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We present a simple and inexpensive experiment to study the drainage of a cylindrical vessel. The
experiment consists of a transparent cylinder and a webcam or a digital camera connected to a
computer. The model proposed to explain the results makes use of Bernoulli’s equation for real
flows including energy losses. The experimental results are well explained by the model, which is
a generalization of Torricelli’s expression. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION

The Bernoulli equation has application in many branch
of science and engineering.1–3 General forms of Bernoulli’s
equation that are valid for viscous fluids have be
discussed.4 Nonetheless, there are few experiments acc
sible to beginning and intermediate students that illustr
the use of Bernoulli’s equations for viscous fluids.5,6

We present a conceptually simple and inexpensive exp
ment to study the drainage of a cylindrical vessel. The
periment is essentially a recreation of Torricell
experiment,1,2 with the benefit of new technologies. We fir
present a model based on the Bernoulli equation for
flows. Then we discuss the basic characteristics of the
periment and the experimental results. The experiment
us thoroughly test the implications of the model and extr
the relevant parameter associated with energy losses.
experiment is a useful introduction to the Bernoulli equat
for real flows and involves concepts that are relatively sim
to discuss. The physics is easy to visualize, and it is strai
forward to quantitatively test the implications of the mode

II. THEORETICAL CONSIDERATIONS

For Newtonian fluids the shear stress is proportional to
velocity gradient. Therefore the velocity of the fluid at th
surface of a solid must be zero; otherwise, the velocity g
dient and the shear stress would be infinite. Only for an id
fluid, that is, a fluid with zero viscosity,h50, is it possible to
have a finite velocity at the surface of a solid. When a r
fluid flows through the interior of a tube or between tw
surfaces, there are two effects that are a consequence
nonzero viscosity. The velocity profile has a maximum at
center of the tube and the mechanical energy in the syste
not conserved.

In its simplest form, the Bernoulli equation is a stateme
of the conservation of mechanical energy per unit of volu
along a stream line1,2

1

2
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1gz15
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The subscripts 1 and 2 refer to different points in the flow
being upstream of 2,v is the local velocity of the fluid,g is
the local acceleration of gravity,P is the pressure, andz is
the vertical height of the point.

In the presence of viscosity, Bernoulli’s equation becom
an expression of energy balance, and often is expresse
terms of energy per unit volume or the pressure between
points in the fluid. The Bernoulli equation for a steady flo
of a real fluid in a pipe can be written as1–4

1

2
a1u1

21
P1

r1
1gz15

1

2
a2u2

21
P2

r2
1gz21Dwloss. ~2!

The average velocity,u, of the flow along the tube is define
in terms of the fluxQ as

Q5E E
S
v•dS5u"S, ~3!

whereS is the area of the normal cross section of the flow~or
pipe! andv is the local velocity. Equation~3! can be regarded
as the definition of the average velocityu. An important
physical consequence of the presence of shear stress ag
the walls of the tube is that the velocity profile of the flo
across the tube is no longer constant. The kinetic ene
coefficientsa i in Eq. ~2! represent the ratio between th
actual kinetic energy that flows through a normal cross s
tion and the kinetic energy of the same flux, but with t
uniform velocity profile equal tou. More specifically,a is
defined as1,3

a5E E
S
v2v•dS/u3S. ~4!

Thus, the termau2/2 in Eq.~2! represents the kinetic energ
flow per unit of mass across a surface normal to the pipe.
a uniform profilea51; for a nonuniform profile, it follows
straightforwardly from Eqs.~3! and~4! thata.1; for a para-
bolic profile of velocity~laminar flow! a52.

For real fluids, mechanical energy is dissipated in the v
cous boundary layer along the pipe walls and changes in
velocity profiles in entries and exits~minor losses!. The term
598© 2005 American Association of Physics Teachers



ee
th
in

t
e

s
in
ha
b
e

pr

th
s

m
ts
e

w
e
to

s
th
it

ur
fr

su

i
he
.
e

,

the

on
xit

our
ion
he

of

ght

ne
t

rs
Dwloss in Eq. ~2! represents these energy losses betw
points 1 and 2. Usually the presence of restrictions in
flow leads to the formation of turbulence, which is the ma
source of energy losses. There is no general expression
these types of losses. Nonetheless, different expressions
describe these energy losses can be obtained from dim
sional analysis for particular cases.1,2 The relevant constant
associated with these expressions need to be determ
from experimental studies. Also experiments indicate t
whenever there is a restriction in the flow produced
bends, tees, valves, and the like, a drop in pressure app
across the component. This pressure drop depends on
geometry of the restriction and has been observed to be
portional to the flow rate squared,1,2 that is,DPaQ2au2.

As we have mentioned, the presence of obstructions in
flow usually leads to the formation of turbulent wakes. The
changes in the flow pattern produce large transfers of
mentum from the originally regular flow to the eddy curren
and also are associated with a significant increase in the
tropy of the system. This entropy increase,DS, requires the
additional removal of mechanical energy from the flo
Dq5TDS. Because the complexity of turbulence is far b
yond the scope of the present study, we refer the reader
review of the literature on turbulence.7

We will make the ansatz thatDwloss can be expressed a
the sum of two terms, one depending on the square of
average velocity and the other independent of the veloc
and let the experiment test our ansatz.

If we apply Bernoulli’s equation including losses to o
system and take into account that the pressure at the
surface and at the exit orifices is the atmospheric pres
P0 , from Eq. ~2! ~see Fig. 1!, we have

1

2g
u2

21
1

2g
ku2

21DZ5h1
a1

2g
u1

2. ~5!

The second term on the left-hand side of Eq.~5! represents
the energy loss term, where the constantk is the coefficient
of minor losses at the exit orifice located at point 2.1,2 The
quantity DZ represents the part of the energy loss that
independent of the velocity. As justified in the Appendix, t
velocity coefficienta251 for the exit jet through the orifice
The variableh(5z12z2) represents the height of the fre
surface relative to the position of the exit orifice.

The velocitiesu1 and u2 are related by the continuity
equation~conservation of mass!. For an incompressible fluid
(r15r2) we have

Fig. 1. Schematic diagram of the vessel.
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d2
2Cvu25d1

2u1 . ~6!

Hered1 andd2 represent the diameters of the vessel and
orifice, respectively. Cv is the coefficient of vena
contracta,1–3 which is related to the fact that the cross secti
of the exit jet is smaller in general than that of the e
orifice. By combining Eqs.~5! and ~6!, we obtain

u2
25

2g~h2DZ!

F11k2a1S d2

d1
D 4

Cv
2G . ~7!

Becaused1 is considerably larger thand2 (d2 /d1'0.03) in
our case andCv,1, Eq. ~7! can be simplified to

u2
2>

2g

@11k#
~h2DZ!. ~8!

Thus, if we can measure the velocity of the exit jetu2 as a
function of h, we expect a linear relation betweenu2

2 andh.
This linear trend could be used to experimentally test
model. Furthermore, the slope of this line and its intersect
with the axis would allow us to determine experimentally t
values of the coefficientsk andDZ.

From this model, it is possible to determine the motion
the free surfaceu1 and the evacuation or empty timete ,6

which is the time it takes the vessel to empty from a hei
h0 . We combine Eqs.~6! and ~8! and find

u152
dh

dt
52CvS d2

d1
D 2

A2gmAh2DZ, ~9!

where we have introduced the coefficientm51/(11k). The
sign in Eq.~9! is related to the orientation chosen to defi
the positive direction ofh andu1 . We introduce the constan
A0 as

A05CvS d2

d1
D 2

A2gm ~10!

and write a differential equation forh

dh

Ah2DZ
52A0dt. ~11!

Equation~11! can be easily integrated to give

Ah2DZ

Ah02DZ
5S 12

t

te
D , ~12!

whereh0 is the height of the free surface att50 andte is the
empty time, which according to Eqs.~10! and ~12!, is given
by

te5
Ah02DZ

CvS d2

d1
D 2

A2gm

. ~13!

Therefore, if we measureh as a function of time, a plot of
Ah2DZ as a function oft should be linear. The paramete
of this straight line would provide the value ofte and allow
us to find the value ofCv . For t'te , there is still some fluid
above the orifice (h'DZ), but there is no jet, and the liquid
just leaks out of the tank.
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To determine the value ofu2 , we shall assume that th
motion of the water particles that comprise the jet follow t
same equation of motion as those of a horizontal projec
with initial velocity u2

x~ t !5u2t, ~14a!

y~ t !5H2
1

2
gt2, ~14b!

whereH is the height of the exit orifice relative to the orig
as shown in Fig. 2. If we combine Eqs.~14a! and~14b!, we
obtain the equation for the trajectory of the jet

y~x!5H2
1

u2
2 S g

2
x2D . ~15!

Therefore, if we can fit the experimental data of the traj
tory of the exit jet of water to Eq.~15!, we could obtain the
value ofu2 .

III. EXPERIMENT

The experimental setup consists of a transparent cylin
cal tank with a lateral drainage orifice close to the bott
and a webcam connected to a computer. The vessel is 1
in diameter and 25 cm high, the diameter of the orifice i
mm, and the wall thickness of the vessel is 2 mm. This ty
of vessel, with a horizontal capillary tube, has been use
determine the viscosity of a fluid.8 The tank was filled with
tap water with a few drops of blue ink to facilitate the vis
alization of the exit jet. The vessel was positioned in front
a board on which we had drawn a grid with lines every
cm to provide an absolute scale for the photographs. The
jet was parallel to the gridded board. The webcam is pla
just in front of the vessel, at about 1.5 m. In this manner
are able to photograph the jet of water with the grid in t
background. Pictures were taken every time the free sur
dropped by about 1 cm. A digital camera also could be u
for this purpose. In this manner, each photograph recordeh,
the height of the water in the cylinder, and the trajectory
the exit jet of water from the orifice. To determine the tr
jectory of the jet, it is possible to use a graphics program t
allows us to obtain the location~pixel coordinate! of any
point in the picture. By using the background grid, it is po

Fig. 2. Schematic diagram of the experimental setup.
600 Am. J. Phys., Vol. 73, No. 7, July 2005
le

-

i-

cm
3
e
to

f

xit
d

e

ce
d

f
-
at

-

sible to transform the coordinate of any pixel in the photo
the grid coordinate. An alternative is to use the picture as
background of a plot.

The procedure we followed to obtainu2 from the experi-
mental data is to overlap the digital photograph of the
with a graph with a transparent background.9 The grid of the
graph is set to coincide with the mesh used in the ba
ground of the picture. The graph is moved and stretched
that the mesh of the picture coincides with the correspond
grid in the graph.9 Once this condition is achieved, the orig
~vertex! of the parabola described by Eq.~15! is chosen to
coincide with the exit orifice. Then the value ofu2 is varied
so that the curve described by Eq.~15! coincides with the
experimentally observed trajectory. Figure 3 illustrates t
procedure.

To facilitate the measurement of the heighth of the liquid
as a function of time, we drew horizontal marks every 0
cm, starting at the position of the drainage orifice. We use
stopwatch to measure the time it took for the free surface
the water to reach each horizontal mark.

IV. RESULTS AND DISCUSSION

A digital photograph of the vessel and the exit jet is sho
in Fig. 3~a!. In Fig. 3~b! we show the same digital photo
graph of the exit jet in the background overlapped with a p
of the theoretical trajectory of the jet as given by Eq.~15!.
By adjusting the value ofu2 , we fitted the theoretical trajec
tory to the actual path of the jet. Figure 3~b! shows that the
trajectory of the jet is well reproduced by Eq.~15!. This
agreement is a clear indication that the liquid particles t
form the jet follow the same trajectory as do solid particles10

Therefore the liquid elements of volume are described by
same physical laws of mechanics that govern the motion
solids. This result may be useful for confronting the Arist
telian misconception held by some students that liquid a
solids follow different laws. In Fig. 3 we also have include
the trajectory of the jet that we would expect if there were
energy loss, Eq.~1!; it is clear that the naive application o
Eq. ~1! gives a poor description of the data.

In Fig. 4, we plotu2
2 as a function ofh. Because this plot

is linear, the main assumptions of our model, expressed
Eqs.~7! and~8!, are in good agreement with the experime
tal results. Furthermore, we can obtain the values of the
rametersDZ andk by fitting the theoretical expectation, Eq
~8!, to the data. In Table I we summarize the values of th
parameters for different experimental runs. In Fig. 4 we a

Fig. 3. ~a! Digital photograph of the exit jet.~b! The same photograph in the
background overlapped with a plot of the theoretical trajectory~dotted line!
of the jet as described by Eq.~15!. The solid line represents the theoretic
expectation if energy loss is completely ignored, as predicted by Eq.~1!.
600Martı´n Eduardo Saleta, Dina Tobia, and Salvador Gil
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show the theoretical expectation that is obtained using
~1!. Again we see that this approach gives a poor descrip
of the results. In Fig. 4 we also include the line that would
obtained from Eq.~8! if we ignored the minor loss term (k
50); again the agreement of this approximation with t
data is poor. Therefore the results of the experiment indic
that it is necessary to include two types of energy losse
Bernoulli’s equation, one dependent on the square of the
erage velocity~minor loss! and the other independent of th
velocity (DZ).

In Fig. 5 we present the results for the heighth of the free
surface as a function of time. To test the validity of o
model, Eq. ~12!, we plotted the modified variable
A(h2DZ)/(h02DZ) as a function of time. The clear linea
trend of this plot indicates the validity of our model. In Fi
5 we also include the theoretical expectation that we wo
obtain if we ignore the effect of vena contracta, that is,Cv
51. We see that our results are inconsistent with this
sumption and indicate the necessity of taking into consid
ation the contraction of the jet. The parameters of the fit
line allow us to obtain the values of the empty timete and
Cv . From Table I we see that the values of the parame
are consistent for the different runs. The value ofk and Cv
are consistent with the values reported in the literature.1–3

There is a simple heuristic justification for the contracti
of the jet.2,11 The momentum of the discharge jet is along t
horizontal axis~thex axis in Fig. 2!; the rate of change of the
momentum isdp/dt5rQu2 . HereQ is the volume flow rate
(Q5CvAu2) andA represents the outlet area. The force
sponsible for this change of momentum is associated w
the hydrostatic pressure,P5rgh, that is

PA5rghA'CvAru2
2. ~16!

Therefore, according to Eq.~8! we have

Fig. 4. The circles represent the experimental results ofu2
2 as a function of

the heighth; the dotted line is a linear fit of the data using Eq.~8!. The solid
line represents Eq.~1!. The dashed line is the expectation obtained by
noring the minor loss term (k50).

Table I. Parameters obtained for several runs. The values ofm andCv are
consistent with those reported in the literature~see Refs. 1–3!.

Parameter Run 1 Run 2 Run 3

DZ (cm) 0.960.2 0.960.2 0.960.2
m 0.9160.01 0.9060.01 0.9060.01
k 0.0960.01 0.1160.01 0.1160.01
Cv 0.4660.03 0.4760.03 0.4460.03
601 Am. J. Phys., Vol. 73, No. 7, July 2005
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Cv'
1

2 S 11k

12Dz/hD'0.59,1. ~17!

This simple argument provides us with a physical justific
tion for the contraction of the jet and also gives a semiqu
titative estimate ofCv . Note that the contraction of the jet i
also a consequence of the complex instabilities that t
place around the orifice. The observed values ofCv depend,
among other things, on the roundness of the edges of
aperture and the wall thickness.1 These effects are not ac
counted for by our simplified argument.

At low velocities the fluid travels smoothly in regula
paths or streamlines. This flow pattern is referred to as la
nar or streamline flow. As the velocity increases, the flu
flow begins to show irregular fluctuations and random m
tion transverse to the direction of the flow; this pattern
referred to as turbulent flow.1,2 The Reynolds number, Re
5rdu/h, is a dimensionless parameter which is useful
characterizing the flow. Herer represents the density of th
fluid, h its viscosity,u the mean velocity of the flow, andd
the diameter of the pipe or orifice. The Reynolds numb
represents the ratio of inertial forces to viscous forces in
flow. The flow is laminar for Re,2000 and turbulent for
Re.4000. For Re between these two values, the flow m
switch from laminar to turbulent conditions in a rando
fashion ~transitional flow!.1,2 These effects are readily ob
served in the smoke from a cigarette. For the first few c
timeters the smoke pattern is usually laminar. After that,
flow breaks into turbulence. In Fig. 6, we plot the value
the Reynolds number at the orifice, versush. We see that Re
varies between 4000 and nearly 400, indicating that the fl
regime includes the beginning of turbulent flow, transition
flow, and laminar flow. Because our model can reproduce
experimental data using the same values ofk, DZ, andCv in
all these regions of Re, the type of losses in our model
the expanded Bernoulli’s equation are valid for these fl
regimes. It also follows from this analysis thatk, DZ and
Cv , are independent of Re for the flows studied here.

Fig. 5. The circles represent the experimental results
A(h2DZ)/(h02DZ) as a function of time; the dotted line is a fit of th
data. The solid line represents the theoretical expectation obtained disre
ing the contraction of the jet (Cv51).
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V. CONCLUSIONS

The proposed experiment is simple and inexpensive
accessible to beginning students, and illustrates the im
tance and usefulness of Bernoulli’s equation for real flu
including energy losses, over a wide range of Reynolds n
bers. All that is needed to further explore the turbulent
gime is a taller cylinder. The experiment also verifies th
liquid particles follow the same trajectory as solid particle
indicating that they obey the same physical laws.

The proposed model, based on the extended Bernou
equation, is adequate to describe qualitatively and quan
tively the physics of drainage of a vessel. Furthermore,
fitting of the theoretical model to the data allows us to extr
the relevant parameters of the model, namely the coeffici
DZ andk of Eq. ~4! and the coefficient of vena contractaCv .
The motion of the free surface is well reproduced by
model, in particular its time dependence. Furthermore,
can measure the coefficient of vena contracta in the exi
and the coefficient of losses in our system.

ACKNOWLEDGMENTS

We acknowledge the valuable comments and suggest
made by Professors E. Calzetta, G. Garcı´a Bermúdez, C.
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APPENDIX

When a laminar flow enters into a pipe, it does not imm
diately develop the parabolic velocity profile that preva

Fig. 6. The circles indicate the values of the Reynolds number at the or
for the different values ofh used in our experiment.
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well inside the pipe. There is a transition region or entran
length,1,3 Le , over which the velocity profile changes from
planar to the fully developed parabolic profile. A semiemp
ical relation that allows us to estimate this entrance lengt
given by12

Le5Ce Red, ~A1!

whereCe is a constant. Several authors have proposed
ferent values for this constant,1,3,12 but all range between
0.029 and 0.06 for laminar flows. If we applied Eq.~A1! to
the exit orifice, we obtained values ofLe which were much
larger than the wall thickness in all the cases we stud
Therefore, the velocity profile of the exit jet can be regard
as planar, that is,a2'1. On the other hand, for the cylinde
the average velocity is so small (u1'1022 cm/s), that
a1'2.
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