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Experimental results for the transient response of a single oscillator, for two magnetically coupled
oscillators, and for oscillations about the center of mass of an isolated system are presented. The
apparatus is easy to build. The data for the response and for the forcing term are acquired in a simple
way, and allow accurate analysis and comparison with theory. ©2003 American Association of Physics
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I. INTRODUCTION

A flat steel spring with a massm attached at one end an
clamped to a massive support massM at the other end pro
vides a mechanical oscillator system in which the flat spr
constrains the oscillations to remain in a plane, so that
displacement is well defined and expressed by a single v
able. If one or more ceramic magnets are attached to
oscillating mass, a nearby small response coil can dete
time varying magnetic flux and give a measure of the vel
ity of the oscillating mass. A second coil fed by an altern
ing current and placed close to the ceramic magnets ca
used to excite oscillations and will be referred to as the dr
coil. The basic layout of such an oscillator system is sho
in Fig. 1~a!, and details given in Fig. 1~b!. Eddy currents
induced in a copper plate placed close to the magnet
cause damping.

This simple system can be built easily. Free and forc
oscillations and transient behavior can be studied, with
without damping. If the support system massM is reduced
and arranged so that it can move freely, for example by s
pending the whole system as a long pendulum, isolated
cillations in the center-of-mass system can be investigate
pair of pendulums as shown in Fig. 2, that are coupled b
link, constitute a very useful apparatus for demonstrating
concepts of classical eigenmodes, eigenfrequencies and
turbation theory, but do not permit detailed experimental
vestigations. But if two flat springs, each with an attach
mass and a magnet are clamped close together on a ma
support, as shown in Fig. 3~a!, with details given in Fig. 3~b!,
the interactions between the magnets couples these os
tors. Symmetric or antisymmetric classical eigenmodes
these coupled oscillators can be excited by the approp
placement of the drive coil and orientation of the magne
The eigenfrequency of the antisymmetric eigenmode can
studied as a function of the separation distance between
magnets. A drive coil and a response coil, as introdu
above for the single flat spring oscillator, enable data coll
tion and accurate experimental investigations of these m
netically coupled oscillators to be made.

A single oscillator system built with a flat steel sprin
attached mass and magnet, with a velocity response coil
a drive coil to provide data, gives results for forced exci
tion and magnetic damping that are the same as those
tained with other systems.1 However, setting up the singl
oscillator system with the drive and response coils is a us
first step for gaining experience for the later work on coup
oscillators and center-of-mass oscillators. So the experim
590 Am. J. Phys.71 ~6!, June 2003 http://ojps.aip.org/a
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tal results for the transient response of single oscillator w
a forcing excitation is suddenly applied are presented firs
a simple example. The experimental techniques are then
tended to more complicated systems.

II. EXPERIMENTS

A. Transient response of a single mechanical harmonic
oscillator

The system was constructed with a single flat steel sp
whose cross section was 1.5 mm332 mm; the length be-
tween the mass and clamp point was approximately 250 m
The oscillating mass, including the magnets, was chose
give a natural oscillation frequency about 8 Hz. Magnets
area 25 mm340 mm and thickness 10 mm were used. Tw
magnets mounted on the spring with a small gap betw
them can be useful. These two magnets permit a gre
separation between the drive coil and the velocity respo
coil. The magnetic field also can be measured by placin
Hall probe in the gap. The magnetic interaction for the la
coupling experiments can be modeled by considering coil
the same area as the magnets, carrying currents that mak
same field at the center as measured by the Hall probe.

The rectangular velocity response coil consisted of 1
turns of 0.3-mm-diam wire supported by a 75-m
360-mm plastic frame. One of the 75-mm sides was pla
in the region of the strong field of one magnet, parallel to
40-mm dimension of the magnet. The plane of the coil
parallel to the plane of the face of the magnet. The respo
coil and the drive coil are shown in Figs. 1~a! and 1~b!. The
other 75-mm side of the response coil is in a region of v
much lower field. With small oscillation amplitudes o
;3 mm, the flux change is mostly associated with sweep
the strong magnetic field past the side of the coil in t
strong field region and is roughly (;3 mm340 mm) times
B, whereB is the magnitude of the strong magnetic fiel
The drive coil is slightly smaller, 70 mm345 mm, with 100
turns of 0.375-mm-diam copper wire, and is fed through
3-V resistor from a signal generator and audio amplifier. T
resistive load provides a signal for the data acquisition s
tem, giving information on the forcing term. A personal com
puter with an analog-to-digital convertor is used to colle
the data from both the drive and velocity response coils.

For these experiments the response signal was reco
and plotted usingMATHCAD. A plot of the modeled behavio
~see the following! can be compared to the experimental da
590jp/ © 2003 American Association of Physics Teachers
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on the same graph. The response frequency is one of
parameters that can be varied. Alternatively, the response
quency can be extracted using FFT inMATHCAD or by a
separate package.

Fig. 1. General view of the flat spring harmonic oscillator.~b! End view of
the flat spring harmonic oscillator showing the relation between the resp
coil, the drive coil, and the magnets.

Fig. 2. A simple coupled harmonic oscillator system with coupling link
591 Am. J. Phys., Vol. 71, No. 6, June 2003
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In the transient experiments, the natural resonant
quency,f 0 , of the oscillator is roughly determined first. Th
signal generator is then set to a frequencyf close to but
different from f 0 . Then the analog-to-digital convertor is s
to receive the drive and response signals, and the audio
plifier is immediately switched on so that the oscillating dri
ing force of amplitudeF goes from zero toF cos(2pft-f).
The sudden switch-on means that the driving force is a pr
uct of a step function and a sinusoidal driving term. Beca
the step function is nonperiodic, its spectrum has a conti
ous range of frequencies that includes the resonant
quency. Alternatively, we could consider the step functi
alone to behave like a displacement from equilibrium ca
ing a natural oscillation, decaying on a time scale determi

se

Fig. 3. ~a! General view of the flat spring coupled harmonic oscillator sy
tem, showing the coupling magnets, response coil, and drive coil.~b! End
view of the flat spring coupled harmonic oscillator system, showing
relation between the response coil, the drive coil, and the magnets. Fo
arrangement, with the drive coil located centrally and the magnets orie
with their magnetic moments anti-parallel, the antisymmetric eigenmode
be excited.
591Lance McCarthy
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by the Q of the system. These oscillations will beat wi
those forced at frequencyf , until the natural oscillations die
away.

The equation of motion for the system can be written

d2x

dt2
1

b

m

dx

dt
1

k

m
x5

F

m
cosvt, ~1!

where the coefficientb is real. The form of the damping term
is appropriate for the case of a highQ system with residua
air and internal friction damping, and no added electrom
netic damping;k is the spring constant,m is the mass, andF
andv52p f are the amplitude and angular frequency of t
forcing term. The solution of Eq.~1! can be written as:

x1~ t !5x10cos~vt2f1!. ~2!

Equation~2! is the usual form of the solution for a force
damped harmonic oscillator in the steady state. This solu
is the particular integral, but the sudden switch on of
forcing term tells us that we must also include the solution

d2x

dt2
1

b

m

dx

dt
1

k

m
x50. ~3!

The solution to Eq.~3! is the complimentary function:

x2~ t !5x20e
2gt cos~v0t2f2!, ~4!

where

g5
b

m
~5!

is the decay rate of the natural oscillations whose ang
frequency isv0 , and

v0
25

k

m
. ~6!

The complete solution is then

x~ t !5x1~ t !1x2~ t !

5x10cos~vt2f1!1x20e
2gt cos~v0t2f2!. ~7!

The corresponding velocity is the time derivative ofx(t) in
Eq. ~7!:

v~ t !52x10v sin~vt2f1!2x20e
2gt@g cos~v0t2f2!

1v0 sin~v0t2f2!#. ~8!

The procedure is to display the experimental record of
velocity over a time interval long compared to the dec
time, and fit the data to Eq.~8! by varying the parameter
such as the phases, frequencies, forcing term strength, d
rate, as detailed in Fig. 4. The sudden switch-on suggests
the amplitudesx10 and x20 will be equal. The fit shown in
Fig. 4 demonstrates that the observations were consis
with the theoretical predictions of transients at the natu
frequency beating with the forced oscillations as they dec
The frequencies were extracted from the fitting procedu
and the frequency for the forcing term confirmed by co
parison with the value set on the signal generator.

B. Harmonic oscillations of systems in the center-of
mass frame

The number of classical mechanical phenomena that
be readily observed and whose analysis in the center-of-m
592 Am. J. Phys., Vol. 71, No. 6, June 2003
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frame greatly aids the understanding is not large. The m
well known and frequently made observations of this ki
are of the tides. If tides are considered in the reference fra
where the earth and moon are rotating about their comm
center of mass, it is easily seen that the distribution of
earth’s water envelope produces two lunar tides per day,
for example, Brown,2 or Rogers.3 In other reference frame
the explanation is more difficult. It is useful for pedagogic
purposes to consider laboratory experiments and demon
tions that demand analysis in the center-of-mass refere
frame.

In developing accurate experiments on the simple h
monic oscillator,1 the problem of using a finite mass suppo
rather than a completely rigid support became obvious
171-kg optical table was used as the support, and whe
relatively small mass was left on the table by mistake
lower resonant frequency was obtained. This observa
was followed up by measuring the resonant frequency fo
sequence of mass increments. The data showed that the
nant frequency for this system on the optical table decrea
from 10.7799 Hz for a base mass of 171 kg to 10.7569
for 271 kg. These observations suggest that the support m
be deliberately changed in order to develop a demonstra
experiment for which the analysis must be done in
center-of-mass frame.

For this experiment, flat springs, plus an effective oscil
tor mass ofm including the attached magnets are clamped
a frame of finite massM that includes the drive and detecto
coils; M can be increased by attaching other masses to
frame, as shown in Fig. 5. The complete system is suspen
as a pendulum of length;2.5 m, and the oscillations ar
arranged to take place in the horizontal plane. Suspend
the system in this way allows the small amplitude oscil
tions of bothm and M to take place almost isolated from
other effects. The oscillations of this system must be con
ered in the center-of-mass frame.

When M is incremented by amountsDMi , the resonant
frequency decreases. The design of such a system ha
ensure that for all choices ofDMi , the center-of-mass an
the pendulum attachment point remain in the plane of
oscillations. A single flat spring and attached massm
clamped to one end of the frame results in angular as we
linear oscillations. To avoid the problem of angular oscil
tions and ensure that only linear oscillations occur, a sy
metrical system as shown in Fig. 5 was made using a p
of aluminum channel as the frame for the base of massM .
Two identical flat springs were clamped to opposite ends
the frame, each having an attached massm/2 located close to
the center of mass. Each mass had a magnet attached, w
principal purpose was providing the velocity response sign
These magnets were placed very close together and orie
so that they attract each other, ensuring that the masses m
together. This part of the system thus acts as a single o
lator with total oscillating massm, and a combined spring
constantk.

To predict the behavior of the system, we takex to be the
coordinate of the massm, andX to be the coordinate of the
frame with massM1DMi , each measured with respect
the center of mass. Conservation of momentum requires
the velocities be opposite at all times and hence the displ
ment of the spring is the sum of the displacements ofm and
M1DMi . We apply a sinusoidally varying forcing term us
592Lance McCarthy
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Fig. 4. Data and calculations for in
vestigations of transient oscillations
~a! The experimental data.~b! Infor-
mation about the process of makin
theoretical calculations for the com
parison.~c! Information on the com-
parison of experimental data with the
oretical calculations.
b

ing a magnet mounted as part ofm, interacting with a coil
carrying an ac current mounted as part ofM1DMi . The
equations of motion for the individual masses may then
written as:

d2x

dt2
1

b

m

d~x1X!

dt
1

k

m
~x1X!5

F0

m
cosvt. ~9!
593 Am. J. Phys., Vol. 71, No. 6, June 2003
e

d2X

dt2
1

b

M1DMi

d~x1X!

dt
1

k

M1DMi
~x1X!

5
F0

M1DMi
cosvt. ~10!

If we combine Eqs.~9! and ~10!, we can write:
593Lance McCarthy
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Fig. 5. Basic diagram of a center-of
mass oscillator system.
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d2~x1X!

dt2
1

b

Mr

d~x1X!

dt
1

k

Mr
~x1X!5

F0

Mr
cosvt,

~11!

where the reduced mass is

Mr~DMi !5
m~M1DMi !

m1M1DMi
. ~12!

Equation ~11! has the same form as the equation for
forced simple harmonic oscillator with the reduced massMr
moving relative to a rigid support. Such a system is char
terized by a resonant angular frequencyv0 , which depends
on the incrementDMi :

v0
2~DMi !5

k

Mr
5

k~m1M1DMi !

m~M1DMi !

5
k

m S 11
m

M1DMi
D , ~13!
594 Am. J. Phys., Vol. 71, No. 6, June 2003
c-

where v0(DMi) is the resonant angular frequency for th
base massM1DMi .

For these experimentsM was about 3m, so thatv0(DMi)
can be made to decrease by about 15% asDMi is increased
from zero to very large values. The oscillating massm and
mass of the baseM were measured using a laboratory ba
ance. They were found to bem;0.65 kg andM;2.1 kg.
Static measures of the spring constant gavek
;1425 N m21. The oscillating massm is not just that of the
masses attached to the spring, but includes some of
spring mass. The effective oscillating mass, which is
quantity thatm represents, can be determined in an auxilia
experiment where the frameM is clamped to a very massiv
support andm is varied by amountsdmi . Then

v0
2~dmi !5

k

m1dmi
. ~14!
594Lance McCarthy
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Fig. 6. Comparison of experimenta
data with theory, for center-of-mas
oscillations when the base mass is in
cremented. The experimental data a
shown as boxes. The solid line is th
theoretical fit obtained when the pa
rametersk, m, and the minimum base
massM , have been varied to obtain
the best fit. The values of these param
eters that give the best fit were foun
to bek51452.8 Nm21, m50.628 kg,
and M52.04 kg, consistent with the
roughly measured values noted in th
text.
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A comparison of a plot ofk/v0
2(dmi) vs dmi with a plot of

m1dmi vs dm can be used to determine the effective spr
constantk and oscillating massm. This determination is no
presented, because the quantitiesk and m are not the main
interest and their values can be obtained from measurem
on the isolated system.

The resonant frequency for the isolated system can be
tracted, for example, by initiating a transient and taking
FFT of the velocity trace. Data forf 0(DMi) are taken for a
range of values ofDMi as this increment of mass is in
creased, keeping the increment symmetrical about the ce
of mass. Equation~13! can be written in terms of the fre
quency

f 0~DMi !5
1

2p
Ak

m1M1DMi

m~M1DMi !
. ~138!

Figure 6 displays the experimentally measuredf 0(DMi) vs
M1DMi for this isolated system. The data were fitted us
Eq. ~138! by varying the values ofk, m, andM . The best fit
is shown as a solid line. The manual fitting process, jud
by eye, is reasonably sensitive. For example, ifm is changed
from 0.628 kg, the value found to give the best fit, by hal
percent to 0.625 kg a very noticeable misfit occurs.

These experiments model linear vibrations of molecu
The case of the system isolated on the pendulum is an
gous to the stretching vibrations of a diatomic molecule
the gas phase. Textbooks on the applications of infra
spectroscopy to organic chemistry, for example, Refs. 4
5, discuss the stretching vibrations of diatomic molecules
calculating the vibrational frequency as a ball and spr
system using the reduced mass. However, when discus
the factors influencing vibrational frequencies, they do
discuss the details of modeling the changes expected in
ing from the gas phase to the solid phase. When the fram
clamped to a rigid support, this oscillator system is ana
gous to a molecule in the solid. A reduction of the frequen
595 Am. J. Phys., Vol. 71, No. 6, June 2003
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for infrared absorption in the solid state compared with t
in gas phase would be expected, but no direct compar
has been found in the literature.

C. Coupled mechanical harmonic oscillators

A simple demonstration of coupled mechanical harmo
oscillators can be made using a pair of identical pendulu
whose masses are a distanceL below a common support
each constrained to have just one degree of freedom by u
a pair of cords attached to a rod as shown in Fig. 2. T
coupling strength of the pendulums can be varied usin
sliding link connecting the adjacent cords as shown in Fig
This simple apparatus permits an elegant demonstratio
classical eigenmodes and eigenfrequencies. The frequen
the antisymmetric eigenmode when the link isDL below the
support is approximately that of a pendulum of leng
(L-DL/2). The change of the eigenfrequencies of the t
modes that are degenerate whenDL50 can be considered a
a function ofDL. This apparatus does not lend itself to a
curate measurements, because it is not simple to quantify
strength of the coupling through the link, and it is not easy
force the oscillations.

A pair of flat springs with attached masses and magnet
shown in Figs. 3~a! and 3~b! together with the exciter and
detector coils and a rigid support system enables the cou
mechanical oscillator system to be investigated quant
tively as a function of the strength of the magnetic couplin
The strength of the magnetic coupling can be decreased
increasing the separation between the individual oscillat
By a suitable orientation of magnetic moments and dr
coils, each of the eigenmodes can be excited and resona
observed. For free oscillations, the FFT of the response
nal demonstrates that there is a mixture of the two eig
modes. This FFT is used to extract the eigenfrequencies

Coupled mechanical oscillators are discussed in books
vibration control such as Ref. 6, but the emphasis of th
595Lance McCarthy
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books is on finding solutions of engineering problems. S
mon discusses theoretical techniques for analyzing cou
systems,7 and suggests techniques for coupling includi
springs and friction. He gives a detailed theoretical analy
of systems coupled by a spring. Symon presents some
amples of coupled oscillator vibration traces, but the data
not analyzed or compared with theory. It is not obvious h
the strength of the coupling spring can be easily change
a way that maintains the natural frequencies of the individ
oscillators, because some fraction of the spring mass alw
contributes to the oscillator mass.

The strength of the magnetic coupling used in the exp
ments discussed in the following can be varied witho
changing the individual spring constants, or changing
individual oscillator masses. The natural frequencies of
individual oscillators are therefore maintained. The magn
coupling can be quantified and varied in a well-defined w
The rigidity of the flat spring plus mass system ensures
the magnetic coupling does not alter the geometry of the p
of the individual oscillations, as would occur for magne
cally coupled, freely suspended pendulums, even w
double cords as shown in Fig. 2.

Before we can write the equations of motion governing
coupled systems, we need to be able to represent the
pling term as a function of separation distance, and a
function of the relative displacement of the two oscillato
This term can be modeled by representing the magnets b
current carrying single turn loops of radiusa of equivalent
area and magnetic moment. A Hall probe placed on the
face of the magnet was used to measure theB field that
single turn loops with the same area as the magnets m
match for the model. The value obtained was 0.12 T.

In modeling the interaction we regard one of the sin
turn loops as the source of a magnetic field. The curren
the other loop was regarded as the response loop and i
acts with this field to produce the magnetic coupling ter
Because the current stays fixed as we vary the separatiz
and the relative displacementx, we can find the dependenc
of the coupling term onz andx by calculatingB as a func-
tion of these variables. To obtain the appropriate strength
the coupling, the oscillators must be placed so that the m
nets or loops are separated by a distance that is the ord
their linear dimensions. For this reason we need to calcu
near-fields accurately at a range of locations.

An important point of this paper is that the vector potent
A has become valuable now that mathematical packages
readily available. Not only is it important to improve stu
dents’ understanding of the vector potential,8 there is much
to be gained by usingA for magnetic field calculations. Be
fore the introduction of mathematical packages, the use oA
was difficult and even in graduate textbooks
electromagnetism,9 most problems involved approximation
for far fields or on the fields near the axis of a current c
rying coil. But by using mathematical packages, it is easy
calculateB from the curl ofA everywhere, especially whe
A is produced by circular current loops.

For the present case it is easiest to work in cylindri
coordinates (r ,f,z), where thez axis lies along the undis
placed axes of the loops. The vector potential in these c
dinates has only af component, and the interacting curre
also has only af component. The relative oscillatory dis
placementx increases the radial distance between one sid
the response loop and the center of the source loop,
596 Am. J. Phys., Vol. 71, No. 6, June 2003
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decreases it on the other. The currents on opposite side
the responding loop produce forces that are opposed.
need to find the behavior ofBz(a1x,z) andBz(a2x,z) as a
function of the displacementx and the separationz between
the loops. We write the vector potential as:

Af~r ,z!5
m0Ia

4p E
0

2p cosf

~a1r 1z22ar cosf!1/2df. ~15!

Then thez component of theB field is obtained by taking the
curl:

Bz~r ,z!5
1

r

]

]r
~rAf~r ,z!!. ~16!

The estimate of the perturbing force is then

I @Bz~a1x,z!2Bz~a2x,z!#b, ~17!

whereb is the effective length of the current perpendicular
bothx andz. The value ofb is chosen to be the length of th
long side of the actual magnet.

The principles and results of the modeling of the spa
variation of this perturbing force are presented in Fig.
There are notes to guide readers to do the calculations in
mathematical package they prefer. The calculations h
been done here usingMATHCAD, but not all the details are
shown; for example, it is necessary to calculate the inter
tion force usingBz. It is seen that the perturbation is propo
tional to the displacementx for a given value of the separa
tion z, and proportional toz24 for a given value ofx. There
is of course no relative displacement for the symme
eigenmode, and so the magnetic coupling does not per
the symmetric eigenfrequency. For the free, undamped as
metric eigenmode, there is a term containing the spring c
stantk and a term containing a new quantityp defined as the
perturbation force per unit displacement of the oscillator. F
the opposed magnetic moment orientation chosen herp
provides a force in the opposite direction to that of t
spring, and we write the equation of motion for each osc
lator as:

d2x

dt2
1S k

m
2

p

mD x50. ~18!

The solution to Eq.~18! is

x1~ t !5x10cos~v0At !, ~19!

where for this antisymmetric eigenmode

v0A
2 5

k

m S 12
p

k D . ~20!

For the symmetric eigenmode:

v0S
2 5

k

m
. ~21!

The perturbation to the antisymmetric eigenfrequency
terms of the symmetric eigenfrequency for small pertur
tions is then approximately:

f 0S2 f 0A5
p

2k
f 0S , ~22!

or in terms of angular frequencies:

v0S2v0A5
p

2k
v0S . ~228!
596Lance McCarthy
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Fig. 7. ~a! The basics of the calcula-
tions of thez component ofB, used
for modeling the interactions betwee
the coupling magnets. The interactio
force is the product of the current, th
current element length, and the differ
ence between the values of theB field
at locations such as those calculate
for relative displacement of 2 mm. The
current element lengths are chosen
this modeling to be 40 mm, the actua
length of the magnets. In~b! the inter-
action force Fx(x) is plotted as a
function of the relative displacemen
of the magnets, for the case when th
separation distance is 50 mm. The ca
culated results are shown as boxe
Drawing the lineAx vs x, and varying
the multiplier A to get the best fit
shows that the dependence ofFx(x)
on x is linear. In~c! shown as boxes is
the plot of the dependence of the inte
action force F(z) on the separation
distance, for the case when the relativ
displacement is 3 mm. That the inter
action is dependent on the invers
fourth power of the separation dis
tance is shown, again by fitting a
straight line, this time by varying the
multiplier A3.
e
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The spring constant was measured and found to bk
5220 N m21. The symmetric eigenfrequency was measu
to be f 0S53.671 Hz, by taking a full resonance curve. F
50 mm separation and 5 mm displacement, our estimate
p is p529 N m21. The predicted value of the antisymmetr
eigenfrequency is thenf 0A53.43 Hz.

For interest and simplicity the data have been collected
the transient mixed mode excited when one oscillator
pulled aside and released. Alternately one oscillator can
struck gently. The data and analysis are presented in Fig
597 Am. J. Phys., Vol. 71, No. 6, June 2003
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The two eigenfrequencies were then extracted using a
for different values of the separation distancez. With 4096
samples at 10 ms intervals, the FFT cannot determine
quencies to better than 0.025 Hz. Even so, the data
analysis confirm that the difference in the eigenfrequenc
increases from zero at large separation asz24.

III. DISCUSSION AND CONCLUSIONS

The description of the apparatus, the presentation of ty
cal data obtainable with this apparatus, and the data inter
597Lance McCarthy
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Fig. 8. In ~a! is displayed a typical ve-
locity trace for one of the coupled os
cillators. For this case the separatio
between the magnets was 55 mm.~b!
The FFT of the velocity trace from
which the symmetric and antisymmet
ric eigenfrequenciesf 0S and f 0A are
determined.~c! shows as boxes the de
pendence of the difference betwee
these eigenfrequencies (f 0S- f 0A) on
the inverse 4th power of the separation
distance z. The solid line labeled
A(Zk)24 enables the linear relation
ship to be determined.A is the multi-
plier that is varied to obtain the bes
fit.
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en-
tation are intended as a guide to help interested readers
struct simple harmonic oscillator systems for demonstrati
and teaching laboratory experiments. Figures 4, 6, 7, an
demonstrate the ease with which the data can be anal
and compared with theory.

Attention is drawn to the use of the vector potential wh
modeling the dependence of the perturbation on the sep
tion and relative displacement of the coupling magnets p
sented in Fig. 7. Mathematical computer packages enable
vector potential to be used easily to calculate the magn
fields everywhere. The near fields are obtained here w
sufficient accuracy that their differences can be used to
curately model the experiment. Many laboratory coils a
circular, and the vector potential in cylindrical coordinate
Eq. ~15!, is very useful.
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