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Abstract
This article looks generally at spreadsheet modelling of feedback situations.
It has several benefits as a teaching tool. Additionally, a consideration of the
limitations of calculating at many discrete points can lead, at A-level, to an
appreciation of the need for the calculus. Feedback situations can be used to
introduce the idea of differential equations. Microsoft Excel™ is the
spreadsheet used.

Introduction
Situations involving feedback abound in physics.
They are commonly expressed mathematically
as differential equations in which the rate of
change of a quantity is a function of that quantity.
They can occur in situations involving feedback
loops (both positive and negative feedback). Two
examples are as follows:

• radioactive decay (dN/dt = −λN , where N

is the number of nuclei present and λ is the
probability per unit time of decay, known as
the decay constant). Here the differential
equation represents the feedback loop:

“the activity (dN/dt) causes
a decrease in N , which causes
a decrease in activity, which causes
a smaller decrease in N , which
causes…”

• a body falling in the presence of a drag force
(Newton’s second law gives
m�v = (mg − kv2)�t , where v is the
velocity of an object of mass m, k is a ‘drag
coefficient’ and kv2 is the drag force). The
feedback loop corresponding to this is the
familiar terminal velocity case—see the
Frontline article on page 383 of this issue.

Severn (1999) uses spreadsheet modelling to
provide solutions to such differential equations.

For example, by using suitably small time
intervals, the equation m�v = (mg − kv2)�t

can be used to calculate successive values of v

over time. The treatment of terminal velocity also
uses iterative processes on a spreadsheet, but I use
them at each stage in the feedback loop, instead
of on the fully formed differential equation. This
confers the following four benefits:

• younger students who have no understanding
of differential equations can produce
solutions to them, using very basic physics
(in the terminal velocity example, very little
more than F = ma is required).

• the variation with time of all parameters in
the equation can be investigated (in the
terminal velocity example acceleration–time
graphs can be formed as well as
velocity–time graphs).

• causal relationships and the nature of the
feedback loop become apparent from the
spreadsheet in a more explicit way than from
a fully formed differential equation.

• the spreadsheet shows up the shortcomings
of the numerical modelling more explicitly,
which helps to explain the usefulness of the
calculus.

I will discuss each benefit in turn, and illustrate
each with examples of spreadsheet modelling that
can be performed by students in the classroom.
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Figure 1. The first few lines of formulae modelling the discharge of a 1000 µF capacitor through a 10 k� resistor.

 

Figure 2. The first few lines of calculated data modelling the discharge of a 1000 µF capacitor through a 10 k�
resistor.

Younger students gain access to physics
that would usually be beyond them
mathematically
Applying F = ma to the case of a falling body in
air gives m�v = (mg − kv2)�t , where mg is the
weight and kv2 is the drag. Therefore mg − kv2

is simply the resultant force, and acceleration has
been written as �v/�t .

A typical 14-year-old in the UK would not
be expected to solve an equation such as this, and
yet we have seen in the Frontline article that (s)he
can perform sophisticated quantitative work using
spreadsheet modelling and produce what amounts
to a graphical solution of this equation.

More than one variable can be modelled
at a time
In the terminal velocity example above:

“the velocity is calculated from the
acceleration, which comes from the resultant
force, which comes from the drag, which
comes from the velocity …”

This means that the time dependence of any
of these quantities can be observed immediately

from the appropriate column of the table, or by
constructing a separate graph. We have already
seen that variations in the acceleration can be
linked to the changing gradient of the velocity–
time graph.

Another example is the modelling of capacitor
discharge through a resistor. The spreadsheet
given is for a 1000 µF capacitor and a 10 k�

resistor. Figures 1 and 2 show the first few lines of
formulae and calculated data, respectively, while
figure 3 is the graph showing the decay of potential
difference across the capacitor.

The spreadsheet is easy for A-level students
to construct, because the only physics required
are the formulae Q = CV and V = IR. The
exponential discharge formula Q = Q0 e−t/CR

is not required, and thus students can appreciate
where exponential relationships in physics come
from. The trick (which makes the feedback
appear) is to realize that (since the time intervals,
�t , are equal to 1 s and I = �Q/�t) each
charge value is equal to the previous one minus
the appropriate current.

The p.d. against time graph is shown in
figure 3 but it is equally straightforward to
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Figure 3. The decay of potential difference across a
capacitor.

construct graphs of charge stored against time,
or current against time. In this way, the student
can appreciate that all three of V , I and Q decay
exponentially.

A affects B affects C affects A. . .
Because each variable has a column of its own
in the spreadsheet, and each column is calculated
from at least one other, it is easy to see the causal
relationships within the feedback loops. We have
already seen that, in the terminal velocity example:

“the velocity is calculated from the
acceleration column, which comes from the
resultant force column, which comes from
the drag column, which comes from the
velocity column. . . ”

Many students will gain more insight from this
into the physics of the situation than they will
from forming a single differential equation and
then solving it.

I like my students to express these relation-
ships diagrammatically, using arrows on a blank
copy of the spreadsheet. For example, if A → B
means ‘B is calculated from A’, then the iterative
calculations on the terminal velocity spreadsheet
could be represented as shown in figure 4. This
diagrammatic representation makes it easy to
see which variables affect which others, and the
repeating pattern makes clear the nature of the
feedback loop.

The feedback loop that leads to the exponen-
tial discharge of a capacitor can be written as:

“The initial potential difference determines
the current, which changes the charge
stored, which changes the potential
difference, which changes. . . ”
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Figure 4. Representation of the calculations on the
terminal velocity spreadsheet.
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Figure 5. Representation of the exponential discharge
of a capacitor.

The diagrammatic representation of this feedback
loop is shown in figure 5.

Note that the differential equations modelled
in this article all deal with rates of change with
respect to time, but this modelling technique will
work for all feedback situations. The easier the
physics at each step of the feedback loop, the
more accessible the situation will be to students.
Complicated overall pictures (see, for example,
m�v = (mg − kv2)�t , which is complicated if
you are a British 16-year-old!) can be broken down
into a series of easy steps. In my opinion, once the
student is used to working with spreadsheets, the
modelling is then only as hard as the hardest single
step.

All the models in this article have in common
that the next value is calculated by adding (or
subtracting) a rate of change to a previous value.
For example,

v(t) = v(t − 1) + acceleration

in the model of terminal velocity,

Q(t) = Q(t − 1) − current

in the capacitor discharge model.
If the time intervals are not equal to 1, then

the relevant fraction or multiple of a rate of change
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Figure 6. The first few lines of formulae for the decay of 5 million atoms with λ = 0.2 s−1.

 

Figure 7. The first few lines of calculated data for the decay of 5 million atoms with λ = 0.2 s−1.

will be needed. More advanced students may well
see the connection between these relationships and
the calculus, but unfortunately this has not yet
happened in my classes!

Models can be mathematically incorrect!
In the terminology of the previous section, we can
set up a model of radioactive decay (in fact, it is the
most straightforward of the three models presented
here) by using the number of nuclei to calculate
the activity to calculate the number of nuclei to
calculate the activity. . . etc, i.e.

N(t) = N(t − 1) − A(t − 1)

and A(t) = λN(t) where A = dN/dt is the
activity of the sample.

Figures 6, 7 and 8 show the spreadsheets and
graph for the radioactive decay of 5 million atoms
of an isotope whose decay constant, λ, is equal to
0.2 s−1. In other words, each nucleus has a 1 in 5
chance of decaying each second. The INT function
has been used to round off numbers to integer
values, in recognition of the fact that fractions of
an atom are meaningless.

Notice that the number of nuclei and the
activity can both be modelled on the same graph,
and that the nature of the feedback is clear from
the table. Diagrammatically the feedback loop
looks as shown in figure 9. The simplicity of
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Figure 8. The radioactive decay of 5 million atoms
with λ = 0.2 s−1.

the feedback diagram reflects the comparative
simplicity of setting up this particular spreadsheet.

At first sight, it looks like the graph shows
a nice exponential function. We are told that
exponential functions result when the rate of
change of a quantity is proportional to that
quantity, and it looks as though that is the case
here, since the activity at each time is found by
multiplying the number of nuclei by a constant
fraction (the decay constant).

However, by drawing construction lines on the
graph it can be seen that the half-life increases
with time, which should not happen! In fact the
curve is not truly exponential at all. This can
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Figure 9. Feedback diagram for radioactive decay.
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Figure 10. Comparison of the original model and the
true exponential function.

be seen in figure 10, in which the original model
is plotted alongside the true exponential function
N = N0 e−0.2t . The model has values of number
of nuclei remaining that are too low (another way
of saying this is that the model overestimates the
activity).

Why is this? Why does our model not
provide a true exponential function? Well, our
model calculates an activity from the number of
nuclei, and it does it very well, but it applies
this activity for the whole second, until the next
row of the spreadsheet, when it recalculates. In
reality, the activity changes not in discrete steps,
but continually. In each interval of one second
the activity will be falling, whereas our model
assumes it to stay at its initial value. This leads
our model to overestimate the activity at each
step, and to underestimate the number of nuclei
remaining. (As an aside, for this reason those
of you who throw ‘Anderson cubes’ to model
radioactive decay should expect a better fit to our
spreadsheet model than to the true exponential
function!)

The student should see easily from this that
using smaller time intervals, δt , should give a

better model, with a better fit to ‘reality’. This can
easily be done on the spreadsheet by the student:
using time intervals of, say, δt = 0.1 s does
indeed take the modelled line closer to the true
exponential function. The implication is that the
true function will be reached in the limit δt → 0.
This exercise thus shows the student that a model
is just that—only a model, and it can help students
to see why the calculus is so useful and how it
comes about.

The difference between the model and the true
exponential function can be seen mathematically.
Each value of N in the model is just four-fifths (1−
λ) of the previous value. Thus N = N0(1 − λ)t .
A-level students with good mathematical skills
could be given the task of expanding this function
binomially and comparing it with a power series
expansion of N = N0 e−λt .

Conclusion
Spreadsheets can be used to model physical situ-
ations involving feedback loops, and thus provide
graphical solutions to differential equations.
Parameters can easily be changed and their
effects investigated. The causal relationships that
cause the feedback loop become apparent in the
spreadsheet model and it can be instructive for
the student to make them explicit in diagram-
matic form. The student can benefit from con-
sidering the mathematical limitations of the model.
Spreadsheet modelling can help the student
understand feedback situations without having
to learn differential equations, and therefore
the student can learn certain areas of physics
quantitatively at a younger age than would
otherwise be the case.
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