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By dropping spherical party balloons onto a sonic motion sensor we show that the force associated
with the air resistance is proportional to both the square of the velocity and to the cross-sectional
area of the balloon. These results are in agreement with those expected for the value of the Reynolds
number used,R'104. © 1999 American Association of Physics Teachers.
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I. INTRODUCTION

A common introductory exercise in computational phys
is to include the effects of air resistance in the equations
motion for a projectile. However, we have seen presen
side by side in a conference1 one set of calculations using
force due to the air resistance that is proportional to the
locity of the projectile

F}y ~1!

and another using a force proportional to the square of
velocity

F}y2. ~2!

Both cannot, simultaneously, be correct.
The authors using Eq.~1! were obviously thinking of

Stokes’ law

F56phr y, ~3!

which gives the viscous force on a sphere of radiusr moving
with velocity y in a fluid of viscosityh. This equation can be
found in almost all introductory physics texts,2 although the
derivation is not trivial.3 In fact, Stokes’ law comes from a
approximate solution to the equation of motion for a sph
moving in a fluid of infinite extent which is at rest at infinity
The approximation that is made is that the Reynolds num

R5
r l y

h
, ~4!

wherer is the density of the fluid andl is a typical length
scale, is much less than one. This means that we are de
with a viscous fluid.

An air resistance proportional toy2 occurs in the opposite
limit of R@1, and, in spite of not always being mentioned
introductory texts,4 is quite easy to derive. An object of cros
sectionA moving with velocity y sweeps out a volumeV
5AyDt in the time intervalDt. Therefore, it collides with
N5Vr/m fluid particles, wherem is the mass of the fluid
particles. On average, each collision will result in a mom
tum change of the order ofDp'my. The result is a force
that is commonly parametrized by5

F5 1
2rCDAy2, ~5!

where the drag coefficientCD depends on the exact form o
the object and on the medium but it is approximately ind
pendent of the velocity for large Reynolds numbers. Fo
sphere of radiusr the drag force in this case is

F}r 2y2. ~6!
709 Am. J. Phys.67 ~8!, August 1999
s
f
d

-

e

e

er

ing

-

-
a

As can be seen, the viscosity does not appear as we are i
limit where inertial forces dominate. For objects falling
air, the viscosity is sufficiently small that Stokes’ law is n
valid for any but the lowest velocities.

In this paper we describe an experiment using party b
loons that allows undergraduate students to distinguish
tween Eqs.~3! and ~6!. The diameter of the balloons is ap
proximately 15 cm and the terminal velocity that they rea
is 3 m s21. Combined with the density and viscosity of a
r51.28 kg m23 andh51.8331025 N s m22, we find a Rey-
nolds numberR'104. Obviously, we haveR@1 and we
will show that Eq.~6! really is a much better description o
air resistance than Eq.~3!. Life can even be much more
complicated, as discussed in Ref. 6, where it is conside
that the missing constant of proportionality in Eq.~6! can be
a function of the Reynolds number and the spin of the m
ing object.

II. EXPERIMENTAL METHOD

The equation of motion for an object of massM falling in
a fluid that produces a resistive forceF(y) is

M
dy

dt
5M* g2F~y!, ~7!

where M* is the effective mass of the object taking in
account the Archimedes upthrust due to the fluid displac
As the resistive force increases with velocity, the obje
eventually reaches a terminal velocityy` determined by

F~y`!5M* g. ~8!

If we work with objects of the same radius but differe
masses, distinguishing between Eq.~1! and Eq.~2! requires
us to determine if the relation between the effective mass
the terminal velocity is

Fig. 1. The variation of the height of a balloon falling in air. A least-squa
fit of a straight line to the last ten points is shown.
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M* }y` ~9!

or

M* }y`
2 . ~10!

If we wish to show that Stokes’ law is not always appr
priate, then the experimental challenge is to find a comb
tion of an object and a fluid such that the object reaches
terminal velocity in a distance that is of a laboratory sca
but where the inertial forces dominate the viscous ones.
solution is to use party balloons. The advantage that ballo
have over the coffee filters used by Derby, Fuller, a
Gronseth7 is that we can also vary the radii to check ther
dependence of the resistive force. An alternative approac
to drive the object such that it executes uniform circu
motion.8

A series of experiments was performed using a single
loon of fixed radius. The effective mass of the balloo
whose diameter was approximately 15 cm, was varied fr
4.5 to 12 g by sticking coins to it. The effective mass w
obtained by simply putting the balloon on a standard labo
tory balance, because even there it experiences
Archimedes upthrust. The balloon was then dropped from
height of around 2.5 m onto a sonic motion sensor.9 In Fig. 1
we show the evolution of the height of the balloon. T
value of the terminal velocity was obtained by fitting
straight line to the last ten points in the graph of the posit
versus time. For each mass the terminal velocity was de
mined ten times and the standard deviation was less than
of the mean value. The results are shown in Fig. 2.

III. DATA ANALYSIS

The lines shown in Fig. 2 are least-squares fits to

M* 5k1y ~11!

Fig. 3. A log–log plot of the data of Fig. 2. The straight line is the lea
squares fit to the data.

Fig. 2. The effective masses of the balloon vs the measured terminal v
ity. The lines are least-squares fits to a straight line and to a parabola, in
cases the fit is constrained to pass through the origin.
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and to

M* 5k2y2, ~12!

where k1 and k2 are the fitting parameters. It can be se
immediately that the parabola is a far better fit than
straight line. The values ofx2 are 13 for the straight line, and
1.6 for the parabola. Therefore, we can conclude that
better description of the air resistance to the movement
balloon is not Stokes’ law, but rather Eq.~2!.

An alternative way of analyzing the data is to note that
are looking for a power law relation of the typeM* }yn. The
exponentn, which is equal to one in the case of Stokes’ la
and two in the case of Eq.~2!, can be obtained as the slope
a graph of lnM* vs lny. The data of Fig. 2 are replotted i
this form in Fig. 3. The value obtained for the exponent i

n52.560.2. ~13!

This value is a little higher than two, but clearly inconsiste
with the prediction of Stokes’ law.

A second experiment that can be done with balloons is
check the dependence of the terminal velocity on the rad
of the balloons. It is obvious that balloons of different rad
have different masses, so the problem is to separate the
tributions of the velocity and the radius. However, once
have established that the resistive force is proportional to
square of the terminal velocity we can write

M*

y`
2 }r n, ~14!

where we wish to distinguish betweenn51 andn52. The
analysis is similar to that carried out to establish the veloc
dependence. In Fig. 4 we show howM* /y`

2 and r are re-
lated. Once again, the lines are least-squares fits to a str
line and to a parabola, both passing through the origin, an

-

Fig. 4. Determination of the dependence of the resistive force on the ra
of the balloons. The lines are least-squares fits to a straight line and
parabola, in both cases the fit is constrained to pass through the origin

Fig. 5. A log–log plot of the data of Fig. 4. The straight line is the lea
squares fit to the data.
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is clear thatn52 is the better of the two fits. The values
x2 are 0.33 for the straight line and 0.027 for the parabo
Figure 5 shows the same data as a log–log plot, which g
an exponent

n52.160.4. ~15!

IV. CONCLUSIONS

We have shown that party balloons are well suited
studying air resistance. They rapidly reach their terminal
locity and so their movement can easily be studied in a la
ratory with a sonic motion sensor. As they can be prepa
with different masses and radii they can be used to ch
both the velocity dependence and the size dependence o
resistive force. We have shown that the resistive force
proportional to both the square of the velocity and the squ
of the radius of the balloon. This is consistent with the m
tion being dominated by inertial forces, as is to be expec
for the Reynolds numbers observed.

a!Present address: Instituto Geofı´sica del Peru´, Apdo. 3747, Lima 100, Peru
b!Present address: Department of Physics, Shenzhen University, Gu

dong 518060, China.
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STATISTICS

Outside psychology@philosophy# plays almost no part in the functions of the research machine.
Brain scientists—Steven Pinker included—are defensive about their flirtation with the mystics.
They know that they cannot afford a relationship with their subject as austere as that of the
physicist Lord Rutherford with his; he claimed that ‘‘if your experiment needs statistics, you
should have done a better experiment.’’ Even biologists see that as unfair; in the messy world of
real life, statistics reveal the general through the mists of the particular. Psychologists, with minds
of their own to deal with, may need yet another level of explanation. The cynical view that if their
science needs philosophy they should do better science is less than reasonable. It may mean,
though, that large parts of their enterprise are for the time being beyond the limits of science
altogether.

Steve Jones, ‘‘The Set Within the Skull’’~a review ofHow the Mind Works, by Steven Pinker, Norton!, New York Review
of Books, November 6, 1997.
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