Experimental study of Bernoulli’'s equation with losses
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We present a simple and inexpensive experiment to study the drainage of a cylindrical vessel. The
experiment consists of a transparent cylinder and a webcam or a digital camera connected to a
computer. The model proposed to explain the results makes use of Bernoulli's equation for real
flows including energy losses. The experimental results are well explained by the model, which is
a generalization of Torricelli's expression. @05 American Association of Physics Teachers.
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[. INTRODUCTION The subscripts 1 and 2 refer to different points in the flow, 1

. . S being upstream of 2; is the local velocity of the fluidg is
Th_e Bernouli equation hgs application in many bran_cheﬁhe local acceleration of gravity is the pressure, andis
of science and engineeridg® General forms of Bernoulli's the vertical height of the point ' ’

equation that are valid for viscous fluids have been™, 4o hresence of viscosity, Bernoulli's equation becomes

discussed. Nonetheless, there are few experiments accesy, expression of energy balance, and often is expressed in

sible to beginning and intermediate students that iIIustrat?erms of energy per unit volume or the pressure between two
the use of Bernoulli's equations for viscous flurfs.

. , . oints in the fluid. The Bernoulli equation for a steady flow
We present a conceptually simple and inexpensive experg

ment to study the drainage of a cylindrical vessel. The ex- fa real fluid in a pipe can be written'as
periment is essentially a recreation of Torricelli's 1 , P1 1 , P2
experiment;? with the benefit of new technologies. We first 5 @11t —=+92=5 apUy+ p_+gZZ+Awloss- 2
present a model based on the Bernoulli equation for real 2

flows. Then we discuss the basic characteristics of the exIhe average velocity, of the flow along the tube is defined
periment and the experimental results. The experiment let§ terms of the fluxQ as
us thoroughly test the implications of the model and extract

the relevant parameter associated with energy losses. The sz f v-dS=u-S 3
experiment is a useful introduction to the Bernoulli equation S

for real flows and involves concepts that are relatively simplgyheresis the area of the normal cross section of the flow
to discuss. The physics is easy to visualize, and it is straightyine) andv is the local velocity. Equatiof8) can be regarded
forward to quantitatively test the implications of the model. 55 the definition of the average velocity An important
physical consequence of the presence of shear stress against
[I. THEORETICAL CONSIDERATIONS the walls of the tube is that the velocity profile of the flow
: . . . across the tube is no longer constant. The kinetic energy
For Newtonian fluids the shear stress is proportional to th%oefficientsm in Eq. (2) represent the ratio between the

velocity gradient. Therefore the velocity of the fluid at the ;. a1 kinetic energy that flows through a normal cross sec-
surface of a solid must be zero; otherwise, the velocity gra:.

: NP . t||on and the kinetic energy of the same flux, but with the
dient and the shear stress would be infinite. Only for an 'deauniform velocity profile equal tai. More specifically, is
fluid, that is, a fluid with zero viscosity=0, is it possible to efined ak® ' '
have a finite velocity at the surface of a solid. When a reafj
fluid flows through the interior of a tube or between two 5 3

vov-dS/u®S.
s

P1

4

surfaces, there are two effects that are a consequence of a ¢~

nonzero viscosity. The velocity profile has a maximum at the

center of the tube and the mechanical energy in the system Ehus, the termwu?/2 in Eq.(2) represents the kinetic energy

not conserved. flow per unit of mass across a surface normal to the pipe. For
In its simplest form, the Bernoulli equation is a statementa uniform profilea=1; for a nonuniform profile, it follows

of the conservation of mechanical energy per unit of volumestraightforwardly from Eqs(3) and(4) thato>1; for a para-

along a stream lirfe? bolic profile of velocity(laminar flow a=2.
For real fluids, mechanical energy is dissipated in the vis-
1o, P 12, P boundary layer along the pipe walls and ch in th
v+ —+gz=-vit —+gz,. (1) ~ cous boundary layer along the pipe walls and changes in the
2 p1 2 2 velocity profiles in entries and exitsninor losses The term
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- il dsC,u,=d?u;. (6)

Mo anf
= T N W Hered; andd, represent the diameters of the vessel and the
orifice, respectively. C, is the coefficient of vena
contracta,~3which is related to the fact that the cross section
h of the exit jet is smaller in general than that of the exit
orifice. By combining Eqs(5) and(6), we obtain
2g(h—AZz
s, =D Y
——— 1+k—a1(—2> cz}
SoE di) "

Becaused; is considerably larger thad, (d,/d;~0.03) in

Fig. 1. Schematic diagram of the vessel. ) \ -
our case andC,<1, Eq.(7) can be simplified to

29
2

us=
Awjpss in EQ. (2) represents these energy losses between 2 [1+K]

points 1 and 2. Usually the presence of restrictions in thery, ;s it e can measure the velocity of the exitjgtas a
flow leads to the formation of turbulence, which is the maln%

(h—AZ). (8)

source of energy losses. There is no general expression f n.Ct'I(.) n of ht’ wedexpelc(:jt g Imeardri,-latmn b(_etwe?g'u”an::i h.t
these types of losses. Nonetheless, different expressions that'S 'N€ar trend could be used to expenmentally test our
odel. Furthermore, the slope of this line and its intersection

describe these energy losses can be obtained from dimef? . . :
sional analysis for particular cask$The relevant constants with the axis WOUId_ a_llow us to determine experimentally the
associated with these expressions need to be determin¥g!ues of the coefficients andAZ. _ _
from experimental studies. Also experiments indicate that From this model, it is possible to determine the motlcgn of
whenever there is a restriction in the flow produced bythe free surfacai, and the evacuation or empty tintg,”
bends, tees, valves, and the like, a drop in pressure appea¥§ich is the time it takes the vessel to empty from a height
across the component. This pressure drop depends on the. We combine Eqs(6) and(8) and find

geometry of the restriction and has been observed to be pro- dh d.\2
portional to the flow rate squaréd,that is, APaQ?au?. Uj=——=—-C (_2 2guh—AZ 9)

As we have mentioned, the presence of obstructions in the dt “\dy '
flﬁw usua!ly IﬁadfT to the formatiog of tulrbulent walf<es. TPeSG&‘Nhere we have introduced the coefficiant 1/(1+k). The
changes in the flow pattern produce large transfers of mo=. . ; . 4 : ,
mentum from the originally regular flow to the eddy currents>'9n 1N Eq'(%). IS :_elateg to;he 0Vr\|/en.teit|ocrjw chot:;en to dteﬁr:e
and also are associated with a significant increase in the ef?€ Positive direction oh andu, . We introduce the constan
tropy of the system. This entropy increages, requires the Ao as

additional removal of mechanical energy from the flow, d, )2
Ag=TAS. Because the complexity of turbulence is far be- Ao=C, d—) V2gu (10
1
yond the scope of the present study, we refer the reader to a
review of the literature on turbulence. and write a differential equation fdr
We will make the ansatz thatw,,.s can be expressed as
the sum of two terms, one depending on the square of the dh

average velocity and the other independent of the velocity, m: —Aodt. (12)

and let the experiment test our ansatz.
If we apply Bernoulli’'s equation including losses to our Equation(11) can be easily integrated to give
system and take into account that the pressure at the free

surface and at the exit orifices is the atmospheric pressure Vh—AZ t

P,, from Eq.(2) (see Fig. 1, we have ho—Az |~ te (12
1 1 a whereh, is the height of the free surfacetat 0 andt, is the
2 2 _ 1 2 0 g e
5“2"' @kUZ"'AZ_h"' 2g 1 () empty time, which according to Eq&l0) and(12), is given
by
The second term on the left-hand side of E%). represents
the energy loss term, where the constiig the coefficient _ vho—AZ (13)

of minor losses at the exit orifice located at point2The © 2

quantity AZ represents the part of the energy loss that is Cv<d_1) V2gu

independent of the velocity. As justified in the Appendix, the

velocity coefficienta,= 1 for the exit jet through the orifice. Therefore, if we measure as a function of time, a plot of

The variableh(=z,—z,) represents the height of the free Vvh—AZ as a function ot should be linear. The parameters

surface relative to the position of the exit orifice. of this straight line would provide the value tf and allow
The velocitiesu; and u, are related by the continuity us to find the value o€, . Fort~t,, there is still some fluid

equation(conservation of magsFor an incompressible fluid, above the orificel{~AZ), but there is no jet, and the liquid

(p1=p2) wWe have just leaks out of the tank.
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Fig. 3. (a) Digital photograph of the exit jetb) The same photograph in the
H background overlapped with a plot of the theoretical trajectdotted ling
of the jet as described by E(L5). The solid line represents the theoretical
ik expectation if energy loss is completely ignored, as predicted by1Eq.

e
X

Fig. 2. Schematic diagram of the experimental setup. sible to transform the coordinate of any pixel in the photo to

the grid coordinate. An alternative is to use the picture as the
background of a plot.

To determine the value ai,, we shall assume that the | € procedure we followed to obtair from the experi-

motion of the water particles that comprise the jet follow them.err]‘tal dat:; is_ tho overlap the %igitﬁl prs?ng?raphd Off tEe jet
same equation of motion as those of a horizontal projectilé/‘”t a graph with a transparent backgrounthe grid of the
with initial velocity u, graph is set to coincide with the mesh used in the back-

ground of the picture. The graph is moved and stretched so

X(t) =ust, (148  that the mesh of the picture coincides with the corresponding
grid in the graph.Once this condition is achieved, the origin
y(t)=H— Egtz (14b) (verteX of the parabola described by E@.5) is chosen to
27 coincide with the exit orifice. Then the value ©f is varied

whereH is the height of the exit orifice relative to the origin S° that the curve described by EG5) coincides with the
as shown in Fig. 2. If we combine Eqd.4a and(14b), we experimentally observed trajectory. Figure 3 illustrates this

: ; ; ; procedure.
obtain the equation for the trajectory of the jet To facilitate the measurement of the heighof the liquid

1/g as a function of time, we drew horizontal marks every 0.5
y(xX)=H-— (EXZ)- (15  cm, starting at the position of the drainage orifice. We used a
Uz stopwatch to measure the time it took for the free surface of
Therefore, if we can fit the experimental data of the trajecthe water to reach each horizontal mark.
tory of the exit jet of water to Eq(15), we could obtain the

value ofus,. IV. RESULTS AND DISCUSSION

A digital photograph of the vessel and the exit jet is shown
in Fig. 3@). In Fig. Ib) we show the same digital photo-
graph of the exit jet in the background overlapped with a plot

The experimental setup consists of a transparent cylindri £ the th ical trai fthe i . b
cal tank with a lateral drainage orifice close to the bottom2f the theoretical trajectory of the jet as given by ELf).

and a webcam connected to a computer. The vessel is 11 cRY adjusting the value afi,, we fitted the theoretical trajec-

in diameter and 25 cm high, the diameter of the orifice is 30y to the actual path of the jet. Figur¢b3 shows that the
mm, and the wall thickness of the vessel is 2 mm. This typdrajectory of the jet is well reproduced by E(L5). This

of vessel, with a horizontal capillary tube, has been used tggreement is a clear indication that the liquid particles that
determine the viscosity of a flufiThe tank was filled with ~form the jet follow the same trajectory as do solid particfes.
tap water with a few drops of blue ink to facilitate the visu- 1herefore the liquid elements of volume are described by the
alization of the exit jet. The vessel was positioned in front ofS&me physical laws of mechanics that govern the motion of
a board on which we had drawn a grid with lines every 1oso!|ds. Thls result_ may be useful for confronting th(_e Aristo-
cm to provide an absolute scale for the photographs. The exjglian misconception held by some students that liquid and
jet was parallel to the gridded board. The webcam is place§0“d5 _foIIow d|ﬁerent laws. In Fig. 3 we also_have included
just in front of the vessel, at about 1.5 m. In this manner wefhe trajectory of the jet that we would expect if there were no
are able to photograph the jet of water with the grid in the€nergy loss, Eqcl); it is clear that the naive application of
background. Pictures were taken every time the free surfaded- (1) gives a poor gescnpuon of the data.

dropped by about 1 cm. A digital camera also could be used In Fig. 4, we plotu; as a function oh. Because this plot
for this purpose. In this manner, each photograph recomnded is linear, the main assumptions of our model, expressed by
the height of the water in the cylinder, and the trajectory ofEqs.(7) and(8), are in good agreement with the experimen-
the exit jet of water from the orifice. To determine the tra-tal results. Furthermore, we can obtain the values of the pa-
jectory of the jet, it is possible to use a graphics program thatametersAZ andk by fitting the theoretical expectation, Eq.
allows us to obtain the locatiofpixel coordinatg¢ of any  (8), to the data. In Table | we summarize the values of these
point in the picture. By using the background grid, it is pos-parameters for different experimental runs. In Fig. 4 we also

[ll. EXPERIMENT
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Fig. 4. The circles represent the experimental resulisiads a function of
the heighth; the dotted line is a linear fit of the data using E8). The solid

line represents Eql). The dashed line is the expectation obtained by ig- 0.0 ‘ N ‘
noring the minor loss termk&0). 0 30 mig(zs) 150 200
Fig. 5. The circles represent the experimental results of

. . . . . \J(h—AZ)/(ho—AZ) as a function of time; the dotted line is a fit of the
show the theoretical expectation that is obtained using Eodata. The solid line represents the theoretical expectation obtained disregard-

(1). Again we see that this approach gives a poor descriptiofhg the contraction of the jet@, =1).
of the results. In Fig. 4 we also include the line that would be

obtained from Eq(8) if we ignored the minor loss ternk(

=0); again the agreement of this approximation with the

data is poor. Therefore the results of the experiment indicate

that it is necessary to include two types of energy losses in 1/ 1+k
Bernoulli's equation, one dependent on the square of the av- C,~ 5(

erage velocityminor losg and the other independent of the
velocity (AZ).

In Fig. 5 we present the results for the heiptaf the free
surface as a function of time. To test the validity of our
model, Eq. (12), we plotted the modified variable
V(h—AZ)/(hy—AZ) as a function of time. The clear linear
trend of this plot indicates the validity of our model. In Fig.
5 we also include the theoretical expectation that we woul mong other things, on the roundness of the edges of the

obtain if we ignore the effect of vena contracta, thatds,  ghertyre and the wall thickneSsThese effects are not ac-
=1. We see that our results are inconsistent with this asgoynted for by our simplified argument.

su_mption and indi'cate the qecessity of taking into consi_der— At low velocities the fluid travels smoothly in regular
ation the contraction of the jet. The parameters of the fittegaths or streamlines. This flow pattern is referred to as lami-
line allow us to obtain the values of the empty timgeand  nar or streamline flow. As the velocity increases, the fluid
C,. From Table | we see that the values of the parameterfiow begins to show irregular fluctuations and random mo-
are consistent for the different runs. The valuekadndC,  tion transverse to the direction of the flow; this pattern is
are consistent with the values reported in the literattte.  referred to as turbulent flok? The Reynolds number, Re
There is a simple heuristic justification for the contraction=pdu/», is a dimensionless parameter which is useful for
of the jet?* The momentum of the discharge jet is along thecharacterizing the flow. Herg represents the density of the
horizontal axigthex axis in Fig. 3; the rate of change of the fluid, 7 its viscosity,u the mean velocity of the flow, andl
momentum igip/dt=pQu,. HereQ is the volume flow rate the diameter of the pipe or orifice. The Reynolds number
(Q=C,Au,) andA represents the outlet area. The force re-represents the ratio of inertial forces to viscous forces in the
sponsible for this change of momentum is associated witllow. The flow is laminar for R&2000 and turbulent for

T g ~059<1L. (17)

This simple argument provides us with a physical justifica-
tion for the contraction of the jet and also gives a semiquan-
titative estimate ofC, . Note that the contraction of the jet is
also a consequence of the complex instabilities that take
cglace around the orifice. The observed value€pfdepend,

the hydrostatic pressur®=pgh, that is Re>4000. For Re between these two values, the flow may
2 switch from laminar to turbulent conditions in a random
PA=pghA~C,Apus. (16)  fashion (transitional flow.2 These effects are readily ob-
Therefore, according to E¢8) we have served in the smoke from a cigarette. For the first few cen-

timeters the smoke pattern is usually laminar. After that, the
flow breaks into turbulence. In Fig. 6, we plot the value of
the Reynolds number at the orifice, versusVe see that Re
varies between 4000 and nearly 400, indicating that the flow
regime includes the beginning of turbulent flow, transitional
Parameter Run 1 RUN 2 RuN 3 flow, and laminar flow. Because our model can reproduce the
experimental data using the same valuek,&Z, andC, in

Table I. Parameters obtained for several runs. The valugsaidC, are
consistent with those reported in the literat¢see Refs. 1-3

AZ (cm) 0%9;8'31 ooé%iglgl ooéﬁg'gl all these regions of Re, the type of losses in our model and
“ . . . . . . . . .
K 0.09£0.01 0.110.01 0.11+0.01 the expanded Bernoulli’'s equation are valid for these flow

c 0.46+0.03 0.47-0.03 0.44-0.03 regimes. It also follows from this analysis thigt AZ and
C,, are independent of Re for the flows studied here.
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SAHHD well inside the pipe. There is a transition region or entrance
3 length!3 L., over which the velocity profile changes from a
o planar to the fully developed parabolic profile. A semiempir-
_IF-" ical relation that allows us to estimate this entrance length is
@_;}-‘} given by*?
MM x
s iy
L " Le=CeRed, (A1)
o
a
.d
e P whereC, is a constant. Several authors have proposed dif-
v ferent values for this constahf;*? but all range between
o 0.029 and 0.06 for laminar flows. If we applied E&1) to

U] F] 4 i 8 10 12 14 16 L] 20

i fem

the exit orifice, we obtained values bf, which were much
larger than the wall thickness in all the cases we studied.
Fig. 6. The circles indicate the values of the Reynolds number at the orificel herefore, the velocity profile of the exit jet can be regarded

for the different values oh used in our experiment. as planar, that isg,~1. On the other hand, for the cylinder,
the average velocity is so smalluf~10"2cm/s), that
V. CONCLUSIONS a;~2.

The proposed experiment is simple and inexpensive, iS’Electronic mail: msaleta@labs.df.uba.ar
accessible to beginning students, and illustrates the impor2Electronic mail: dina@Iabs.df.uba.ar
tance and usefulness of Bernoulli's equation for real quids?EIeCtroniC mail: sgil@df.uba.ar ) _
including energy losses, over a wide range of Reynolds num-EA'eSHa'\r:'i‘(‘:’;(SV?/’i‘l'e D'N’;WY%?I?’ 1%’;‘2} Téan'eak"éT;r‘sd%maer:‘éaés of Fluid
b_ers. A” that is ”e?ded to further e_xplore the turb_u_lem €2y, L. Streeter ayr’1d E. D. V\‘/ylieFIl’Jid Mecﬁ’anicsE)M.cGraw—Hill, New
gime is a taller cylinder. The experiment also verifies that v,y 1085, sth ed., Chap. 8.
liquid particles follow the same trajectory as solid particles, 3g. Nekrasov,Hydraulics for Aeronautical Engineersranslated from the
indicating that they obey the same physical laws. Russian by V. Talmy(Mir, Moscow, 1969, Chaps. 6 and 9.

The proposed model, based on the extended Bernoulli'S’C. E. Synolakis and H. S. Badeer, “On combining the Bernoulli and Poi-
equation, is adequate to describe qualitatively and quantita-seuille equation—A plea to authors of college physics texts,” Am. J. Phys.
tively the physics of drainage of a vessel. Furthermore, the 57, 1013-10191989. o o
fitting of the theoretical model to the data allows us to extract ghg’:ﬂtlhin;és'l%‘?gggg' and A. Kotlicki, *Bernoulli levitation,” Am. J.
the relevant parameters of the quel’ namely the CoeﬁICIent$J. N. Lib’ii, “Mechanics of the slow draining of a large tank under gravity,”
AZ andk of Eq. (4) and the coefficient of vena contracia . Am. J. Phys71, 1204—12072003.

The motion of the free surface is well reproduced by the M. Nelkin, “Resource Letter TF-1: Turbulence in fluids,” Am. J. Ph@s,
model, in particular its time dependence. Furthermore, we 310-318(2000.
can measure the coefficient of vena contracta in the exit jef‘G. T. Hageseth, “Surface and kinetic energy densities: A fluid dynamics

and the Coefficient of |Osses in our System_ Iaboratory exercise,” Am. J. Phy§.4, 1011—1014198@.
9 L : ;
Examples of Excel files illustrating this procedure can be downloaded

from (www.fisicareCreativa.cojm This site also describes experimental
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