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We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of
granular media, such as sand, in real time. The measurements allow us to elucidate the
phenomenological laws that govern the flow of granular media through an aperture. We use this
apparatus to construct a variable mass system and study the motion of an Atwood machine with one
weight changing in time in a controlled manner. The study illustrates Newton’s second law for
variable mass systems and lets us investigate the dependence of the flow rate on acceleration.
© 2003 American Association of Physics Teachers.
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I. INTRODUCTION

Although the formal treatment of variable mass systems is
discussed in a number of books on mechanics,1 until re-
cently, there have been relatively few undergraduate level
experiments involving a variable mass.2–6 However, the
study of these systems is an interesting challenge for students
and enhances their understanding of the laws of dynamics.

The study of variable mass systems goes back to at least
the 16th century. At that time Galileo had already designed
an ingenious device and may have been one of the first sci-
entists to study variable mass problems.7

Granular materials, of which sand is one example, may be
defined as a large conglomeration of macroscopic particles.
Despite their apparent simplicity, they behave differently
than other forms of matter such as solids and fluids.6,8 An
overview of their surprising features and behavior may be
found in Ref. 8. Two reasons for the application of granular
materials to variable mass systems are that handling sand is
easier than handling a fluid and the constant flow rate of
sand, a feature we will explore in Sec. II. This property of
the flow allows for a simpler interpretation of the experimen-
tal results.

Yersel6 has suggested that the flow rate of a granular ma-
terial of density �, flowing through an opening of area A
under the influence of an effective gravitational field g, is
given by

dm

dt
�k�g1/2A5/4, �1�

where k is a constant. The dependence of the flow rate on the
diameter of circular apertures was measured in Ref. 6 and for
this geometry the experimental results agree with Eq. �1�.

We will study the flow of sand through an opening using a
new device that improves and simplifies the static method
used in Ref. 6 and is simple to implement in an undergradu-
ate physics laboratory. As we will see, this method lets us
measure the flow rate in real time, making it simple to verify
if the flux of granular material is constant in time.

Section III is devoted to the experimental study of an At-
wood machine with a variable mass. An approximate solu-
tion of the equation of motion is found analytically and com-
pared to experimental data. This device also provides us with
an accelerated system that lets us investigate the dependence
of the flow rate on acceleration.

II. EXPERIMENTAL CHARACTERIZATION OF
FLUXES

For liquids, the time rate of the mass discharged through
an orifice depends on the height of the column and thus is
time dependent. In contrast, we will show that the flow rate
of sand is constant in time and does not depend on its height.

To characterize the sand flow rate, we hung a plastic bottle
filled with sand upside down. We drilled openings of differ-
ent sizes and shapes in several lids and used them to study
the flow as a function of the size and shape of the opening.
The bottle was hung from a force sensor connected to a data
acquisition system associated with a computer �see Fig. 1�.
In this way, the apparatus measures the mass as a function of
time. We obtained the mass flow rate from the slope of the
straight line fitted to the data.

The experimental arrangement shown in Fig. 1 was also
used to study the flow rate of liquids. As can be seen in Fig.
2, the flow rate of water depends, as expected, on the differ-
ence in pressure on the two sides of the opening,9 and is time
dependent. For this experiment the sand must be dry, because
a sand castle does not flow in the same way as grains of sand
in an hourglass. Common sand, previously sifted, was used.
Measurements of the grains using a microscope showed the
grains to be about 100 �m across.

Figure 3 shows that the flow rate of sand is constant and
increases monotonically with the area of the opening. If we
plot the constant flow rate, c��dm/dt , for each opening of
area A on a logarithmic scale for both variables, the relation
between c and A is a straight line �see Fig. 4�. Hence, our
results indicate that the phenomenological dependence of c
on A is given by
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c�bAv, �2�

where b is a constant that can be obtained from the experi-
mental data. The value of the exponent v was found to be
1.25�0.05. For circular openings, we can write c�D2.5,
where D is the diameter of the circular hole. This result is in
agreement with Ref. 6.

Curiosity may have killed the cat, but it drives science, so
we wondered how the shape of the opening affects the flow.
We took more lids and cut different shaped openings �square
and triangular�. Not surprisingly, the flow was still constant.
What did come as a surprise was that the flow followed the
same systematic trend as did the circular openings. From the
plot in Fig. 4, we see that the new data points fall on the
same functional form as that of the circular holes. This sug-
gests that as long as the characteristic length of the opening
is much larger than the size of the grains, the relevant pa-
rameter that determines the flux is the area of the opening.

III. AN ATWOOD MACHINE WITH A VARIABLE
MASS

Atwood’s machine is a textbook example of the applica-
tion of Newton’s second law. A delightful demonstration
based on the principles of the Atwood machine is the experi-
ment of the ‘‘cup and the key.’’ This experiment is bound to
amuse, surprise, and challenge kindergarten children as well
as physics professors.10,11 Take a heavy object such as a cup,
attach it to one end of a meter long string, and attach a light
object such as a key to the other end of the string. Take a
pencil and hold it horizontally with a firm grip. Let the cup
hang just below the pencil and drape the string around the
pencil. With your other hand, hold the key so that most of the
string is horizontal. Can you predict what happens if you
release the key?

The Atwood machine consists of two masses, m1 and m2 ,
connected by a string running over two identical pulleys that
can be regarded as a single pulley of effective mass mp and
radius Rp �see Fig. 5�. We slightly changed this configuration
by allowing one of the masses to vary with time. This system
is interesting because the underlying physics of the system is

Fig. 1. Schematic of the experimental setup for measuring the flow of sand
through different size openings. The bottle is hung from a force sensor that
is connected to a data acquisition system associated with a computer. Lids
with different size openings are used to study the dependence of the flow
rate on the dimensions of the openings.

Fig. 2. Comparison of the flow rate of water versus sand. The flow of water,
in g/s, clearly decreases with the height of the column, while sand does not.

Fig. 3. The mass as a function of time for circular openings of diameter D.
The error in the measurement of the diameters is 0.1 mm. In all cases, the
flow of sand is constant.

Fig. 4. Relation between the flow and the area of the orifice. The triangular
and the square shaped points correspond to similarly shaped openings.
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transparent and the equations of motion can be solved ana-
lytically, making it possible to understand the nature of New-
ton’s second law when applied to variable mass systems.

This arrangement is not new, and the Atwood machine
with a changing mass has been studied by several authors.3–5

Some authors have used a container with water that drips
through a hole.3 Because the flux of water changes in time,
the assumption that the flow rate was constant is far from
accurate.3 Other authors have used a container with sand for
the variable mass,4,5 but the functional form for the flow rate
was assumed but not independently verified in the same ex-
periment. Moreover, the effects of the friction force and the
moment of inertia of the pulleys were disregarded. We have
included these effects and tested our assumptions regarding
the variation of the flow rate with the acceleration. This ap-
proach lets us check the validity of all our assumptions in the
same experiment.

Our variable mass system consists of the same inverted
plastic bottle filled with sand, and a circular opening in the
screw-on lid as was used in the first experiment. We measure
the position of one of the masses, x(t), using a smart pulley
�a pulley with spokes� and a photogate connected to a com-
puter. The computer provides the time interval between con-
secutive passes of the spokes. By measuring the diameter of
the pulley and the number of spokes, it is straightforward to
obtain x(t) and v(t). There is a minor uncertainty in deter-
mining the distance traveled by the system at the instant that
the pulley reverses direction. This uncertainty produces a
kink in the plot of v(t) at this instant.

In principle, it would be possible to obtain the acceleration
of the system as well, but, in practice, it is not that simple to
differentiate experimental data. Let us assume that we want
to determine the velocity v i from the experimentally mea-
sured values of the position xi and time t i at two consecutive
steps �the subindex i enumerates the sequence of discrete
measurements of position and time�. Then

v i�
xi�xi�1

t i�t i�1
. �3�

We suppose that our data has errors 	x and 	 t for the mea-
surement of position and time, respectively. If we use the
conventional procedures for error propagation,12 we have

	v
2

v i
2 
2

	 t
2

� t i�t i�1�2 �2
	x

2

�xi�xi�1�2 . �4�

The uncertainties 	x and 	 t depend on the quality of our
measurements, and for a given experimental setup are ap-
proximately constant. Therefore, Eq. �4� indicates that if we
take the limit of making the measurement as often as we can,
that is, we take t i�t i�1→0, the error will dominate our es-
timate of the derivative. For this reason, it is preferable to
compare our model without differentiating the data. Thus, to
determine the flow rate, we fitted a straight line through suc-
cessive time intervals and extracted the slope from the fit to
provide an estimate of the derivative.

A. Constant mass

The traditional approach to constant mass systems in-
volves drawing free body diagrams for each part (m1 , m2 ,
and the pulley�.1,4 We will use a qualitative approach and
obtain the same result. The total inertia of the system is made
up of the two masses plus a contribution from the pulley. The
force that drives the system is the difference in weight be-
tween m1 and m2 . We also consider a constant friction force
F due to the pulley opposing the motion. The equation of
motion for the system is

� m1�m2�
I

R2� a��m1�m2�g�F , �5�

where I is the pulley’s moment of inertia. If we take I
�0.5 mp R2 and define an effective mass M�m1�m2

�0.5 mp , we see that Atwood’s machine is analogous to a
system of mass M subject to a force (m1�m2)g�F . In
other words,

M a��m1�m2�g�F . �6�

By measuring the acceleration for different m1 and m2 and
plotting Ma as a function of (m1�m2), we obtain a straight
line �see Fig. 6�, independently verifying the hypothesis that
F is constant. From the slope of Fig. 6, we obtain the value
of g, which is consistent with the known local acceleration of
gravity. The intersection of the fitted line of Fig. 6 with the
vertical axis yields F�(3.3�0.1)�10�3 N. To extract the
acceleration, we plotted the velocity as a function of time by

Fig. 5. Schematic of the experimental setup for a variable mass Atwood
machine. The photogate, associated with the left pulley, was connected to
the computer to collect data. Sand comes from the bottom of the left-hand
container. Fig. 6. Determination of the friction force for the Atwood machine with a

constant mass.
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fitting a straight line through the data. Similarly, it would be
possible to plot the position, x(t), versus time and obtain the
acceleration by fitting a second-order polynomial. This pro-
cedure avoids differentiating the experimental data twice.

B. Discharging mass

Newton’s second law for one-dimensional motion can be
written as

dP

dt
�FT , �7�

where P is the total momentum of the system and FT is the
net force acting on it. Because the mass of the system varies
in time, we must be very careful when we refer to P in Eq.
�7�, because it includes the momentum of the discharged
mass. Let us consider the variation of momentum between t
and t��t . At time t the effective mass M of the system is
moving with a velocity v , and the momentum is P�Mv .
After �t , the system has discharged a mass �M (�0) and its
velocity has changed by �v . If the sand leaves the system
with a velocity u relative to the container, the total momen-
tum at t��t is

P� t��t ���M��M ��v��v ���v�u ��M . �8�

We assume that the initial relative velocity u of the sand
leaving the container is zero (u�0). The change in the total
momentum to first order becomes

�P� t ��P� t��t ��P� t �

��M��M ��v��v ��v�M�vM . �9�

Therefore, in the limit of �t→0, we have

dP

dt
�M � t �

dv
dt

, �10�

which is similar to the expression for the case of constant
mass, but with the important difference that the mass M (t)
now varies in time. If we allow mass m1 to change in time,
Eq. �6� becomes

M � t �a��m1� t ��m2�g�F , �11�

with M (t)�m1(t)�m2�1/2 mp .
Because the geometry of the experimental setup is the

same as that used previously for the case of constant mass,
we expect the friction F not to change. We expect the flow
rate to change with acceleration. Indeed if the container were
in free fall, no sand would leave the system. According to
Ref. 6, the flux will vary with the vertical acceleration as

c�a ��c0�1�a/g ��, �12�

where c is the flux rate (�dm/dt) at the acceleration a, and
c0 is the flux when no acceleration is present. The sign
convention for the acceleration is such that if the system is
in free fall, a��g . The dependence of the flux on accelera-
tion in Eq. �12� shows the expected behavior for a�0 and
a��g . By dimensional analysis, Ref. 6 concluded that �
in Eq. �12� is equal to 1

2; we will test this conclusion using
our data.

If a�g , we can use the approximation

c�a �
c0� 1��
a

g � . �13�

We define the parameters

m1,0�m1� t�0 �, m12,0�m1,0�m2 , �14�

and

M 0�M � t�0 ��m1,0�m2�1/2mp , �15�

and combine Eqs. �11� and �13�:

a� t ��
dv
dt

�
�m12,0�c0t �•g�F

�M 0�c0
t �
. �16�

We have defined


�� 1��� 1�
a

g � � . �17�

We can see that because 
 depends linearly on a, it is not
possible to integrate Eq. �16� by simple methods. However,
we can approximate a/g in Eq. �17� by its average value
calculated using Eq. �11�, and replace m1 by its mean value,
�m1(t)�
m1,0/2, and disregard the friction force. Therefore,
using the parameters M 0 and m1,0 , introduced previously, we
obtain



1��� 1�

1
2m1,0�m2

M 0� 1
2 m1,0

� �1��� 2m2� 1
2mp

M 0� 1
2m1,0

� . �18�

Equation �16� can now be integrated analytically yielding
an expression for both the velocity and the position of one of
the masses:

v� t ��v� t�0 ��
gt



�

�M 0�
m12,0�•g�
F

c0
2

�ln� 1�
c0
t

M 0
� , �19�

x� t ��x� t�0 ��v� t�0 �t�
gt2

2


�M 0

�M 0�
m12,0�g�
F

c0
2
3 � 1�

c0
t

M 0
�

�� ln� 1�
c0
t

M 0
��1� . �20�

Equations �19� and �20� can be compared directly with the
results of our measurements. From the comparison we can
assess the validity of our model and obtain the value of �,
the only free parameter.

C. Results

Figures 7 and 8 show examples of measurements from our
variable mass experiment compared to the theoretical curves
obtained from Eqs. �19� and �20� for different values of �.
From this comparison, our experimental results are consis-
tent with the value ��0.5. In fact, with a limit of confidence
of 95%, ��0.5�0.1, which agrees with the prediction of
Eq. �1�. The uncertainty in � can be reduced by experiment-
ing with an increased output flux at higher accelerations,
because at larger fluxes, the predictions of Eqs. �19� and �20�
are more sensitive to small variations of the parameter � as
Figs. 7 and 8 clearly show. Figures 7 and 8 indicate that our
results for x(t) and v(t), given by Eqs. �19� and �20�, are in
complete agreement with the experimental results, even for
values of a
g .
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IV. CONCLUSIONS

We designed a device to measure the flow of sand through
an opening. Our measurements show that the flow of sand is
constant and depends only on the area of the orifice. The
shape of the orifice does not affect the flux as long as the
characteristic dimensions of the opening are much larger
than the sizes of the grains �see Fig. 4�. The experimental
results on the dependence of the flow on area agree with the
result of a dimensional analysis, that is, the flow depends on
the area of the orifice with an exponent of 5

4 as in Eq. �2�.
We also built a variable mass Atwood machine to study

the dynamics of a variable mass system. The simplicity of
the device allowed us to find good agreement between the
theoretical approach and the experimental results. Further-
more, this device has allowed us to explore the dependence
of the flow of granular media in an accelerated system,
which also gave us insight into how the flow of granular
media may change where the acceleration of gravity is dif-
ferent from that on earth. Our results are consistent with the
hypothesis that the flow rate of granular media increases pro-
portionally with the square root of the total acceleration of
the system.
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DEGREES OF FREEDOM
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this close
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