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mind of the air traffic controller to whom the
pilot reported having passed someone with a
pellet gun in a lawnchair at 11,000 feet?)
Eventually rescued by the crew of a heli-
copter, the physics-deficient flier was arrested
for having flown his lawnchair into the air-
approach corridor of Los Angeles Inter-
national Airport.  

The APS NEWS report of this adventure
reached me at a most propitious moment, my
physics class having just completed its study
of fluids and begun to examine the properties
of ideal gases. There was a lesson—indeed
several—to be learned from this adventure
and, not being one to waste an opportunity, I
promptly made it the focus of the following
day’s lecture. With the data provided in the
news article—plus a modicum of creative
modeling—a physics student can predict with
adequate accuracy the height at which his or
her lawnchair would settle (and would there-
by know enough at least to throw in a down
jacket and thermos of hot tea along with the
sandwiches and beer). There is survival value
to the study of physics!

Let us examine this vital issue.

The Barometer Story—Model One
I designate by m the mass of the balloons

and load and by V the volume of displaced air
of density �. By Archimedes’ principle it fol-
lows that the balloons come to rest at an alti-
tude h such that the total weight of the sus-
pended objects is balanced by the buoyant
force B, where

B = �Vg = mg                (la)

Thus, the density of the air at h must equal the
mean density (total mass/total volume) of the
objects:

� = �
m
V

�                                         (lb)

Although the news report does not give the
mass and volume explicitly, enough informa-

As a physics teacher, I have often
pointed out—to motivate a captive
audience who would not likely

have been sitting before me had not medical
and other professional school requirements
loomed over them—that there is survival
value to learning physics. To go unarmed into
a technologically complex world without the
slightest understanding of the universal laws
and fundamental principles that make such a
world possible is to be as naked and helpless
as our paleolithic ancestors must have been
before lightning and thunder. That, at least,
was how the rhetoric went—and I cannot say
with conviction that the majority of students
found it convincing. But here at last is an
indisputable example—drawn from no less a
bastion of journalistic integrity than the APS
NEWS—that awareness of physics could con-
vey a degree of protection against self-
destructive acts of ignorance.1

Comedy of Errors
The case at hand is that of the unfortunate

Californian who longed to float leisurely
some 10 meters above his back yard, eating
sandwiches and drinking beer, until such time
as he chose to descend. To realize his dream,
he purchased 45 weather balloons, which he
inflated with helium and attached to his lawn-
chair, secured by a tether to the bumper of his
jeep. Then, having provisioned his lawnchair
with the necessary snacks and a pellet gun
with which to pop the balloons to effect his
decent, the enterprising aeronaut released the
tether—whereupon (according to the news
report) he streaked like a rocket into the sky,
reaching equilibrium, not at 30 feet as intend-
ed, but at 11,000 feet!  

There he drifted cold and frightened for 14
hours until he was noticed by the pilot of a
passing jetliner. (Now the plight of the hapless
man is in reality no laughing matter, but can
you imagine what must have gone through the
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tion is furnished to allow a not-unreasonable estimate.
First, the total mass. Taking account of all pertinent items,
I would assign masses as follows:

aeronaut 85 kg
lawnchair 20 kg
45 balloons 10 kg

six-pack of beer + pellet gun + sandwiches 5 kg

for a total m = 120 kg. The aeronaut may seem a bit port-
ly, but then I inferred from the news report that he drinks
a lot of beer. I have also assumed that the lawnchair is of
the sturdy wooden variety and not a flimsy aluminum one. 

Regarding the displaced volume, the report specifies
only that, when fully inflated, the radius of a balloon
exceeds two feet. Based on a weather balloon I cherished
as a child, and the fact that the lawnchair ascended pre-
cipitously, I estimate the maximum radius to be closer to
three feet. This leads to a total volume V = 144 m3. In
arriving at this value, I have assumed that, once filled to
capacity at ground level, the balloons do not inflate further
upon rising (for to proceed otherwise, I would need infor-
mation about the elastic properties of the balloon materi-
al—and the problem would become virtually intractable
to introductory physics students).

From Eq. (lb) and the preceding assumptions, the ques-
tion then becomes: At what height above ground is the air

density � = �
1
1
4
2
4
0

m
kg

3� = 0.83 kg/m3? Recall that at ground

level, where the pressure is p0 =  1 atm  ~ 105 N/m2, the
corresponding density of the air (at room temperature T ~
293 K) is, to good approximation, �0 = 1.2 kg/m3. Thus 
� / �0 ~ 0.69.

The simplest (albeit approximate) method of attack is
to apply what I call the “Barometer-Story formula,”
named for a delightful essay that I habitually read to my
class whenever we study fluids.2 Written by a physics
teacher (who I am quite willing to believe may have actu-
ally had the experience related in the essay—but this I do
not know), the story describes the response of a bright stu-
dent asked on an examination to “Show how it is possible
to determine the height of a tall building with the aid of a
barometer.”  

Wearied by college instructors trying to tell him what
to think, the student came up with numerous methods—all
sound but impractical and altogether intentionally irrele-
vant to the particular point the teacher wanted to test—
with the consequence, of course, that he received a zero
for that question. For example, tie a barometer to the end
of a cord, swing it as a pendulum, determine the value of
g at ground level and at the top of the building. “From the
difference between the two values of g,” said the student,
“the height of the building can in principle be calculated.”
You get the picture. The essay is short, hilarious, and 
satisfying (at least to me and my class), for in the end the

student triumphs. I highly recommend it to teachers; one
of my own students confided afterward that he will now
go to his grave knowing the barometer formula, whereas,
had he encountered it merely as an end-of-chapter exer-
cise, he would have already forgotten it.  

From the familiar form of the ideal gas equation of
state

pV = nRT (2a)

(with temperature T expressed in degrees Kelvin), the
number of moles per volume (n/V) can be readily elimi-
nated in favor of the gas density (�) to yield

� = �
M
RT

p
� (2b)

in which M is the formula for molar mass (traditionally
termed the molecular “weight,” although this is a mis-
nomer). For air, with an approximate composition (accu-
rate enough for our purposes) of 75% N2 and 25% O2, the
gram molecular weight is M ~ 29 g. R, the universal gas
constant, is 8.3 J/mole.K.

If we assume for the present that the temperature of the
atmosphere is constant (i.e., independent of height), it fol-
lows from Eq. (2b) that density is linearly proportional to
pressure and therefore

�
�

�

(h

0

)
� = �

p
p
(h

0

)
� (3)

The difference in air pressure between ground level and
height h is simply the weight of a column of air of length
h and unit cross-sectional area, or

p(h) = p0 – �0gh (4)

if, as an additional approximation, I now take the air to be
incompressible. [Eq. (4) is the pressure-height relation
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that the physics teacher sought from the recalcitrant stu-
dent in the Barometer Story.]  

Strictly speaking, Eqs. (3) and (4) are inconsistent with
one another, for the density of the gas cannot both change
and be constant in the same problem. However, since the
variation in density is already accounted for in Eq. (3), it
is not too crude an approximation over a sufficiently small
change in altitude to assume constant density for the eval-
uation of p(h). How small is “sufficiently small”? With
insertion of Eq. (4) into Eq. (3), the resulting expression
itself suggests an answer:

�(h) ~ �0 �1– �
�0

p

g

0

h
�� = �0 �1 – �

h
h

0
�� (5)

The approximation should be valid for altitudes low com-
pared with the characteristic height

h0 � �
�

p

0

0

g
� ~ 8600 m                 (6)

I mention, in anticipation of the following section, that Eq.
(5) is in fact a series expansion to first order (in h / h0) of
the exact expression for the density variation of an isother-
mal atmosphere. The advantage of this first approach
(Model One) is that the use of calculus can be avoided, if
necessary, in an algebra-based physics course.  

Substitution of Eq. (5) into Eq. (1b) leads to

h = h0 �1 – �
�

�

0
�� ~ 2600 m ~ 8600 ft         (7)

as the equilibrium height of the lawnchair. This is some-
what lower than the reported height, but then we did not
have to work too hard to get the answer—and in any event
the outcome is orders of magnitude beyond what the aero-
naut thought his elevation would be (based on no quanti-
tative reasoning at all).

But let us work a little harder and do a little better.  

The Isothermal Atmosphere—Model Two
Under the assumption of the previous section, that the

temperature of the air remains constant (let us say at room
temperature T = 293 K), it is not difficult to derive the
exact variation of density � with altitude z. Figure 1 shows
the pertinent dynamical details. A cylindrical plug of gas
of cross section A and height �z remains in static equilib-
rium if the upward force of the air, p(z)A, on the bottom of
the plug balances the sum of the downward force of the
air, p(z + �z)A, on the top of the plug and the force of
gravity, p g A � z , at the center of mass of the plug, lead-
ing to the well-known barometric equation

–�g = �z → 0
→ �

d
d

p
z
� (8)

Replacing pressure p in Eq. (8) by the expression (2b) for
density � leads to the equation

�
d

d

�

z
� =  – ��

M
RT

g
���  = – �

h
�

0
�                (9a)

or equivalently

�
d
�

�
� = d �n �  =  – �

h
d

0

z
� (9b)

which is readily integrated (between z = 0 and z = h) to
yield the exponential solution

�(h) = �0e–h/h0                     (10)

Note that the characteristic height h0 = �
M
RT

g
� in Eq. (9a) is

precisely the same quantity as the h0 in Eq. (6); this read-

ily follows from use of Eq. (2b).
Although the solution of a differential equation may lie

outside the scope of algebra-based introductory physics,
the exponential function is of such overall importance that
its origin and basic properties should not, I believe, be
omitted.3 Two points in particular are worth noting to a
class. First, the exponential function arises whenever the
variation in a quantity is proportional to the remaining
quantity, e.g., d� � � in Eq. (9a). Second, from the defin-
ition of the transcendental number e as a limiting process4

[e = Lim
n →∞ �1 + �

1
n

��n
], we can approximate the function 

ex =  Lim
n →∞ �1 + �

n
x

��
n

by 1 + x, the first term in the bino-

p(z + �z) – p(z)
��

�zFig. 1.  Diagram of forces on a cylindrical section of air within
an isothermal atmosphere in static equilibrium.
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mial expansion of �1 + �
n
x

��n
for any n. Applied to Eq. (10),

this first-order approximation generates the earlier result,
Eq. (7).

From the exact solution (10), the equilibrium altitude
reached by the aeronaut is found to be

h =  h0 �n ��
V

m

�0�� ~ 3100 m ~ 10,300 ft (11)

which lies quite close to the 11,000-ft altitude reported in
the news. 

However, with yet more effort—although not so much
as to bring the problem outside the reach of students in a
calculus-based introductory physics course—we can
obtain a more reliable answer. And it is worth the effort,
for we are about to encounter something unexpected and
counterintuitive.

The Linear Atmosphere—Model Three
Although the prediction of Eq. (11) is good, the

assumption that the temperature of the atmosphere
remains the same at all heights is not valid. I can recall a
number of transoceanic flights in which the cruising alti-
tude of the aircraft and the outside temperature were
simultaneously displayed over the cabin entrance; at
roughly five miles high, the air temperature had fallen to
approximately –20 oC. If the temperature varied linearly
with altitude and the ground was close to +20 oC (room
temperature), the preceding observation would imply a
rate dT /dh of about –8 oC/mile or –5 oC/km. This is actu-
ally very close to the linear variation of –6.5 oC/km
recorded by atmospheric scientists over the approximate
12- to 16-km extent of the troposphere, the lowest layer of
Earth’s envelope of air.5

Since the height of the troposphere greatly exceeds the
reported equilibrium altitude of the aeronaut, let us adopt
the constant rate dT /dh = –6.5 oC/km and explore the con-
sequences of a “linear atmosphere” model. It is often use-
ful, I have found, to work with dimensionless ratios when
solving a problem. In the present case this entails intro-
ducing a second characteristic height, z0, defined by the
temperature-altitude relation

T(z)  = T0 �1 – �
z
z

0
�� (12)

with T0 the temperature (293 K) at ground level. From the 

requirement that dT/dz =  – �
T

z0

0� =  –6.5 oC/km, it follows
that z0 ~ 45,000 m.

Substitution of Eq. (12) into the barometric equation
(8) leads to a differential equation

�
d
�

�
� =  d �n � =  –��

h
1

0
� – �

z
1

0
�� (13)

dz
�
1 – �

z
z

0
�

which at first glance may seem complicated, but in reality
is quite straightforward to integrate, for it involves the
exact differential of a natural logarithm on both sides.
Note, too, that if we let z0 increase without bound, the
atmosphere again becomes isothermal [see Eq. (12)], and
the right-hand side of Eq. (13) reduces to Eq. (9b) of the
previous section. For finite z0, however, integration of Eq.
(13) from z = 0 to z = h yields a power-law expression:  

� = �0 �1 – �
z
h

0
��

�h

z0

0
� –1

(14)

Although the mathematical forms of solutions (14) and
(10) are outwardly quite dissimilar, their kinship becomes
apparent when the representation of an exponential as a
limiting process is again recalled. If the parenthetic
expression on the right side of Eq. (14) were recast as

�1 – �
h

z0

0� �
h
h

0
��

�h

z0

0
� –1

, then it would have the approximate

value of e–h/h0 if �
h

z0

0
� were sufficiently large (so that –1 in 

the exponent could be neglected). For the parameters per-
tinent to our problem, the actual value of this ratio is

= � 5.3              (15)

and is independent of the choice of ground-level tempera-
ture T0.

Mg
��
R|dT / dz|

z0
�
h0

Fig. 2.  Variation of air density with altitude for the constant-temperature
and linear-temperature atmospheres. Horizontal dashed line marks rela-

tive air density �
m
�
/
0

V
� � 0.69 at height at which aeronaut settles. Two 

vertical dashed lines denote the corresponding altitudes. Note that the
aeronaut levels off at a greater altitude in the linear-temperature atmos-
phere than in an isothermal atmosphere.
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As our final estimate of the aeronaut’s altitude h, the
inversion of Eq. (14) leads to

h = z0�1 – �
�

m

0V
��

�(z0/h

1

0) – 1�
� 3700 m � 12,100 ft   (16)

which also accords well with the reported facts (and is
probably closer to the true altitude if our assumptions
regarding m and V are accurate).

For purposes of comparison, Fig. 2 illustrates the vari-
ation in air density with altitude for both the isothermal
and linear-temperature atmospheres.  

But something does not seem quite right here—and an
astute student may well remark upon it. Look at the
numerical outcome in Eq. (16). It is larger—larger, mind
you—than the estimate derived from Eq. (11) for an
isothermal atmosphere. Yet the air temperature is now
falling with altitude. Should we not expect the density of
colder air to be greater than that of warmer air—and there-
fore the aeronaut to level off at a lower altitude than if the
atmosphere remained at room temperature all the way up?
This curious feature is brought out strikingly in Fig. 2. At
any fixed value of the relative air density � /�0, the linear-
temperature curve lies to the right of the constant-temper-
ature curve—i.e., at greater altitude—over the entire
extent of the troposphere (� 0 to 15 km).

There is no calculational error. A cursory examination
of the barometric equation of motion shows the resulting
behavior to be indeed possible. Since p � �T, the deriva-
tive dp/dz in the barometric equation (8a) leads to two
terms: one, deriving from d�/dz, reduces the air density
with increasing altitude, but the other term, arising from
dT/dz, bears the opposite sign and thereby causes the den-
sity to fall off at a slower rate than that of the isothermal
atmosphere. It is these two opposing actions that lead to 

the coefficient �
h
1

0
� – �

z
1

0
� in Eq. (13).

But how can that be? What went awry?  

Concluding Remarks: Winds of Change
Nothing went awry. Rather, we have rediscovered a

seminal property of air—indeed any fluid—heated from
below: it rises (and sometimes in startling ways). A graph-
ic example of this behavior, first explained by Lord
Rayleigh6 and today still a subject of intensive investiga-
tion, is the Rayleigh-Bénard effect, the self-organization
of convection cells within a short column of fluid confined
between two planar barriers, the lower maintained at the
greater temperature. Earth’s atmosphere provides another
example, less startling perhaps than the phenomenon stud-
ied by Bénard and Rayleigh, but no less interesting—and
certainly far more significant in its overall impact on all of
us. It is this convective flow in the atmosphere that bathes
us in sea breezes by day and land breezes by night and rat-

tles us unnervingly with atmospheric turbulence during
our air flights.

Were the atmosphere left unperturbed for a sufficiently
long time, it would eventually assume the quiescent state
of thermal equilibrium, the density of each gas component
falling exponentially with height. But such is not the case.
Incessantly agitated under a negative temperature gradi-
ent, air is continually transferred from one part of the
atmosphere to another. However—and this is the crucial
feature—since the conduction of heat in gases is very
slow, the atmosphere is never permitted to assume the
equilibrium distribution we have discussed in the Model
Two section. Instead, before an element of gas newly
arrived at some location can adjust its temperature to that
of its surroundings, it is again moved away. The distribu-
tion of the atmosphere, therefore, is determined by the
condition that an element of gas, on being moved from
one place to another, takes up the requisite pressure and
volume in its new position without there being any loss or
gain of heat by conduction.7

The foregoing process by which a quantity of gas
undergoes a change in pressure, volume, and temperature
without exchanging heat with the environment is termed
adiabatic, and the laws for adiabatic processes

pV � = constant ( 17a)

T� � – 1 = constant                     (17b)

in which � = cp/cV is the ratio of the molar specific heat of
a gas at constant pressure (cp) to the molar specific heat at
constant volume (cV ), which can be found in almost any
thermodynamics text.8 For a diatomic gas, � is expected
on the basis of the equipartition theory of classical physics
to be 7/5 =1.4.

Had we known to begin with the adiabatic laws
(together with the ideal gas equation of state and the baro-
metric equation), we could have deduced the linear depen-
dence of temperature on altitude rather than adopt it as an
empirical fact. By casting the resulting expressions into
forms comparable to Eqs. (12) and (14), we could then
relate the heat capacity ratio � to our ratio of characteris-
tic heights z0/h0 and thereby predict the rate of tempera-
ture fall through the chain of connections

�
h

z0

0
� = = = �

c

R
p� (18a)

�
d

d

T

z
� =  – �

(cp

g

/ M)
� = – (18b)

Insertion of the classical value � = 1.4 into Eq. (18a) gives
dT/dz ~ –10 oC/km, which is not too far from the actual rate
of –6.5 oC/km.9 The discrepancy may be attributable to the
fact that in reality Earth’s atmosphere is an extremely com-
plex system, affected in no small way by the irregularities

gravitational field strength
���
heat capacity per unit mass

�
�
� –1

Mg
��
R�dT / dz�



of the planet’s surface and the reflectivity of the clouds.
It is precisely such complexity, however, that makes

the physical world so intriguing and therefore the physi-
cist’s capacity to interpret it in terms of a few basic laws
and simple models so remarkable. The predicament of our
aeronaut aside, perhaps it is not so much the “survival
value” of physics that is worth emphasizing after all, but
the intrinsic pleasure and satisfaction that comes with
understanding.
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