
Modeling the motion of a toy car traveling on an arbitrarily shaped track
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An analysis is performed on the motion of a Matchbox car racing down an arbitrarily shaped track
that resides in a two-dimensional vertical plane. The role of friction, track shape, and air resistance
on the car’s performance is investigated. The parameters that describe the car’s effective coefficient
of friction and drag constant are experimentally extracted by consideration of its motion on a flat,
horizontal track. These parameters are then employed to make predictions of the velocity on an
arbitrarily shaped track containing hills and valleys and compared with measured values. A rigidly
mounted shield of varying cross-sectional area is used to enhance the effects of drag. This analysis
has been successfully incorporated into an advanced group project for an introductory course in
classical mechanics and can be customized to accommodate a variety of levels. ©2002 American

Association of Physics Teachers.
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I. INTRODUCTION

Toy cars and air track carts are frequently used in int
ductory physics classes to demonstrate the exchange bet
gravitational potential and kinetic energy on an inclin
plane. A simple experiment can be conducted to estim
frictional losses by using a single photogate or a mot
detector to measure the velocity and acceleration of a ca1,2

An effective friction coefficient can be obtained by compa
ing cases with the car moving up and down the plane
similar approach can be employed to estimate the effect
air resistance.3 Typically, both effects are not considered s
multaneously.

We present a quantitative analysis of the motion of a
car ~Matchbox™! traveling on an arbitrarily shaped trac
residing in a two-dimensional vertical plane. Attention
given to the role of friction, track shape~curvature!, and air
resistance on the car’s performance. The effective coeffic
of friction and drag constant are experimentally extracted
consideration of the motion on a flat, horizontal track. A
exact solution to the equation of motion for this case allo
us to determine these parameters based on velocity mea
ments taken with a series of photogates. These param
can then be used to make numerical predictions of the ve
ity for a car moving on an arbitrarily shaped track allowin
for a frictional force that varies according to the curvatu
Rigidly mounted shields of varying cross-sectional area
used to enhance the effects of air resistance. The nume
solution for the car’s velocity on a particular track is pr
sented and compared with experimentally measured valu

This analysis has been successfully incorporated into
advanced laboratory project in introductory physics to e
phasize the development of model building skills. Details
the project structure, a preliminary assessment of its ef
tiveness, and suggestions for its implementation are
cussed in the conclusions. Although the analysis prese
here includes a combination of several effects simu
neously~to briefly document the more sophisticated mode!,
a gradual development of the mathematical model in a c
by-case approach provides a more appropriate learning
nario for students. We note that the models and experime
methods described in this paper are intended for experien
educators who may wish to develop a pedagogical appro
that is appropriate for their own students.

At Clarkson, students work in teams of four with occ
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sional guidance from an instructor when their group
progress is slow or halted. Students are encouraged to ta
the project using the same problem solving strategies r
forced in the lecture. Assistance is provided strategically
such a way that allows students initially to develop simp
solutions that they will eventually be able to build upon
accommodate additional effects. For example, the simp
development, obtained from only a consideration of the
change between kinetic and gravitational potential ene
will give way to more sophisticated solutions as more re
istic considerations are included~see Table I!. As their famil-
iarity with the problem increases, the students gain co
dence in their ability to tackle the ‘‘next level,’’ are excite
about the prospect of doing so, and are open to the no
that they may have to learn new skills to progress. This l
ered approach allows the instructor the opportunity of tail
ing the educational experience according to the interest le
and background of the students. Hence, the same pro
could be presented at a variety of levels ranging from h
school physics to an advanced undergraduate experie
The educational value of teaching modeling concepts a
process of progressively increasing the sophistication and
curacy cannot be overemphasized.

II. THEORETICAL MODEL

A typical Matchbox car has a die-cast body, two axles, a
four hard plastic wheels, with a total mass of approximat
50 g. Because the combined mass of the wheels is less
3% of the total mass of the car, we neglect the rotatio
kinetic energy imparted to them. There are no wheel beari
in a Matchbox car, as the plastic wheels simply rotate
axles that are fixed to the chassis. The weight of the cha
rests on the axles, which in turn slide on the inner holes
the wheels. Consequently, we invoke the traditional slid
friction model, which assumes a kinetic frictional force th
is directly proportional to the normal force

f k5mkN, ~1!

where the constant of proportionalitymk is the coefficient of
kinetic friction.

The flexible plastic track used in this analysis can be r
idly mounted with an appropriate support structure~see Ap-
pendix A! in a variety of smooth shapes containing hills a
670p/ © 2002 American Association of Physics Teachers



Table I. Case-by-case model development. The following numerical solutions predict the velocity of the car on an arbitrarily shaped track.

Case
Effects

included Solution

A Potential energy~PE!,
kinetic energy~KE!

v5Av0
222g~y2y0!

B PE, KE, friction v5Av0
222g~y2y0!22gmk~x2x0!

C PE, KE, friction,
track shape

v5AFv0
2S 12

mk

r 0
~x82x08! D22g~y2y0!22gmk~x2x0!GY F11

mk

r
~x82x08!G

D PE, KE, friction,
track shape, air
resistance

v5AFv0
2S 12S mk

r 0
1

k

mD ~x82x08! D22g~y2y0!22gmk~x2x0!GY F11S mk

r
1

k

mD ~x82x08!G
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valleys in a vertical plane. The track surface is fairly hard
that work done by the deformation of the wheels and tra
when in contact is neglected. Relatively shallow sidewa
keep the car from leaving the track. Collision forces betwe
the car and the track sidewall are not modeled separately
are assumed to contribute in an averaged manner to the
bined frictional losses. Tracks are commercially availa
through a variety of stores or can be fabricated from si
larly shaped plastic molding strips.4

Conventional fluid dynamics theory describes a power-
dependence of the drag force on velocity:5,6

D5 1
2CdrAv2, ~2!

whereCd is the drag coefficient,r is the fluid density, andA
is the cross-sectional area of the object. Equation~2! should
be familiar to most students in introductory physics, and
inclusion opens the door for further investigation of t
physics behind it. The Reynolds number is the critical fac
in determining the nature of this dependence. This dim
sionless number is defined as a ratio of inertial to visc
forces given by

R5
rv l

m
, ~3!

wherel is the characteristic length associated with the cro
section of an object moving with velocityv ~relative to the
fluid far from the object! in a fluid with dynamic viscositym.
The drag coefficient depends in a complicated way on
Reynolds number, a topic that is discussed in most textbo
on fluid mechanics.5,6 For the highly viscous case known a
creeping flow (R<1), inertia forces are negligible, andCd is
inversely proportional toR, resulting in a drag force that i
proportional to the velocity. At larger values ofR, Cd is
approximately constant resulting in a drag force that is p
portional to the square of the velocity.

A suitable length scale for a typical car is approximate
3.0 cm, the approximate cross-sectional width. For a
moving through the air at room temperature:7 r
'1.21 kg/m3, m'1.8131025 kg/m•s. With these values, a
car would have to be traveling at a speed of less tha
31024 m/s to invoke the small Reynolds number limit. W
expect the car to spend a negligible amount of time in t
regime, perhaps for a brief moment after being released f
rest. Consequently, we include a drag force that is prop
tional to the square of the velocity,
671 Am. J. Phys., Vol. 70, No. 7, July 2002
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D5kv2, ~4!

wherek is the drag constant and is equal to (1/2)CdrA.
To further simplify the analysis, the rotational inertia

the body is neglected. For all intents and purposes, the c
sis, wheels, and axles are treated as a single entity, much
a sliding block~a familiar problem for most students! with
losses arising from a sliding frictional force and air res
tance. The free body diagram is illustrated in Fig. 1 for a
on a small section of a typical track. Some of the assum
tions, justified at this stage by qualitative arguments, w
ultimately be justified by the agreement of the experimen
results with the theory.

The curvature of the track will affect the normal force b
inducing a centripetal acceleration of the car. This accele
tion in turn will affect the frictional force,

f k5mkmS g cosu1
v2

r D , ~5!

which increases in the valleys where the curvature is posi
and decreases on the hills where the curvature is nega
Herem is the total mass of the car,g is the acceleration due
to gravity,u is the local inclination of the track with respec
to the horizontal, andr represents the local radius of curv
ture.

An application of Newton’s second law in the directio
parallel to the track,x8, yields the equation of motion,

mgsinu2 f k2D5max8 , ~6!

where the accelerationax8 can be written as

Fig. 1. Free body diagram for a car on a small section of track.
671D. P. Wick and M. W. Ramsdell
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dv
dx8

dx8

dt
5v

dv
dx8

5
1

2

d~v2!

dx8
. ~7!

Here the time has been eliminated in favor of a spatial
scription of the acceleration, because we will experimenta
measure the velocity of the car at fixed points along the tr
rather than at different times. The final manipulation of t
acceleration term into a spatial derivative ofv2 is merely for
our convenience, as we recognize that the velocity dep
dence of Eqs.~4! and~5! is also quadratic. In our experienc
most students are able to understand the importance of e
nating time as a consequence of the nature of the meas
ments, and proceed accordingly with just the initial manip
lation. Learning to express a physical variable in terms
measurable quantities is an important exercise for studen
complete. Facilitating this learning process requires car
guidance on the part of the instructor, as students often n
assistance with the formalities of proper mathematical
pression, even if they understand the underlying concep

If we combine Eqs.~4!–~7!, we obtain the following lin-
ear, first-order differential equation:

mgsinu2mkmgcosu2mkm
v2

r
2kv25

m

2

d~v2!

dx8
. ~8!

By integrating Eq.~8! with respect tox8 ~with u a function of
x8!, we obtain
e
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2
~v22v0

2!52mg~y2y0!2mkmg~x2x0!

2mkmE
x08

x8v2

r
dx82kE

x08

x8
v2dx8. ~9!

The term on the left and the first term on the right repres
changes in the kinetic and gravitational potential energy,
spectively. The second term on the right is the work done
kinetic friction and depends only on the horizontal distan
traveled by the car. The remaining integrals represent
correction to the work done by kinetic friction on acurved
surface and work done by the drag force, respectively. T
same description could be obtained directly from wor
energy considerations. Our experience has been that the
ter is the preferred approach for approximately half the s
dent groups. The exercise of formulating the mod
mathematically generates much discussion among gr
members about the most appropriate approach, and prov
a great opportunity for students to see the connection
tween Newton’s second law and work–energy concepts
the context of a real problem.

At this point, an analytical solution is out of reach for a
but the simplest of track shapes. A numerical solution can
obtained given the local radius of curvature for a particu
track. An approximate solution valid for small increments
Dx8 can quickly be achieved by approximating the integr
with simple quadrature. The use of the standard trapezo
rule leads to a quadratic algebraic equation inv:
v5AFv0
2S 12S mk

r 0
1

k

mD ~x82x08! D22g~y2y0!22gmk~x2x0!G Y F11S mk

r
1

k

mD ~x82x08!G , ~10!
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where the subscript zero denotes the initial state. The sp
of the car at any subsequent point along the track can
evaluated numerically using a simple spreadsheet applica
if the parametersmk andk for a given car and the radius o
curvature function r , describing a particular track, ar
known. If the car is released from rest, Eq.~10! requires the
condition (y02y).mk(x2x0) to be satisfied in order for the
car to advance, a familiar condition that essentially defi
the static friction coefficient based on the critical angle.
addition, the car will leave the track if the normal force va
ishes, invalidating the solution at that point. For any giv
combination of car and track, this condition should
checked.

Less sophisticated solutions could certainly be achie
~even algebraically if the acceleration is assumed cons
over a small displacement! by neglecting the drag force
track shape, or even frictional force in a case-by-case de
opment of the mathematical model. Such a treatment gre
simplifies the derivation of Eq.~9! from Eq. ~8!, giving stu-
dents the opportunity to grow into the more sophistica
mathematics, one step at a time. Four cases that emph
the hierarchical structure of the solutions are summarize
Table I. Most of our students construct their solutions in
similar manner, but they are not required to do so. We int
ed
e
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tionally leave the project open-ended to allow their ow
ideas and creativity to lead their decision-making.

III. DETERMINATION OF PARAMETERS

The parametersk andmk for a given car could be obtaine
independently with the use of a miniature wind tunnel an
vacuum chamber containing a suitable length of track. Ho
ever, without the use of sophisticated equipment, the par
eters can be extracted from velocity measurements usin
series of photogates positioned along a straight track. T
porarily restricting our analysis to ahorizontalstraight track
eliminates the issue of curvature as well as changes in
tential energy. In our experience, some students eventu
come to this realization without much assistance, while o
ers need guidance to appreciate the advantage of this sim
fication. In any event, actually designing an experimen
procedure that takes advantage of this concept does not c
naturally, as most students at this level lack experience
signing their own experiments. Rather than providing th
with a ‘‘recipe,’’ we guide them with an inquiry-based ap
proach, leading them toward the development of a succes
experiment, often allowing them to make critical mistak
along the way. This process is time consuming as each gr
chooses a different path, but the experience helps them
realize the importance of a well-designed experiment a
672D. P. Wick and M. W. Ramsdell



673 Am. J. P
Table II. Case-by-case development for experimental method.

Case
Simplified solution for a
horizontal straight track

Needed
parameters Method

A v25v0
2 None None

B v25v0
222mkg(x2x0) mk Linear least-squares fit to

experimentally obtained plot
of v2 vs x data

C v25v0
222mkg(x2x0) mk Linear least-squares fit to

experimentally obtained plot
of v2 vs x data

D
v25Sv0

21
mkmg

k De2~2k/m!(x2x0)2
mkmg

k
mk , k Nonlinear least-squares fit to

experimentally obtained plot
of v2 vs x data
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the
ultimately gives them a sense of ownership over the proj
Below we document one method for determining the nec
sary parameters for the more sophisticated model, altho
in practice we encourage students to pursue a case-by
approach that works hand-in-hand with their theoretical
velopment~see Table II!. Most of our students construct the
experimental protocol in a similar, but not necessarily ide
tical manner.

Consider the experimental setup depicted in Fig. 2, wh
a car is released at some initial height, but the analysi
restricted to the flat portion of the track. With this simplifi
cation, Eq.~8! can be solved exactly forv2:

v25S v0
21

mkmg

k De2~2k/m!(x2x0)2
mkmg

k
. ~11!

Extracting the relevant values for the friction coefficient a
drag constant does not appear to be straightforward from
~11! due to the way in which the parameters appear. Ho
ever, note that the solution has the form

v2~x!5~A1B!e2Cx2B, ~12!

whenx0 is taken to be zero. The constantsA, B, andC are

A5v0
2, ~13!

B5
mkmg

k
, ~14!

C5
2k

m
. ~15!

If we assume that the data follows the nonlinear relat
described by Eq.~12!, a least-squares fit of this form to th
experimental measurements would identify the most app
priate values forA, B, and C, from which the needed pa

Fig. 2. Experimental setup used to determine the parametersmk andk for a
given car.
hys., Vol. 70, No. 7, July 2002
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rametersmk andk can be extracted. The details of the lea
squares analysis are included in Appendix B.

The experimental setup depicted in Fig. 2 consists o
long track with an initial steep downhill ramp flattening in
a straight horizontal section for 5 m. A 1 cm wide plas
flag, rigidly mounted to the top of the car~see Fig. 3!, trips
the photogates spaced at 10 cm intervals along the flat
tion of the track. In our setup, the photogates are conne
to a computerized data acquisition system. However,
system of photogates set to measure the amount of time
flag spends in each gate is suitable. The measured spe
approximated as the ratio of the effective flag width to t
measured time. A more detailed description of the exp
mental setup is provided in Appendix A.

To measure a range of speeds up to approximately 5
~the maximum expected speed for our particular setup!, it
was necessary to collect several data sets by releasing th
from different starting heights as depicted in Fig. 2. In ord
to cover the full range of speeds for a typical car in asingle
run ~beginning with an initial speed of 5 m/s and allowin
the car to come almost to rest!, we would have needed a fla
section of track approximately 22 m long. To circumvent th
limitation, we simply chose a series of starting heights t
ensured suitable overlap in the measurements by making
tain that the new initial speed was slightly higher than t
final speed obtained from releasing the car at the previ
height. This approach required that the car be released f
a total of five different starting heights. To ensure that

Fig. 3. Schematic views of a typical car with added shields to accentuate
affects of air resistance.
673D. P. Wick and M. W. Ramsdell
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had decent statistical data, we ran 20 trials from each star
height. Less ambitious groups who fail to collect data ove
wide enough range of speeds will end up with a larger m
gin of error in their determination of the important param
eters and ultimately in their model predictions. For ma
teams, this realization occurs after they have already
lected their data. The more careful teams end up repea
the experiment with a newly improved and more approp
ately designed experimental procedure.

To accentuate the effects of air resistance, rigid rectang
plastic shields with increasing cross-sectional area w
mounted to the top of the car and the experiment was
peated~see Fig. 3!. The cross-sectional area of the car me
sured approximately 6.25 cm2, and each individual shield
increased this area by approximately the same amount. C
plete data sets covering the full range of speeds were
lected for five different cross-sectional areas. The results
presented in Fig. 4. The vertical lines mark the places wh
individual data sets have been appended. Even in the abs
of a shield, the data deviates from the linear relation tha
predicted when the effects of air resistance are neglecte
the mathematical model~see below!. This deviation, ob-
served over a broad range of velocities, captures the in
ence of the drag force on the car’s performance. Only th
of the five complete sets obtained for the different cro
sectional areas have been included to avoid unnecessary
ter in the figure, although the extracted values ofmk and k
have been tabulated for all the sets in Table III.

We expect the measured kinetic friction coefficient to
constant, because it should be independent of the shield
figuration. For the car we tested,mk varies by less than 3%
from its average value as shown in Fig. 5, while the d

Fig. 4. Velocity squared versus effective track position for theNo-Shield
~s!, Shield-2(n), andShield-4~h! configurations. The vertical lines indi
cate where data sets have been appended.

Table III. Parameters for different car-shield configurations. In this tablem
represents the total mass of the car-shield configuration.

Configuration Area (cm2) m ~kg! mk k ~kg/m!

No-shield 6.25 0.0495 0.0384 0.00065
Shield-1 12.50 0.0548 0.0399 0.00109
Shield-2 18.75 0.0556 0.0399 0.00154
Shield-3 25.00 0.0564 0.0394 0.00214
Shield-4 31.25 0.0573 0.0395 0.00272
674 Am. J. Phys., Vol. 70, No. 7, July 2002
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constant is proportional to the cross-sectional area as sh
in Fig. 6. The consistency of the extracted parameters w
the expected trends is both reassuring and exciting, ad
credence to the chosen model.

Note that if we neglect the effect of air resistance on
car’s performance by settingk equal to zero in Eq.~8!, the
integration gives the much simpler solution:

v25v0
222mkg~x2x0!, ~16!

which contains the single parametermk . Equation~16! pre-
dicts a linear relationship betweenv2 andx, with the slope
equal to22mkg. Hence,mk can be quickly extracted from a
simple linear fit to thev2 vs x data and implemented in th
Case B and C models presented in Table I which neglect
drag force. A case-by-case development of the experime
method is summarized in Table II.

IV. NUMERICAL SOLUTION FOR A PARTICULAR
TRACK

To test the predictive capability of the general model
Eq. ~10! with the newly measured parameters, we chose a
m long track having two valleys separated by a single
~see Fig. 7!. The track shape was digitized against a ba

Fig. 5. Experimentally determined friction coefficientmk versus cross-
sectional areaA. Each data point represents a different car-shield confi
ration.

Fig. 6. Experimentally determined drag constantk versus cross-sectiona
areaA. Each data point represents a different car-shield configuration.
solid line is a linear least-squares fit.
674D. P. Wick and M. W. Ramsdell
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ground grid ~see Appendix A! and fit with a least-square
polynomial approximation to determine the curvature fun
tion k, defined as

k5
1

r
5

d2y/dx2

$11@dy/dx#2%3/2. ~17!

The numerical solution shows good agreement with m
sured values of velocity, as shown in Fig. 8 for the no-shi
and shield-4 configurations. The error bars of the measu
data do not exceed the size of the symbols in the graph.
calculations were carried out for small increments inDx of
131024 m. Most students pursuing the model at this lev
will need to spend some time researching the topic of cur
ture. At Clarkson, students are encouraged to seek out
information from a variety of resources ranging from calc
lus texts to math professors. The implementation of this
formation as well as the least-squares analysis is typic
completed with software packages such as Microsoft® Excel
or MATLAB ® depending on individual team preferenc
Again, a recipe is not provided, but groups are encourage
learn the necessary tools to complete the project.

Table IV documents the average and maximum perc
difference between each numerical prediction, and the m
sured values of the velocity for all car-shield configuratio
The differences between the predicted and measured va
can be attributed to the neglect of rotational kinetic ene
imparted to the wheels and general rotation of the car bo
The correlation between the increase in error with the cro
sectional area of the respective shields is likely to arise fr

Fig. 7. An arbitrary track shape.

Fig. 8. Numerical solution for the car traveling on the arbitrary track sh
in comparison to the measured values of velocity forNo-Shield~s! and
Shield-4~h! configurations.
675 Am. J. Phys., Vol. 70, No. 7, July 2002
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the propensity for the car to tip at certain speeds, resultin
a distribution of forces different than the assumed model

If we assume the resultant drag force acts through
centroid of the cross-sectional area of the car-shield confi
ration, a torque of increasing magnitude will be produced
the shield size is increased. Because the car actually m
contact with the track through the set of two wheels in fro
and two wheels in back, this torque could have the effec
tipping the car backward if the drag force reaches some c
cal value. This value translates to a critical speed that can
estimated for the car on a horizontal track as

vcritical5Amgl

2kh
, ~18!

wherel is the center-to-center distance between the axles
h is the height of the centroid. If the car reaches this criti
speed, it will presumably tilt. See Appendix C for details
this calculation. For our car in the shield-4 configurationh
56.25 cm, l 54.25 cm), the estimated critical speed is a
proximately 9.0 m/s, more than double the maximum sp
experienced. However, even for speeds below the crit
value, the redistribution of forces could be important for t
large shield configurations.

The evolution of the work done by each nonconservat
term in Eq.~9! is shown in Fig. 9, and reveals the relativ
importance of each effect included in the model. In the a
sence of a shield, the work done by the drag force is minim
as expected, accounting for less than 16% of the net los
mechanical energy by the time the car reaches the end o
track. The correction to the work done by friction varie
according to the curvature of the track, accounting for 33
of this net loss in the end. The bulk of the loss~51%! is
attributed to the frictional term that depends only on t

eFig. 9. The work done by kinetic friction, the correction to the work done
kinetic friction due to the curvature of the track, and the work done by
drag force for theNo-Shield~solid! andShield-4~dotted! configurations.

Table IV. Percent difference between predicted and measured velocitie

Configuration Avg. percent diff. Max. percent diff.

No-shield 1.2 3.0
Shield-1 1.2 3.0
Shield-2 1.0 4.5
Shield-3 2.4 6.1
Shield-4 2.4 7.1
675D. P. Wick and M. W. Ramsdell
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horizontal distance traveled by the car. In contrast, the w
done by the drag force for the shield-4 configuration clea
dominates the 24% loss from the correction term, now
counting for approximately 37% of the net loss in the en
nearly matching the 39% imparted to the remaining frictio
term. This type of analysis is important in helping students
understand the nature of model development, and em
sizes the importance of capturing the most dominant effe
first.

In Fig. 10 we present the numerical solutions for the fo
cases given in Table I, and compare them with the exp
mental measurements. To avoid redundancy, we have
included results for the no-shield configuration. However,
excellent agreement achieved with Case D was equally c
mon to the other configurations. As expected, each case
duces a slight correction to the previous one, with Case
giving the most accuracy. In fact, Case C does quite wel
mimicking the velocity of the car in the absence of
mounted shield. Viewing the contributions of each case i
comparison study reinforces the modeling process for
dents, who are often excited to see the improvements of t
latest model.

The predicted normal force shown in Fig. 11 demonstra
the effect of track curvature on the frictional force expe
enced by the car. In particular, we have plotted the nor
force for the no-shield configuration as a function of positi

Fig. 10. Numerical solutions for the car traveling on the arbitrary tra
shape for the cases listed in Table I, compared with the measured valu
the velocity for theNo-Shield~s! configuration.

Fig. 11. Predicted normal force for the car traveling on the arbitrary tr
shape for the cases listed in Table I~No-Shieldconfiguration!.
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on the track for the various cases. The failure of Case B
include the curvature of the track leads to a gross undere
mation of the normal force and thus the work done by fr
tion in certain regions of the track, accounting for this mo
el’s poorer agreement with the measured velocity data~see
Fig. 10!. Note that the predicted normal force never va
ishes, assuring that this car remains on this track through
the segment considered, and indeed it did. The maxim
predicted normal force of 1.9 N for the no-shield configur
tion suggests that occupants of this vehicle would encou
a 2.8 g acceleration, characteristic of a roller-coaster t
experience.

V. CONCLUSIONS

Without the use of sophisticated equipment, a given
car’s effective friction coefficient and drag constant can
ascertained from velocity measurements made with a se
of photogates. A least-squares extraction of the neces
parameters from the consideration of the motion on a h
zontal straight track provides a reasonable prediction of
car’s performance on an arbitrarily shaped track for mot
restricted to a vertical plane. Inclusion of the kinetic ener
imparted to the rotation of the wheels is fairly straightfo
ward if the rotational inertia is known or estimated, but is n
necessary to achieve satisfactory results, because the
tional contribution is on the order of the measured error.

The modeling concepts and experimental investigati
presented here have been successfully incorporated int
advanced group project for an introductory course in cla
cal mechanics at Clarkson University. This project ste
from a departmental initiative to develop an educational p
gram centered on project-based learning from which stud
can learn and develop basic modeling skills. The pedagog
approach is inquiry-based and emphasizes experiential le
ing, open-ended problem solving, and the developmen
analytical and collaborative learning skills, providing st
dents with an educationally richer and more challenging
perience than is typically obtained in the traditional labo
tory environment.

Students who choose to take part in the project work
groups of four as members of an investigating team fo
period of 10 weeks. The project serves as the major por
of their laboratory requirement, although other laborato
exercises/projects are included that reinforce the mode
approach. Out of a course of approximately 500 students
students participated in the project. TheForce Concepts
Inventory8 ~FCI! was used as a diagnostic tool to assess
performance of students who completed the project co
pared with a statistically comparable group of students w
did not. The comparison group was formed from stude
who had SAT and pre-test FCI scores comparable to thos
the participating students. Preliminary assessment data
gests that students who participated in the project out p
formed the comparison group by a factor of 1.5 and the r
of the class by a factor of 1.6, based on the traditional p
cent gain calculation. In particular, examination of the in
vidual gains for the six conceptual dimensions identified
Hesteneset al.8 reveals that the participating students outp
formed the rest of the class by a factor of 1.9 in the cate
ries of KinematicsandNewton’s Second Law, the two areas
most emphasized by the project. We expect to publish a m

of

k
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comprehensive evaluation of the pedagogical approach
well as additional suggestions for successful implementa
of the project in a future article.

Perhaps the most important benefit of this particu
project is that it lends itself nicely to a multi-layered deve
opment. Although the full analysis, which includes many
fects simultaneously~as presented here!, may appear chal-
lenging for an introductory physics course, a grad
development can be effectively achieved in the classro
laboratory environment. The development of the model i
case-by-case approach that incrementally includes diffe
effects emphasizes a hierarchical structure to the soluti
Simpler solutions~such as that obtained from considerin
only the exchange between kinetic and gravitational poten
energy! will give way to more sophisticated solutions~such
as those obtained from the consideration of friction, tra
shape, and air resistance! that can be pursued according
the general interest level and background of the student
addition, students that pursue the more advanced model
introduced to a variety of mathematical techniques such
least-squares analysis and integral approximations. A car
analysis provides an assortment of additional interesting
ics to be pursued, including the prediction of cars that w
leave the track and the determination of a critical speed w
the car will begin to tilt.

Each toy car has unique characteristics and will con
quently perform differently from other cars on any give
track shape. This difference has the advantage of allow
the instructor to develop a series of challenges for the
dents, where the solutions will be unique for each group.
Clarkson, the challenges are administered in a compet
environment to see which teams are most successful at
dicting the performance of their car on track shapes that t
have not seen before. For example, students are aske
predict turning points for their cars traveling on tracks ran
ing from the simplest of shapes where the curvature is c
stant~semicircular tracks! to more complicated shapes co
taining multiple hills and valleys. The latter case
particularly interesting if the track is carefully designed w
a large central hill surrounded by two valleys such that o
some of the cars will make it over the hill. As an examp
see the upper track displayed in Fig. 12. Having stude
place a one-dimensional bulls-eye next to the predicted lo
tion provides a mechanism for awarding points to the m
successful groups. In this phase of the project, teams

Fig. 12. Picture of experimental setup with mounted tracks.
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given an electronic copy of the digitized track shapes o
week in advance of the challenge sessions in preparation
the competition. The success of each group depends lar
on the extent to which they have developed their model, th
understanding of the predictive capability of their model, a
the care that they have taken in determining the experime
parameters. Of course, results also depend on the care th
taken of the car during the testing phase. A dropped car co
have a significantly different friction coefficient than it ha
originally due to a slightly bent axle or misaligned whee
Properly placed safety nets minimize damage to cars tha
off the track. Other challenges require teams to predict
lease points on a given track shape to accomplish jumps
obstacles or through target windows, soft cushioned ba
jumps, or even timing events. An event designed with
U-shaped track could require groups to predict the numbe
times their car will oscillate back and forth along the tra
before coming to rest. More challenging events include lo
the-loop sections of track. Each semester, students look
ward to competing in the challenge sessions, which provid
sort of grand finale to the semester-long project.
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APPENDIX A: DETAILS OF THE EXPERIMENTAL
SETUP

The experimental setup consists of a vertical Plexig
wall assembled from three commercially available 4.0
38.0 ft sheets as shown in Fig. 12. A 3.5 m32.0 m region of
this wall is superimposed with a 10 cm310 cm grid. A series
of 3/8 in. peg holes are spaced according to the layout of
grid. A system of rigid pegs and right angle supports cove

Fig. 13. Close-up picture of the track support structure.
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with Velcro™ are used to provide support for the flexib
track, the underside of which is also covered with Velcro~see
Fig. 13!.

It is important to note that the distance the car moves
measured by the signaling photogate isnot exactly equiva-
lent to the physical width of the flag. The infrared beam
light emitted by the photogate sensor has its own wid
which switches the gate OFF when some critical percent
of the light is blocked. Essentially, each sensor ‘‘sees’’
effective flag width that is slightly less than the actual fl
width. This effective flag width can be measured with
micrometer-scale measuring device by noting the car’s p
tion when the signal first vanishes and then reappears
each gate. The process is time consuming, but import
After averaging several measurements for a variety of ga
we obtained an effective flag width of 0.88 cm, a sign
cantly smaller distance than the physical width of 1.0 c
Due to the high velocities of the car and the small flag si
we sampled at a frequency of 400 kHz to give us appro
mately 800 readings per gate occupancy, providing an un
tainty of 60.006 m/s at the 5 m/s speed. The accuracy
creases as the velocity decreases due to the increased nu
of readings per occupancy.

APPENDIX B: LEAST-SQUARES ANALYSIS

We wish to find the values ofA, B, andC that will mini-
mize the sum of squares,

S5(
i 51

N

„v i
22v2~xi !…

25(
i 51

N

„v i
22@~A1B!e2Cxi2B#)2,

~B1!

wherev i
2 represents the measured data andv2(xi) represents

the predicted values at the location of the correspondinN
measured values. At the minimum of this three-dimensio
parameter space, the following partial derivatives must v
ish:

]S

]A
505(

i 51

N

2$v i
22@~A1B!e2Cxi2B#%e2Cxi, ~B2!

]S

]B
505(

i 51

N

2$v i
22@~A1B!e2Cxi2B#%~12e2Cxi !,

~B3!

]S

]C
505(

i 51

N

2$v i
22@~A1B!e2Cxi2B#%~A1B!

3~xi !e
2Cxi. ~B4!

The term (A1B) can be isolated in Eq.~B2! to have the
form

~A1B!5
( i 51

N ~v i
21B!e2Cxi

( i 51
N e22Cxi

. ~B5!

If we add Eqs.~B2! and ~B3!, we obtain the much simple
form:

(
i 51

N

$v i
22@~A1B!e2Cxi2B#%50, ~B6!

which can be combined with Eq.~B5! to obtain an expres
sion for B in terms ofC:
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2( i 51

N e22Cxi2( i 51
N v i

2e2Cxi( i 51
N e2Cxi

~( i 51
N e2Cxi !22N( i 51

N e22Cxi
. ~B7!

We then substitute Eq.~B7! and Eq.~B5! into Eq. ~B4! to
produce an equation containing the single parameterC. Al-
though the resulting equation cannot be solved directly
C, a parameter search can be conducted numerically to
the appropriate value that will make the resulting functi
vanish. OnceC is found,B and A can be obtained quickly
from Eqs.~B7! and ~B5!, allowing the parametersmk andk
for a particular car to be determined.

APPENDIX C: CRITICAL VELOCITY
CALCULATION

To estimate the critical speed at which the car-shield c
figuration will begin to tip on a horizontal track, it is nece
sary to employ a slight correction to the model by incorp
rating two normal forces. The car makes contact with t
track through a set of front and rear wheels. These cont
can be characterized by two normal forces denoted asN1 and
N2 as shown in Fig. 14, wherel is the center-to-center dis
tance between the axles. If we still neglect the rotatio
kinetic energy imparted to the wheels, we can treat the
sets of wheels as fixed, rigid attachments, upon which
whole system slides. The resultant drag force acts thro
the centroid of the cross-sectional area of the car-shield c
figuration, producing a torque that could tip the car bac
ward. Such an effect will occur ifN1 vanishes. The centroid
height is denoted ash in Fig. 14. We assume the mass
evenly distributed across both sets of wheels. If we ap
Newton’s second law in they direction, we obtain

N11N22mg50. ~C1!

Similarly, we sum the torques about pointP and find

Fig. 14. Free body diagram for a car on a horizontal track assuming
separate normal forces and a drag force acting through the centroid o
cross-sectional area.
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If we eliminateN2 , we obtain the following relation forN1 :

N15
mg

2
2kv2

k

l
. ~C3!

By considering the condition for whichN1 vanishes, the es
timated critical speed is obtained:

vcritical5Amgl

2kh
. ~C4!
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HISTORY, UNIVERSALITY, AND THE UNIVERSE

If we restrict ourselves to proposals which are falsifiable, what kind of explanations are avail-
able to us? In the history of science there have been two kinds of explanations which generally
succeeded: explanations in terms of general principles; and explanations in terms of history. We
are used to believing that the former are more fundamental than the latter. If we discover a fact
that seems to hold universally, such as that all electrons have the same mass, we believe imme-
diately that the reason for it must rest on principle and not on history. We usually expect a
phenomenon to be contingent only if we see that it changes from instance to instance. If asked to
justify this, we would say that something that is universally true cannot rest on contingent cir-
cumstances, which can vary from case to case. This makes sense, but it is an example of the kind
of argument that works well only as long as it is not applied at the scale of the universe as a whole.
When we are dealing with properties of the observable universe we no longer have any reason to
insist that if something is true in every observable case, it cannot at the same time be contingent.
One reason is that we have no justification to assert that the universe we see around us represents
a good sample of all that exists, or that has existed, or that might in principle exist. There is in fact
no logical reason to exclude the possibility that some of the facts about the elementary particles,
which appear to hold throughout our observable universe, might at the same time be contingent.

Lee Smolin,The Life of the Cosmos~Oxford University Press, New York, NY, 1997!, p. 77.
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