were found to be significant and were accounted for. ©1999 American Association of

Physics Teachers.
ion
s.
oc
n

ha
no
tra
a
pe
ed

et
c
in

du
oa

in
on

on

g
.
a

uc
o

ag
th

ig

nd
a

fe

iqu
c
al

n
s a

y
the
s-

e
ght

e
-
a-

e

ic-
s
e
is
in

s
t
re

ing
I. INTRODUCTION

Air tracks have provided physicists with an approximat
of the idealized ‘‘frictionless inclined plane’’ for decade
With the introduction of motion sensors, the position, vel
ity, and acceleration of a cart on the air track can be mo
tored and students can see graphed what they often
trouble visualizing—a velocity curve whose slope does
change as the cart comes to a stop at the top of the air
and slides back down. Computerized collection of large d
sets and analysis using commonly available software o
up the possibility of investigating more than the idealiz
motion. Physics students at the introductory level or in
more advanced undergraduate laboratory course can d
and analyze the effects of frictional forces on the air tra
cart. Simple transformations of the data using a graph
package such as Easyplot™1 allow the determination of the
power-law dependence of the drag on velocity. The drag
to air resistance can be enhanced by attaching cardb
disks to one end of the cart.

This straightforward experiment and somewhat more
volved analysis introduce the student to useful ideas bey
the routine inclined-plane phenomenon:

~1! What appears to be ‘‘ideal’’ behavior may not be up
closer examination.

~2! Small deviations from the ‘‘ideal’’ can be studied usin
approximations~an introduction to perturbation theory!

~3! To see subtle effects we must subtract out the domin
behavior

~4! Physics works even for nonideal inclined planes!

Effects of air resistance have been explored by introd
tory students in a variety of ways. Often some variation
difference equations is used to predict the effect of air dr2

Or the results of the air drag are studied by looking at
terminal velocity3 or the net effect on the motion.4 An inter-
esting experiment that more advanced undergraduates m
perform was discussed by Basano and Ottonello.5 They ana-
lyzed the position of a falling disk as a function of time a
found that for large enough disk areas both an effective m
due to the air being dragged by the disk and a history ef
were necessary to fit the data.

The experiment described in this paper has the un
feature of a direct analysis of the air resistance effe
present in the data, by subtracting out the dominant, ‘‘ide
528 Am. J. Phys.67 ~6!, June 1999
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behavior. It also differs from prior work in that its focus is o
the behavior of the velocity, rather than the position, a
function of time.

II. THEORY OF MOTION ON THE INCLINED
PLANE IN THE PRESENCE OF SLIDING FRICTION
AND AIR RESISTANCE

Because sliding friction is more familiar to introductor
physics students and mathematically simpler, I introduce
qualitative effects of drag on the air track cart with a discu
sion of the effect of sliding friction: For a frictionless inclin
the only net force on the cart is the component of its wei
parallel to the track:

Falong the incline52mgsinu5m
dv
dt

, ~1!

wherem is the mass of the cart,g is the acceleration due to
gravity, u is the angle of the incline, and down the inclin
~toward the motion sensor! is taken to be the negative direc
tion. Sinceg sinu is a constant throughout the trip, the equ
tion can be integrated to yield

v ideal5v02~g sinu!t, ~2!

wherev0 is the velocity of the cart att50. The graph of the
ideal velocity as a function of time is simply a straight lin
with slope2g sinu as shown by the solid line in Fig. 1.

Next consider the effect of a velocity-independent fr
tional force,Fm . This force arises from sliding friction and i
proportional to the normal force. The specific form of th
force is not crucial for the analysis, only the fact that it
independent of the magnitude of the velocity and opposite
direction to the velocity. With this addition we have

Falong the incline52mgsinu7Fm5m
dv
dt

, ~3!

where 2Fm is the frictional contribution when the cart i
moving up the inclined plane and1Fm applies when the car
is moving down the air track. The velocity for the case whe
the cart is moving up the incline can be found by integrat
Eq. ~3!:

vup5v082~g sinu!t2
Fm

m
t, ~4!
528© 1999 American Association of Physics Teachers
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wherev08 is the velocity att50, which might differ fromv0

in the case of the trip without friction. The effect of th
sliding friction is to steepen the slope of thev versust graph
for v.0. Similarly, the magnitude of the slope will be re
duced for the case whenv,0 ~the cart is sliding down the
incline!. With the slope given by2g sinu1Fm /m the down-
ward part of the velocity versus time graph begins whenv
50. The behavior of the velocity for the full trip in th
presence of friction is shown by the dashed line in Fig.
Note that in the figurev08 has been chosen to be larger th
v0 in order to allow the slope of the ideal velocity curve
approximate the acceleration for the round trip.

To this point the mathematics and the concepts should
familiar to students of introductory physics, in either
algebra- or calculus-based course. The extension of the
cussion to a velocity-dependent drag force requires more
phisticated mathematics, but the concept is analogous to
sliding friction case. Students who have followed the pre
ous argument should be primed to tackle the air-resista
case, either working through all the mathematics~if they
have a calculus background! or taking a few mathematica
leaps of faith along the way.

Consider the case of a velocity-dependent drag of the f
Fdrag57buvun, where the sign is chosen so that the dr
force is opposite the direction of the velocity. Now the to
force on the cart is velocity dependent and in the absenc
the sliding friction term has the form

Falong the incline52mgsinu7buvun5m
dv
dt

, ~5!

which leads to a differential equation forv beyond the scope
of most general physics students. But the acceleratio
again dominated by the constant component of the acce
tion due to gravity along the plane ifbuvun!mgsinu, so we
will approximate the velocity in the drag term by the ide
velocity from Eq. ~2!. This leads to the more manageab
equation forv:

dv
dt

52g sinu7
b

m
uv02~g sinu!tun. ~6!

This equation is readily integrated to yield

Fig. 1. Velocity versus time for constant negative acceleration~solid line! as
a cart moves up (v.0) and down (v,0) an air track compared to the cas
of acceleration in the presence of an additional velocity-independent
tional force~dashed line!.
529 Am. J. Phys., Vol. 67, No. 6, June 1999
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v5v082~g sinu!t

1
b

~n11!mgsinu
@ uv02~g sinu!tun112uv0un11# ~7!

or

v2v ideal5~v082v0!1b8@ uv idealun112uv0un11#,

where

b85
b

~n11!mgsinu
. ~8!

Note that the7 in Eq. ~6! disappeared in Eq.~7! due to the
integration of the expression involving the absolute value

Equation~6! can be integrated directly in the case whe
n52. When the cart is moving up the inclined plane, t
result of integrating is

tan21S bv2

mgsinu D 1/2

2tan21S bv0
2

mgsinu D 1/2

52S bg sinu

m D 1/2

t.

~9!

In the limit that bv!g sinu, the arc tangents can be e
panded to third order in their arguments and the equa
rearranged to yield

v'v02g sinut1
b

3mgsinu
~v32v0

3!, ~10!

which is identical to Eq.~7! whenn52, except that the ac
tual velocity v rather than the ideal velocity,v02g sinut,
appears in the last term on the right-hand side. Equat
~10! and ~7! agree to third order inbv2/mgsinu. When the
cart is moving down the incline the integrated solution to E
~6! involves the inverse hyperbolic tangent instead of
inverse tangent. In the case of the cart moving both up
down the air track,tÞ0 at the top of the trajectory, makin
the limits on the integral less straightforward. To yield
solution most symmetric with the upward case, we can in
grate from an arbitrary timet to the final time and use th
final velocity rather than the initial velocity in the solution

tanh21S bv f
2

mgsinu D 1/2

2tanh21S bv2

mgsinu D 1/2

52S bg sinu

m D 1/2

t. ~11!

The velocity at the end of the trip will be approximate
equal to the initial velocity, as the cart started up the incli
Also, the expansion of the inverse hyperbolic tangent diff
in sign from the expansion for the arc tangent in the thi
order term. Thus we can combine Eqs.~10! and~11! into one
equation that has the form of Eq.~7!.

III. SETUP AND DATA COLLECTION

The experimental setup consists of a computer, a mo
sensor~I used the motion sensor and motion plotter asso
ated with the Pasco interface!, an air track~2 m in length in
this case! and cart, cardboard, and small weights. The
track is leveled and then tilted roughly a hundredth o
radian ~using aluminum shims!. The motion sensor is
mounted beyond one end of the air track~I chose the bottom
end!, and the position of the cart is monitored as it slid
freely up the incline, stops, and slides back down. Data
be collected for a ‘‘bare’’ cart, or a piece of cardboard can
mounted on one end of the cart to provide detectable

c-
529Barbara S. Andereck
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resistance. If the goal of the experiment is to maximize
resistance and minimize contact friction, then the cardbo
should be counterbalanced by attaching an equal mass t
opposite end of the cart. This procedure is recommended
that the velocity deviation from ideal results more from
drag, rather than a combination of air drag and sliding fr
tion. This in turn allows for simpler curve fits. Air drag wi
result from the presence of any reasonable-sized~*0.01 m2!
piece of cardboard. If the dependence of the drag coeffic
on area is to be studied, the cardboard should be circular~see
discussion in Sec. VI! and data should be collected for
range of areas. A large circular piece of cardboard can
marked with circles that have areas decreasing in roug
equal increments. The cardboard can then be trimmed a
each set of trials. Multiple trials for each area are reco
mended due to scatter in fitting results. It is also best to
the same air track for all runs. The effect of sliding frictio
can be maximized compared to air resistance by elimina
the cardboard entirely and weighting one end of the cart

The motion sensor is activated and the cart is launched
hand at a speed that will allow the cart to approach but
strike the upper end of the air track. Data for one compl
trip up the incline and back down are collected. The veloc
of the cart is automatically determined by Pasco’s Mot
Plotter software from the distance data. This can be d
with various levels of smoothing. Results presented in t
paper were derived from velocity data with a smoothing
seven~the default value for Motion Plotter!. The velocity
data need to be edited to include only those values when
cart is movingfreely up the incline and back down.

IV. ANALYSIS OF THE DATA

Once the data have been collected, they can be anal
using a plotting package such as EasyPlot. First the velo
versus time data are graphed. As a reasonable approxim
to the ideal velocity, a linear fit is made to the data.~See Fig.
2.! The predicted slope is2g sinu. The slope from the
curve fit is greater in magnitude than the theoretical val
with the deviation increasing with increasing air resistan
This deviation arises because the air resistance reduce
speed throughout the run. Thus there are larger speeds a
beginning of the rise up the incline than at the bottom on
way down. As we see from Eq.~5! the acceleration is greate

Fig. 2. Velocity versus time data~circles! for a cart carrying a disk of area
0.020 m2. The best linear fit to the data~solid line! is v520.123t
10.804.
530 Am. J. Phys., Vol. 67, No. 6, June 1999
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for larger magnitude velocities, hence the slope of the vel
ity versus time plot will be skewed to slightly higher value
than the ‘‘ideal’’ acceleration in the presence of velocit
dependent forces.

The simple relationship expressed in Eq.~8! will enable us
to find the power, n, and the coefficient b5b8(n
11)mgsinu. To find these parameters we need a gra
showing the difference between the observed velocity a
the ideal velocity as a function of the ideal velocity. Such
graph can be obtained by transforming the velocity vers
time graph twice. The first transformation converts the ho
zontal axis from ‘‘time’’ to ‘‘ideal velocity.’’ For the ideal
velocity it is recommended that the curve fit equation
used~see Fig. 2!, since the actual data deviate less from t
curve fit than from the theoretical fit. The transformatio
equation needed for this step isx→mx1b. ~Note thatm will
be negative if the motion sensor is mounted at the bottom
the incline.! This first transformed curve represents actu
velocity versus ideal velocity, and hence will be roughly li
ear, with unit slope. The curve is transformed again, this ti
using y→y2x. This converts the vertical axis into ‘‘actua
minus ideal velocity,’’ or ‘‘deviation of velocity from
ideal.’’ The second transformed curve will be concave u
ward, with the type of curvature depending on the nature
the frictional force involved, the steepness~or shallowness!
depending on the magnitude of the frictional force, and t
scatter depending on the smoothness of the air track,
noise in the motion sensor, and the smoothness of
‘‘launch.’’ ~See Fig. 3 for an example of this type of curve!
Students should be asked to explain why the doubly tra
formed curve has so much scatter when the original~velocity
versus time! curve was smooth. The magnification of th
effect of noise seen with the subtraction of two nearly eq
quantities can be used to reinforce the concept ofrelative
uncertainty.

The final plot can be fitted in a number of ways, wit
anywhere from two to four adjustable parameters, using
fitting equation of the form

y5B* abs~x2C!D1E. ~12!

From Eq.~8! it appears thatC should be 0. There is, how
ever, non-negligible air resistance and so the symmetry
tween the motion up and down the plane is broken; the ini
velocity up the plane is greater than the final velocity~at the

Fig. 3. Transformed data for the 0.020-m2 disk showing deviation from
ideal velocity versus ideal velocity. The data are fit using the equatioy
5B* abs(x1C)31E. The best fit ~solid line! has B50.313 s2/m2, C
520.003 31 m/s, andE520.0209 m/s.
530Barbara S. Andereck
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same location! down the plane. This asymmetry systema
cally skews the slope of the velocity versus time curve
values greater in absolute value thang sinu. Consequently,
the fitted line is not tangent to the velocity versus time cu
at the point of zero velocity. This skewing necessitates
use of anx-offset in Eq.~12!. Because of the complexity o
and approximations in the expressions included in the c
stantE, it is just taken to be an adjustable parameter in
curve fit. The most interesting fitting parameter is the ove
coefficientB, which depends on the size and geometry of
object producing the drag. TheB in Eq. ~12! will be given
theoretically by theb8 in Eq. ~8! if air drag on the cardboard
disk is the only frictional force present. Finally, the expone
on the velocity can be studied. If the drag on the cart
purely due to contact friction, thenD5n11 should be 1.
The exponent in the case where drag is dominated by
resistance is discussed in the next section.

V. THEORY OF AIR DRAG

Some introductory texts mention the dependence of
drag force on velocity.6 In the case of viscous flow for sma
bodies, the drag is proportional to the velocity. Stoke’s L
for laminar flow around spheres is the classic example of
situation. But if the velocity is high and/or the viscosity
low, and/or the object is large enough, the drag force is p
portional to the square of the velocity. The distinction b
tween these two cases is made concrete by referring to
dimensionless Reynolds number R:

R5
rLv
m

, ~13!

wherer is the density of the fluid through which the object
moving,L is a characteristic length associated with the cr
section of the object,v is the relative velocity of the objec
and the fluid far from the object, andm is the viscosity of the
fluid. For Stoke’s Law to hold we must have R&1,7 but for
our cardboard moving through air the Reynolds numbe
approximately

R'
1.2 kg/m330.1 m30.3 m/s

231025 kg/m•s
'2000, ~14!

so the small R approximation is clearly not applicable. In
limit of large Reynolds number, a bluff object, such as o
cardboard, will experience a large pressure difference fr
front to back, which is closely approximated by the Bernou
effect:8

pfront2pback5
1
2rv2. ~15!

This pressure difference produces a drag force,FD :

FD5CDA 1
2rv2, ~16!

whereA is the projection of area of the object normal to t
velocity, andCD is a dimensionless constant. Empirical r
sults for a flat circular disk normal to the streamlines sh
that CD as a function of R is constant at a value of 1.
starting at R'200 and extending over at least five decades7,8

We are now in a position to analyze the data, following t
description in Sec. IV.
531 Am. J. Phys., Vol. 67, No. 6, June 1999
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VI. RESULTS

An examination of the linear fits to the raw velocity versu
time data reveals a systematic error for the slope. For lar
pieces of cardboard, and hence larger air drag, the slop
the fit deviates more and more from the theoretical predict
of g sinu, for reasons discussed in Sec. IV. For the da
presented in this paper, the air track was shimmed up 0.0
m at a distance of 2.283 m from the point where the oth
end of the air track rested on the table. Therefore,g sinu for
this experiment was 0.109160.0004 m/s2. The average slope
of the velocity versus time graphs ranged from 0.1
60.002 m/s2 when no cardboard was on the cart to 0.13
60.010 m/s2 for the case where the largest~0.0600-m2! piece
of cardboard was used. The systematic nature of this ‘‘erro
can be noted by classes that take data for a range of c
board areas. If only one size cardboard is used, students
be asked to predict the direction of the expected deviation
fitted slope from ideal. Guiding students to recognize a
examine the effects of systematic errors is a valuable ex
cise.

Given the high Reynolds number that characterizes
cardboard-on-air-cart motion, we can eliminate one fitti
parameter for the deviation from ideal velocity curve fit—th
exponentD in Eq. ~12!. If the drag~force! is proportional to
the velocity squared, then the deviation of the velocity fro
the ideal will vary asuv idealu32uv0u3. @See Eqs.~5!–~8!.#
Data were collected for circular cardboard disks having are
ranging from 6.031022 m2 down to 2.531023 m2. These
data were transformed, as described in Sec. IV, and the
sulting curve of deviation from ideal velocity versus ide
velocity was fit using the equation

y5B* abs~x1C!31E. ~17!

The average~for 4 to 12 trials! of the cubic coefficient,B,
was then plotted as a function of the area of the cardbo
disk. The results are shown by the open circles in Fig. 4.

Comparing Eqs.~5! and~16!, we see that for the air resis
tance on the circular disk andn52

b5 1
2rCDA, ~18!

so the relationship betweenb8 andA is given by

b85

1
2rCD

~n11!mgsinu
A. ~19!

In the experiment reported here the mass varied with a
due to the increased size of the cardboard and the coun
weights. The mass of the air track cart was 0.2116 kg and
mass of the 0.060-m2 cardboard disk was 0.054 kg plus a
equal mass in the counterweight. Thus the total mass can
written asm50.2116 kg10.108 kg* A/0.060 m2. Combining
the expression for the mass with values for the other para
eters in Eq. ~19! (r51.2 kg/m3, CD51.12, n52, and
g sinu50.11 m/s2) we findb858.8A/(118.5A). This equa-
tion, with no adjustable parameters, is plotted as curve~a! in
Fig. 4. The theoretical curve falls far short of the experime
tal values.

In order to understand the disagreement between the
and data seen here we might turn to the results of Basano
Ottonello,5 but the largest disk used in my experiment ha
just over half the area of their smallest disk, for which th
effective mass and history integral were small. Thus we m
look for other drag effects that are coming into play. One
531Barbara S. Andereck
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these effects is present even in the limitA→0. As the cart
moves along the air track the plates that make up the
experience air drag. Thus we expect a contribution to
drag proportional to the square of the velocity, which is
dependent of the area of the cardboard. This explains
the experimental curve in Fig. 4 does not go through
origin.

But a simple upward shift of curve~a! in Fig. 4 will not
provide a good fit to the data, as can be seen by lookin
curve~b!. Another effect must be making a measurable c
tribution. The circular disk experiencing the air drag giv
by Eq. ~16! is placed with its center above the line passi
through the center of mass of the air cart.~The diameter of
the disks makes this inevitable, or they would run into the
track.! Thus the air drag produces a torque on the c
Whether the cart is going up or down the air track, the torq
is in a direction to tilt the leading end of the cart up off th
track slightly. A slight tilt in the cart relative to the air trac
should cause an additional air resistance contribution,
time due to the air jets from the air track exerting a sm
component of force that is not perpendicular to the air c
plates. In fact, whether traveling up or down the incline t
tilt from the torque on the disk causes this non-normal fo
to oppose the motion of the cart. This force from the air j
will vary linearly with the tilt angle~since it is small! and
hence with the torque. Because the velocity of the air fr
the jets is far greater than the velocity of the cart relative
the air track, the latter velocity does not need to be con
ered, except in determining the tilting torque. We can inclu
this type of effect in our fitting equation by noting that th
torque will depend linearly on the product ofFD , which is
proportional toA/(118.5A), and the moment arm. The mo
ment arm is the diameter of the circular disk, (A/p)1/2, plus
the distance from the mounting point to the line parallel
the air track passing through the center of mass of the car
my case this distance was less than 0.001 m and hence
ligible. The term in the fitting equation corresponding to t
tilt effect is given by

dA
~A/p!1/2

118.5A
, ~20!

Fig. 4. Average cubic coefficientB from curve fits as in Fig. 3 versus are
~circles!; theoretical result for air drag on disk only, curve~a!, given by
8.8x/(118.5x); fit including air drag on disk and on cart, curve~b!, given
by 8.8x/(118.5x)1c, wherec50.104 s2/m2; fit including air drag on disk,
on cart, and effect due to tilting the cart, curve~c!, given by 8.8x/(1
18.5x)1c1d* x* sqrt(x/p)/(118.5x), where c50.104 s2/m2 and d
532.2 m•s2.
532 Am. J. Phys., Vol. 67, No. 6, June 1999
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whered is the only adjustable parameter.
Combining the air drag from the disk, the air drag fro

the sides of the cart, and the tilt effect, we have an equa
with two adjustable parameters with which to fit the expe
mental data:

y58.8x/~118.5x!1c1dx~x/p!1/2/~118.5x!. ~21!

The best fit, made without using the two smallest areas
shown as a solid line@curve~c!# in Fig. 4. The two smallest
areas were not used because the scatter in thev2v ideal vs
v ideal graph was so large that the cubic coefficients obtain
are highly uncertain, even though multiple runs were av
aged. The relative contribution of the three phenomena
be seen by comparing curve~a!, which represents the firs
term in Eq. ~21!, curve ~b!, which represents the first two
terms in Eq.~21!, and curve~c!, which contains all three
terms. The final fit that takes into account all three effe
described involves only two fitting parameters. After
many manipulations of the data and so much amplification
the noise it is gratifying to see a clear pattern emerge in
result that can be explained by simple physics.

A word is in order about the use of circular pieces
cardboard. This experiment was first run using rectangu
pieces of cardboard, but the best curve fits for the devia
from ideal velocity curves had exponents on the veloc
clustered around 2 instead of 3. Behavior of drag on a b
object as discussed in fluid mechanics books seems to
limited to circular disks. Perhaps the corners of the cardbo
affect the symmetry of the flow in a way that is significan
The quiescent region behind the disk may not exist to
same extent behind a rectangular plate. If so, the pres
difference on the two sides may not be the simple1

2rv2 as
holds for the disk. Based on the authoritative fluid dynam
texts and personal experience, I recommend against u
rectangular cardboard sheets to provide air resistance.

VII. SUMMARY

The air track and the motion sensor are two ubiquito
pieces of physics laboratory equipment. Together with
simple plotting package, these tools can be used to al
students to explore the nonideal nature of the ‘‘frictionles
air track. The benefits of this exercise are numerous, for b
the introductory and more advanced physics student:
notions of simple motion with~roughly! constant accelera
tion are reinforced. An acknowledgment of the deviatio
from ideal behavior is made. A systematic study of what
generally classified simply as ‘‘noise’’ is carried out, to th
point of fitting the ‘‘noise’’ with a simple curve. The more
advanced uses of plotting packages are introduced. S
simple concepts of air resistance are explored empirica
As is so often the case, we must look beyond the sim
explanations to find all the pieces of the physics puzzle,
when we do, the results are satisfying.
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HANG ALL THE PROFESSORS
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uncharacteristically moderate proposal was not adopted. Those who actually knew more about
education than Mencken did could see that his plan was nothing more than cosmetic and would in
fact provide only an outward appearance of improvement. Those who knew less, on the other
hand, had somewhat more elaborate plans of their own, and they just happened to be in charge of
the schools.
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