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Abstract
This is the first of a pair of articles about randomness in physics. In this
article, we use some variations on the idea of a ‘random walk’ to consider
first the path of a particle in Brownian motion, and then the random variation
to be expected in radioactive decay. The arguments are set in the context of
the general importance of randomness both in physics and in everyday life.
We think that the ideas could usefully form part of students’ A-level work on
random decay and quantum phenomena, as well as being good for their
general education. In the second article we offer a novel and simple
approach to Poisson sequences.

Why random behaviour matters
We believe that random phenomena are unjustly
neglected in A-level physics. Here are some
reasons why they are important, in general
education as well as in physics.

The newspapers report a 2% shift from 50%
to 52% in support for some idea. Is this real news
or not? Political polls usually sample about 2000
people. A good rule of thumb, and one of the
ideas that this article is all about, says that random
statistical fluctuations in N counts will often give
rise to variations of ±√

N counts. That’s about
±30 out of 1000 supporters, a change of 3%. A
more careful analysis (see later) expects just over
2% variation. So maybe this news isn’t news at
all. Understanding things like this is one reason—
the social reason—to believe that students ought
to understand random behaviour better.

Nowadays, a photograph—such as that of a
new supernova—is made by collecting photons
in the pixels of a ‘charge-coupled device’ (CCD)
like the one in your digital camera. Figure 1
shows how an image changes as the number of
photons increases. With few photons the image is

totally unclear, because the photons fall at random,
with a probability depending on the intensity at
each place. Just when can the astronomer feel
sure that there really is a supernova, not just
a chance fluctuation? This is another reason—
the technological reason—why random behaviour
matters.

Finally, random behaviour matters because it
is at the root of quantum behaviour, which is to
say, at the root of our deepest understanding of how
things are. Quantum calculations predict, not what
will happen, but the probability of events. This is
the reason, for example, why radioactive decays
come at random. It is also the reason why photons
arrive at random. Yet in physics teaching, these
principles are usually at best merely stated, not
demonstrated. So a last and fundamental reason
why understanding randomness matters is to be
able to demonstrate its presence in real phenomena
such as radioactive decay.

The drunkard’s walk
Molecules in a gas dash hither and thither
at random, changing direction unpredictably
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Figure 1. The same image, taken with increasing numbers of photons.

whenever they collide. Here is a prime example
of random behaviour, with some surprising
consequences. When Einstein showed how to
understand it, it became possible for the first time
actually to count molecules.

The simplest imaginable model of the motion
is the simple ‘drunkard’s walk’. Imagine a drunk,
taking steps of equal length in random directions.
How far will he get from the starting point, and
how will the distance vary? To keep things as
simple as possible, we’ll analyse the motion only
in one dimension (the drunk staggers to and fro on
a line—figure 2). This is enough to get the most
important result: that the likely variation in a walk
of N steps is equal to

√
N steps.

Let the drunk take stepsx1, x2, x3 etc with each
x equal to either +1 or −1, with equal probability.
The total distance X gone after N steps is:

X = x1 + x2 + x3 + . . . + xi + . . . + xN .

Each step xi is equally likely to be +1 or −1.
Thus on average, over many such walks, the total
distance will add up to zero. This is called the
expected value of X , written E(X). Thus:

E(X) = 0.

Notice that the expected value can be written down
directly from the model. Thus it is a theoretical
value that can be compared with experiment. This
is why we use the concept of expected values here.

In any given random walk, X can differ
somewhat from the expected value, which is the
value around which the average converges over
many walks. By how much will X typically vary

steps +1 or –1 with equal probability

Figure 2. A random walk in one dimension.

from the expected value? On any one occasion,
the departure r from the expected value is just

r = X − E(X).

It’s no use asking for the expected value of r ,
because that is clearly zero1. But the ‘spread’
of the variations of X around the expected value
can be looked at by considering the magnitude of
r . The usual way to do this is to ask about the
expected value of the (always positive) square of
r . Since E(X) = 0 this is:

E(r2) = E(X2) = E(x1+x2+x3+. . .+xi+. . .+xN)2.

Think about multiplying out the squared bracket2.
There will be N terms like x2

i . There will also
be ‘mixed terms’ of the form xixj with i and j

different. There are N(N − 1) of them, because
you can choose the first one inN ways and a second
different one in (N−1) ways. Note that they come
in pairs, since xixj = xjxi . The expected value of
r2 is the sum of expected values of these two kinds
of terms:

E(r2) = E

(
N∑

i=1

x2
i

)
+ E

(∑
i �=j

xixj

)
.

In the first sum, all the values of x2 are equal to
+1. There are N of them so the first sum adds up
to N . In the second sum, the ‘mixed products’ can
be 1 × 1 = 1, −1 × −1 = 1, 1 × −1 = −1 or
−1 × 1 = −1. So they are equally likely to be
positive as negative. Thus the expected value of
their sum is simply zero. We get the very simple
result

E(r2) = N.

The expected value of the squared departures r is
called the variance. Its square root is the standard

1 Formally, E(r) = E[X − E(X)] = E(X) − E[E(X)] =
E(X) − E(X) = 0.
2 Compare (a + b)2 = a2 + ab + ba + b2.

392 P H Y S I C S E D U C A T I O N September 2003



Randomness at the root of things 1: Random walks

deviation σ , a good measure of the spread3. Thus
for the drunkard’s walk:

σ =
√

N.

The meaning and use of
√

N

Molecules in a gas move in random directions,
but in three dimensions. They go on average
precisely nowhere (figure 3), but the root mean
square of the distances they go in N collisions is
just

√
N steps. Typically such molecules make

about 109 collisions each second, or 1012 collisions
in a quarter of an hour. So molecules will quite
often diffuse about

√
1012 = 106 steps in that

time. The mean distance between collisions is
typically 10−7 m, so you can expect a gas to diffuse
about 0.1 m in that time. This contrasts with
the enormous distance of 10−7 m × 1012 steps =
105 m = 100 km that a molecule travels along its
tangled path.

Astronomers sometimes have to make do with
very few photons arriving from a distant object
in each pixel of the CCD attached to a telescope.
How few can they manage with? Assume for now
that the standard deviation is also equal to

√
N .

Then if the average number of photons per pixel
is 10, there will often be variations of 30%, and
sometimes twice as much. There is no chance of
a well-defined image. Even with 10 000 photons
per pixel, the fluctuations still amount to 1%. Look
back to figure 1 to see this illustrated.

A related fact is the reduction in experimental
error through averaging many results. If there are
N results with a spread σ , then the expected spread
of the mean of those results is of the order σ/

√
N .

The reason is simply the way random errors can as
easily be negative as positive, just as in the previous
argument. But notice that this strategy does not

3 There are other ways of measuring ‘spread’. However, as N

varies, all of them scale as
√

N , which is the key result here.
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Figure 3. Simulated Brownian motion: the path of a
molecule.

work at all for systematic error, which stays the
same for each measurement.

The full theory of error and random variation
is complicated and quite difficult. But you won’t
go far wrong if you hang on to the idea that N

counts can easily vary by
√

N . By ‘can easily
vary’ we mean that a majority (often around 2/3)
of results fall within ±σ of the central value.

Notice especially that although the random
variation

√
N increases as N increases, its relative

value
√

N/N = 1/
√

N decreases. More counts
means greater precision. But that extra precision
may be too costly to obtain, because the gain in
precision increases much more slowly than the
increase in the number N of values required to
achieve it.

Random radioactive decays
Because radioactive decay is a quantum phe-
nomenon, counts from radioactive decay arrive at
random. In the case of a material with a long half-
life, the probability p of arrival in a given short
time �t is constant. Writing λ for the constant,
the probability per unit time, you get

p = λ�t.

Again we ask: what is the mean number of counts
in time t , and by how much can the number
of counts be expected to vary? The answers
can be approached through another random walk
argument.

Random walk: the timid traveller
We invented the following argument, having found
nothing simpler elsewhere. But it seems very
unlikely that we are actually the first to have
thought of it.

Picture a nervous traveller. At successive
moments of time, the traveller either takes one

5 counts arrive in 20 intervals of time
p = 5/20 = 0.25 approximately

walk takes 5 steps foward

Figure 4. Random arrival of counts modelled by a
random walk.
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Figure 5. Ten sample random walks (p = 0.25, N = 100): expected mean 25; expected standard deviation 5.

step forward or stays irresolutely still. Let the
probability to take a step forward be p. Then the
probability to stay still is 1 − p. In this picture,
taking a step forward corresponds to one count
arriving. Staying still corresponds to no count
arriving (figure 4).

How far will the timid traveller get on average,
and by how much will the distance gone vary from
one occasion to another? We will suppose that
the traveller makes a random decision N times, at
time intervals �t , and that the steps taken have
unit length. The difference between this situation
and radioactive decay is that we have chopped up
time into discrete intervals, in each of which one
event can happen or not.

Average path in chopped-up time

Let xi be the length of the ith step. Then xi = 1
with probability p and xi = 0 with probability
1 − p. The total length of the walk is given by

X = x1 + x2 + x3 + . . . + xi + . . . + xN .

What is its expected value over many such walks?
On average, there will be Np steps equal to 1, and
N(1 − p) steps equal to 0. Thus the expected
length of a walk (or total number of counts) is4

E(X) = Np.

Thus, in 100 possible steps, if the probability of
actually taking a step is 0.1, the expected number
of steps actually taken is 10.

4 To spell it out: E(X) = 1 × Np + 0 × N(1 − p) = Np.

Variation of length of path in chopped-up time

Figure 5 shows a simulation of the timid traveller’s
walk. You can see how the total distance gone
varies around an average value. We want to know
how much the length of the walk (total number of
counts) is likely to vary. The difference r between
the length of any walk and the expected length is

r = X − E(X).

The difference r is often called the residual.
Clearly r is just as likely to be negative as positive,
so its expected value is zero. But the square of r

is always positive, and we can ask (as previously)
about the expected value of its square:

r2 = (X − E(X))2.

You get a very generally useful algebraic fact if you
multiply out the squared bracket and ask about the
expected value of each term:

r2 = X2 − 2XE(X) + (E(X))2.

The middle term is just X multiplied by twice the
expected value of X. So its expected value is
−2(E(X))2 and the expected value of r2 comes
to5

E(r2) = E(X2) − (E(X))2.

The expected value of squares of residuals is
the variance. Mean values over a long run are
good estimates of expected values. So remember
the tongue-twisting mnemonic for calculating an
experimental estimate of the variance:

5 E(r2) = E(X2) − 2E(X)E(X) + (E(X))2 = E(X2) −
(E(X))2.
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“the mean of squares of X minus the
square of the mean of X.”

You already know the square of the expected value
of X: it is (Np)2. So to find the variance you just
need to find the expected value of X2 and subtract
(Np)2 from it.

The square of the path length (number of
counts) X is

X2 = (x1 + x2 + x3 + . . . + xi + . . . + xN)2.

As before, squaring the long bracketed expression
gives two kinds of term: N terms of the form x2

i

and N(N − 1) ‘mixed’ terms of the form xixj

where i and j are different. That is

X2 =
N∑

i=1

x2
i +

∑
i �=j

xixj .

The expected value of X2 is the sum of the
expected values of the two sets of terms. In the
first set, on average there will be Np cases where
xi = 1 and of course also x2

i = 1, so the expected
value of the first sum of terms = Np.

The ‘mixed’ terms can have the form 1 × 1,
1×0, 0×1 or 0×0. Only the first kind have value
1, the rest being zero. How many of the first kind
are there? xi takes the value 1 with probability p,
so two of them independently both have the value 1
with probability p2. Thus out of N(N−1) terms, a
total of p2N(N −1) will on average have the value
1. Therefore the expected value of the second sum
is p2N(N − 1).

This gives the expected value of the squares
of X:

E(X2) = Np + N(N − 1)p2

or, rearranging,

E(X2) = Np(1 − p) + (Np)2.

To find the variance, just subtract (Np)2, the
square of the expected value of X, giving

E(r2) = Np(1 − p).

The standard deviation σ is therefore

σ =
√

Np(1 − p).

This is an exact and very valuable general
result, with many uses wherever there are N

random choices between two possibilities, that is,
for any binomial distribution. In the case discussed
above, with N = 100 and p = 0.1, the standard
deviation is

σ =
√

100 × 0.1 × (1 − 0.1) =
√

9 = 3.

Whilst the expected length of the walk is 10 units,
the actual length in any one case can easily vary in
the range 10 ± 3 units.

Another example: if you toss a coin N times,
with probability p = 0.5 of a head, then the
average number of heads Naverage = Np = 0.5N .
The standard deviation of the number of heads is

σ = √
N × 0.5 × 0.5 =

√
0.5Naverage.

So in 100 tosses you expect 50 heads, but this can
easily vary by ±√

25 = ±5. A similar calculation
estimates the expected variation in the results of
opinion polls (see first page).

The result is very important in digital data
collection (e.g. imaging) in which a sensor either
receives a pulse or not. It determines the random
variation to be expected in the response of the
sensor. Another use is in tracking failure rates
of components on microchips. In the fabrication
process, some components suffer random defects.
It is important to know how many of these to
expect, and also to know by how much the number
of defects may vary. Exact results that are useful
enough to be worth remembering are rare in
physics. This is one of them.

N∆t = t

2N 0.5 ∆t = t

time t

time t

N time intervals, each ∆t

2N time intervals, each 0.5∆t

choose a time interval ∆t

still the same number of events: Np is constant.

Chopped up time

N∆ t= t

constant
mean number = Np

Continuous time

p=λ∆t

mean number = Np = λN∆t

mean number = λt

Figure 6. From chopped-up time to continuous time.
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(b)

Figure 7. (a) Different levels of activity, with different spreads. (b) The standard deviation of N counts varies as√
N (data as in (a)).

Going back to continuous time

In radioactive decay, or in the random arrival
of photons, there is really no such thing as the
‘number N of intervals �t in which there may be
a decay’. The previous picture chopped a total
time t into N imaginary slices each of length �t ,
such that N�t = t .

In reality time runs continuously, with the
probability p of a count in a short time �t being
given by

p = λ�t.

As you imagine the time slices �t getting smaller
and smaller (see figure 6), the probability p gets
smaller and smaller. Thus (1 −p) becomes closer

and closer to 1. In this case, the standard deviation
can be written simply as

σ =
√

Np.

Now you can use the expression for p in terms of
the rate λ to write this in a better way, getting rid of
the imaginary number N of time slices altogether

Np = λN�t = λt

so that
σ =

√
λt.

Remembering that Np = λt is also equal to
the expected number of counts, this can also be
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remembered as

σ = √
Nexpected.

These last results are also exact, for the continuous
random process of arrival of counts in time. Thus
a Geiger counter showing an average count rate
of 50 Bq from a source will give an expected
1000 counts in 20 s, but this will vary over at
least the range 1000 ± √

1000 = 1000 ± 30
approximately. Other examples include the rate of
arrival of telephone calls at an exchange, the rate
of occurrence of errors in a message, and the rate
of arrival of photons from a star, at the detector in a
telescope. An up-to-date example is the expected
rate of occurrence of detections of neutrinos from
a supernova, and the variation to be expected in
that rate.

Experimental check on
√

N

It is not difficult to use a counter and fast data-
logger to collect samples of numbers of counts in a
fixed time. Figure 7(a) shows sample data taken in
this way. Counts were repeatedly taken for a fixed
time, at a variety of different levels of activity. For
each activity level, the mean number of counts N

was recorded, and the actual standard deviation of
the variation between the samples at that activity
was calculated. You see from figure 7(b) how well
the prediction that the standard deviation is equal
to

√
N works out experimentally. Notice how at

high rates the ‘dead time’ of the counter begins to
have an effect.

These data give some experimental reason to
believe that the counts from a radioactive source—
a true quantum phenomenon—do really arrive
randomly. And other valuable lessons about
random variations and experimental error are clear
to see.

The graph of figure 7(b) shows clearly how√
N increases less rapidly than N . Thus although

the variation increases as N increases, the
proportional variation decreases, so the variation
becomes less and less important.

There’s an important message here for
estimating how many counts you need to get an
accurate estimate of the mean rate of arrival. For
example, at the highest activities of about 335 Bq,
the expected spread on a single one-second reading
is about

√
335 � 18, about 5%. In fact 600

repeated readings are taken, so that the expected
spread in the mean is

√
335 × 600 � 448, which

is 0.2%. A 600-fold increase in effort only yields
a 25-fold improvement in precision.

√
N strikes

again! Similar ideas are important for astronomers
counting photons in pixels of an image.

Conclusion
We think that the basic ideas here, using the idea
of a random walk and getting the value

√
N for the

standard deviation, are accessible to most A-level
students, and are worth attempting on account of
their general importance.

This is as far as many A-level teachers of
physics will want to go. But it is worth thinking
about going a bit further. Doing so delivers
some surprising results and suggests some further
simple and interesting experiments, looking for
example at how the waiting times between random
counts vary—a question with applications to, for
example, queuing at the supermarket.

The following article takes up this theme,
developing the concept of Poisson sequences in
a novel and simple way, and offering further tests
of the randomness of a process. The goal is a better
insight into how random events work.
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