
PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 44, NO. 1, PP. 39–46 (2000)

PENDULUM WITH HARMONIC VARIATION OF THE
SUSPENSION POINT

Tamás INSPERGERand Roland HORVÁTH

Technical University of Budapest
Department of Applied Mechanics

H–1521 Budapest, Hungary

Received: Oct. 5, 1999

Abstract

A conventional pendulum has two equilibria, the lower one, and the upper one. This paper presents
the stability problems of the upper equilibrium state in case of parametric excitation. We will show
that the upper equilibrium can be stable due to the harmonic variation of the pendulum suspension
point. By manufacturing the pendulum and the oscillator, we proved the theoretical results in practice.
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1. Introduction

An oscillatory system with parametric excitation means that some of the parameters
of the system change as a periodic function of time. This phenomenon can be used
for stabilizing basically unstable processes. For example unstable cutting can be
stabilized by periodic variation of the cutting speed, or turbulent flows can become
laminar by periodic spurt of some fluid into the flow.

In this paper, we will examine how the upper equilibrium point of the pen-
dulum can be stabilized with parametric excitation. In this case, the parametric
excitation means the harmonic variation of the point of suspension. The main idea
is to show how we can eliminate an oscillation with the help of another oscillation.

2. Mechanical Model of the Pendulum

Nomenclature: m: mass of the rod
S: the center of gravity of the rod
lS : distance between point of suspension and center

of gravity S
ϕ: angular displacement of the rod
�S: mass moment of inertia of the rod
r : amplitude of the oscillation
ω: angular frequency of oscillation

This model disregards the damping effect produced by friction and air resistance.
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Fig. 1. Mechanical model of the pendulum

First, we consider a pendulum without parametric excitation, that isr = 0.
In this case the equation of motion assumes the form:(

ml2
S + �S

)
ϕ̈ − mglS sinϕ = 0. (1)

This is a nonlinear ordinary differential equation. Substitutingϕ ≡ ϕ0, ϕ̇ ≡ 0
andϕ̈ ≡ 0 we get the equilibrium points of the system. In practice there are two
equilibrium points, the upper one(ϕ0 ≡ 0), and the lower one(ϕ0 ≡ π). We are
interested in the upper equilibrium. Linearizing theEq. (1) at the positionϕ0 ≡ 0,
we get

ϕ̈ − mglS(
ml2

S + �S

)ϕ = 0.

The necessary and sufficient condition of stability for these kinds of equations is
that the coefficient ofϕ is nonnegative. In this case, this condition is not satisfied,
that is the upper equilibrium is unstable.

Now, take also the parametric excitation into account. The equation of motion
has the form:(

ml2
S + �S

)
ϕ̈ + (−mglS + mrω2lS cos(ωt)

)
sinϕ = 0 (2)

This system has the same equilibrium points, the upper one(ϕ0 ≡ 0), and the lower
one(ϕ0 ≡ π). Linearization ofEq. (2) at positionϕ0 ≡ 0 results:

1

ω2
ϕ̈ +

(
− mglS(

ml2
S + �S

)
ω2

+ mrlS

ml2
S + �S

cos(ωt)

)
= 0. (3)

This is a linear ordinary differential equation with a periodically time dependent
coefficient. If there is no parametric excitation, that isr = 0, then this equilibrium
point is unstable, as we know from practice and as shown above. The question is
whether there are suchr , ω amplitude-frequency pairs, that the equilibrium becomes
stable.
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3. Stability of Homogeneous Linear Systems with Periodic Coefficients

In this section we consider the general linear system:

ẋ(t) = A(t)x(t), (4)

where the coefficient matrixA(t) is periodic with periodT > 0, that isA(t + T ) =
A(t). We are interested in the stability of the equilibrium pointx ≡ 0. To solve the
problem, we apply the Floquet theorem (FARKAS, 1994 and HIRSCH – SMALE,
1974).

The fundamental matrix of (4) is
(t), if the

d
(t)

dt
= A(t)
(t)

matrix differential equation is satisfied. The following statements can be proved:

– All solutions of (4) can be written in the form
(t)c, wherec is a constant
vector.

– There exists a fundamental matrix
0(t), that all solutions of (4) come up in
the form
0(t)x0, wherex0 = x(0) is the initial condition, that is
0(0) = I,
whereI is the identity matrix.

– All fundamental matrices can be written in the form
(t)C̃, whereC̃ is a
constant matrix.

– For any fundamental matrix
(t), 
(t + T ) is also a fundamental matrix.
– There exists constant matrix̃C for which 
(t + T ) = 
(t)C̃, whereC̃ is

called the principal matrix of (4),̃C = 
−1(t)
(t + T ).
– The principal matrix belonging to the fundamental matrix
0(t) assumes the

form C = 
−1
0 (t)
0(t + T ) = 
−1

0 (0)
0(0 + T ) = 
0(0).
– All principal matrices are similar to each other, consequently the eigenvalues

of the principal matrix – called the characteristic multipliers (notation:λ1,
λ2, …λn) – are invariant, and determined by the system.

– System (4) is asymptotically stable if and only if|λi | < 1, i = 1, 2, …n.
– System (4) is stable in the Liapunov sense if and only if|λi | ≤ 1, i = 1,

2, …n, and if |λi | = 1, thenλi is simple in the minimal polynomial of the
system.

In general the principal matrix cannot be determined in an analytic way, but
there are several methods to approximate it (SINHA – WU, 1991). If the coefficient
matrix A(t) is piecewise constant, then – by the coupling of solutions – the correct
solution at timet = T is obtained in the form:

x(T ) = exp(tnAn) exp(tn−1An−1) . . . exp(t1A1) x0,

A(t) =




A1 if 0 ≤ t ≤ t1
A2 if t1 < t ≤ t1 + t2
...

...
An if t1 + t2 + · · · + tn−1 < t ≤ t1 + t2 + · · · + tn = T
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whereA1, A2, …, An are constant matrices forming the piecewise constantA(t).
So the principal matrix takes the form:

C = exp(tnAn) exp(tn−1An−1) . . . exp(t1A1) . (5)

If the coefficient matrixA(t) is not piecewise constant, then we can replace its
elements by piecewise constant values in the following way:

Ã(t) =




A1 = A
(

T
2n

)
if 0 ≤ t ≤ T

n
...

...
...

Ak = A
(

T
2n (2k − 1)

)
if T

n (k − 1) ≤ t ≤ T
n k

...
...

An = A
(

T
2n (2n − 1)

)
if T

n (n − 1) ≤ t ≤ T

Matrix Ã(t) is also periodic with periodT . Applying (5) toA1, …, Ak , …, An ma-
trices andt1 = t2 = . . . tn = T/n time intervals, we obtain an approximation of the
principal matrix. By examining the eigenvalues, we can approximately determine
the stability of system (4). The biggern is, the more correct the approximation is.

Fig. 2. Piecewise approximation

4. Stability of the Upper Equilibrium of the Pendulum

Now, examine original pendulum problem withEq. (3). Introducing the new vari-
ables (by abuse of notation with respect tot):

δ = − mglS(
ml2

S + �S

)
ω2

, ε = mrlS

ml2
S + �S

, t = ωt, (6)

we get a simple form of differential equation, called Mathieu’s equation:

ẍ + (δ + ε cost)x = 0.



PENDULUM WITH HARMONIC VARIATION 43

We search for a stability map, which shows the stability in the plane of the two
parameters,δ andε of Mathieu’s equation. By Cauchy transformation, we get the
following system:

ẏ = A(t)y,

y =
[

x
ẋ

]
, A(t) =

[
0 1

−a(t) 0

]
, a(t) = δ + ε cost.

Matrix A(t) can be approximated in the way shown before:

Ã(t) =
[

0 1
−ã(t) 0

]
,

whereã(t) is a piecewise approximation ofa(t) = δ + ε cost (seeFig. 2):

ã(t) =




δ + ε cos
(

2π
2n

)
if 0 ≤ t < 2π

n
δ + ε cos

(
2π
2n 3

)
if 2π

n ≤ t < 2π
n 2

...
...

...

δ + ε cos
(

2π
2n (2k + 1)

)
if 2π

n (k − 1) ≤ t < 2π
n k

...
...

...

δ + ε cos
(

2π
2n (2n + 1)

)
if 2π

n (n − 1) ≤ t < 2π

Applying (5), we get the principal matrix. By the examination of the charac-
teristic multipliers, the stability map, the so-called Incze–Strutt diagram comes up
(Fig. 3).

Fig. 3. Incze–Strutt diagram

To transform this map into ther − f plane – wheref = ω/2π is the frequency
of the oscillation – we need the technological parameters of the pendulum. The
natural angular frequency in the neighborhood of the lower equilibrium of the
pendulum without parametric excitation has the form:

α2 = mglS

ml2
S + �S

=
(

2π

T

)2

,
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whereT is the period of oscillation. Substituting this into (6), we obtain

δ = − mglS(
ml2

S + �S

)
ω2

= −
(α

ω

)2 = −
(

2π

T ω

)2

= −
(

1

T f

)2

,

ε = mrlS

ml2
S + �S

= α2 r

g
=
(

2π

T

)2 r

g f
,

that is, the parametersδ, ε can be expressed as a function of the time periodT .
In practice we manufactured a pendulum withT = 0.366 [s]. The stability

map of this pendulum in ther − f plane can been seen inFig. 4. The oscillator
worked with the following parameters:

– frequency: f = 36.75 [Hz],
– amplitude:r = 4.085 [mm].

This point is marked with a cross on the stability map.

Fig. 4. Stability map

We took some photos about the pendulum oscillating with ther− f amplitude-
frequency pairs given above (seeFigs 5 and 6). We can see that the rod of the
pendulum is standing vertically, that is the upper equilibrium state is stable. The
pendulum lighted with stroboscope can be seen inFig. 6.

5. Conclusions

The stability theorem of homogeneous linear systems with periodic coefficients is
well known in mathematics, but due to its complexity, it is rarely applied in industrial
problems, in practical life. In this paper we described the main points of the Floquet
theorem, and showed in practice how it works. The pendulum is just one – but very
spectacular – possibility of applying the theorem. There are several other fields
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Fig. 5. Oscillating pendulum in the upper equilibrium state

Fig. 6. Pendulum lighted with stroboscope

of technical problems where we can use the benefits of this phenomenon (e.g. the
unstable cutting process, or turbulent flows as mentioned in the introduction). The
main point is that an unstable oscillation can be stabilized via parametric excitation,
that is an oscillation can be eliminated with the help of another oscillation.
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