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We experimentally studied the dependence of the period of the interrupted pendulum as a function
of the amplitude for small angles of oscillation. We found a new kind of dependence of the period
with the amplitude of the pendulum that indicates that if the interruption is not located on the main
vertical axis that contains the point of suspension, the period of the interrupted pendulum is highly
nonisochronous and does not converge to a definite value as the maximum amplitude approaches
zero. We have developed a simple model that satisfactorily explains the experimental data with no
adjustable parameters. This property of the interrupted pendulum is a general property of the
parabolic potential consisting of two quadratic forms with different curvatures that join at a point
different from the apex or the vertex. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

The interrupted pendulum, invented by Galileo,1 is a
simple pendulum of lengthl 0 , that is interrupted in its mo-
tion by a horizontal bar placed on the vertical line that pas
through the point of suspension at a distancey0 from it.
Figure 1 shows a schematic diagram of this pendulum. T
ditionally, this device has been used to illustrate the con
vation of energy because the bob reaches the same heig
both sides.2,3 The motion of this system is fascinating b
cause it can be considered as having two periods: a pe
associated with the motion on the left side that correspo
to a pendulum of lengthl 0 , and a second period associat
with the motion on the right side which corresponds to
pendulum of lengthl 02y0 .

As for the case of a simple pendulum, we expect that
interrupted pendulum will become isochronous for sm
angles of oscillation. Therefore, it is expected that, for
small amplitude of oscillation, the period of the interrupt
pendulum will converge to the average value of the peri
of the two simple pendula described above, namely,3,4

T12
0 5

1

2
~T11T2!5pSAl 0

g
1A~ l 02y0!

g D , ~1!

whereT1 denotes the period of the pendulum of lengthl 0 ,
T2 refers to the corresponding period of the pendulum
length l 02y0 , andg is the local acceleration of gravity.

The isochronism of the simple pendulum is related to
fact that, for small amplitudes, the effective potential of
simple pendulum is well approximated by a parabolic pot
tial. It is well known that, for such a potential, the period
oscillation of a particle is constant and independent of
total energy. This property has important consequences,
in the quantum mechanical behavior of the particle. Acco
ing to the semiclassical correspondence principle,5–8 at large
1115 Am. J. Phys.71 ~11!, November 2003 http://aapt.org
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quantum numbers, the energy difference between neigh
ing levels is equal to the classical frequency,f 51/T, times
the Plank’s constant, 2p\:

dEn

dn
'\vClassical5\

2p

TClassical
. ~2!

Consequently, the isochronism is related to the equal sp
ing of the energy levels of the harmonic oscillator. This sem
classical association is particularly relevant because for q
dratic potentials most semiclassical results coincide with
exact quantum mechanical relations.5–8 Therefore, any pecu-
liar property of the period of the pendulum, for small amp
tudes, is bound to have far-reaching consequences.

The property of the interrupted pendulum, that we w
discuss, was observed in the course of a laboratory ses
with first year students. The objective was to verify that,
small angles of oscillation, the period of the interrupted pe
dulum could be described by Eq.~1!. We found that for the
experiments performed by most of the students, the pe
did converge to the result expressed by Eq.~1!, while for
some other experiments, the perioddid not converge to a
definite value. In fact, some students found that the per
increased as the amplitude decreased due to damping, w
other students found that the period constantly decrea
Examining the experimental setup, we found that the ca
of this peculiar behavior was related to the fact that the
terruption was not located on the vertical axis that interce
the point of suspension.3 Unfortunately, at the time the stu
dents carried out the experiment, we were not able to prov
a satisfactory explanation of this behavior, which we on
found two months after the quarter was over. Nonethele
this experience had a nice moral for both teachers and
dents, namely the importance of examining and report
experimental information that at first sight seems to con
dict the accepted explanation. These anomalies are the s
that motivate us to search for more general and better th
ries that drive the progress of science.
1115/ajp © 2003 American Association of Physics Teachers
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II. THEORETICAL CONSIDERATIONS

In this section, we will calculate the period of oscillatio
of the interrupted pendulum, illustrated schematically in F
1, assuming that the interruption is displaced horizontall
distancez from the main vertical axis of the pendulum, i.e
the vertical line that intercepts the point of suspension. T
anglea is such that sina5z/y0, and u denotes the angula
amplitude. The angleu is measured relative to the main ve
tical axis and is considered positive if it is on the right side
this axis. Throughout this study, we will consider the case
small amplitudes of oscillation. Therefore, we will assum
thatz!y0, l 0 , sina5z/y0'a, and sinu'u. For angular am-
plitudes uuu<20°, this approximation is met with an erro
<2%. Taking into account these approximations, the he
of the bob relative to its lowest position at any angular a
plitude u can be expressed as follows:

h5 l 0~12cosu!' l 0

u2

2
, for u<a, ~3!

while for u.a, the height of the bob is given by

h5 l 02y0 cosa2~ l 02y0!cosu' l 0

u2

2
2

y0

2
~u22a2!.

~4!

In the present analysis we will focus on the underdam
situation, i.e., the energy loss per cycle is small compare
the total energy of the system. The total mechanical ene
of the pendulum can be written as follows:

E05
1

2
m~ l 0u̇ !21mgh'

1

2
ml0

2S u̇21
g

l 0
u2D ,

for u<a, ~5!

and

Fig. 1. A schematic diagram of the interrupted pendulum.l 0 is the total
length of the pendulum. The interruption is located at a distancey0 from the
point of suspension.z is the horizontal distance from the interruption to th
main vertical axis that intercepts the point of suspension. We takez as
positive if the interruption is to the right of the vertical axis that interce
the point of suspension; otherwisez is negative. Similarly,u, measured
relative to the main vertical axis, is positive when the bob is on the right s
of this axis.
1116 Am. J. Phys., Vol. 71, No. 11, November 2003
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E05 1
2 m@~ l 02y0!u̇#21mgh

'
1

2
mF ~ l 02y0!2u̇21g~ l 02y0!u21g

z2

y0
G ,

for u.a, ~6!

whereu̇5du/dt. We define the frequencies

v1
25

g

l 0
5

4p2

T1
2 and v2

25
g

l 02y0
5

v1
2

~12y0 / l 0!
. ~7!

Taking into account these definitions, Eqs.~5! and~6! can
be written as follows:

E0' 1
2 ml0

2~ u̇21v1
2u2!, for u<a, ~8!

and

E0' 1
2 ml0

2S ~12y0 / l 0!2u̇21v2
2~12y0 / l 0!2u21v1

2 z2

l 0y0
D ,

for u.a. ~9!

If u10 and u20 are the absolute values of the maximu
amplitudes on the left side (u<a) and the right side (u
.a), respectively, the conservation of energy leads to
following equations of motion:

u̇21v1
2~u22u10

2 !50, for u<a, ~10!

and

u̇21v2
2~u22u20

2 !50, for u.a. ~11!

Note thata<u10<u20. If this condition is not fulfilled,
the interruption is not effective and the system become
simple pendulum. At the maximum amplitudes whereu̇50,
combining Eqs.~7!, ~8!, and ~9! we obtain the following
relation:

u20
2 5S l 0

l 02y0
D u10

2 2
z2

y0~ l 02y0!
. ~12!

The period of the interrupted pendulum can be calcula
as follows:

T12~u10,a!52F E
2u10

a du

u̇~u!
1E

a

u20 du

u̇~u!
G . ~13!

Replacing Eqs.~10! and ~11! in Eq. ~13!, we obtain

T12~u10,a!52F E
2u10

a du

v1Au10
2 2u2

1E
a

u20 du

v2Au20
2 2u2G .

~14!

This expression can be analytically integrated and gives
following result:

T12~u10,a!5
2

v1
Fsin21S a

u10
D1

p

2 G1
2

v2
F2sin21S a

u20
D1

p

2G.
~15!

For small angles, Eq.~12! can be approximated as follows

u20'A l 0

l 02y0
u10F12

1

2

y0

l 0
S a

u10
D 2G , ~16!

and Eq.~15! reduces to

e

1116S. Gil and D. E. Di Gregorio
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T12~u10,a!'pS 1

v1
1

1

v2
D1

2a

v1u10
F12

v1u10

v2u20
G . ~17!

Substituting Eqs.~1!, ~7!, and~16! in Eq. ~17!, we obtain

T12~u0 ,z!'T12
0 H 11

2

p S z

l 0u10
D S Al 0

Al 01Al 02y0
D

3F12
1

2

~ l 02y0!

l 0y0
2 S z

u10
D 2G J . ~18!

Inspecting Eq.~18! we observe that ifzÞ0, T12(u10,z)
diverges asu10 decreases and, therefore, the interrupted p
dulum is nonisochronous. On the other hand, ifz50,
T12(u10,z)→T12

0 . This behavior is clearly illustrated in Fig
2, where we plotT12(u10,z) as a function ofu10 for different
values ofz, according to Eq.~18!. A more detailed discussion
about the physics behind the dependence of the period o
interrupted pendulum on the coordinatez and a simple geo-
metrical interpretation of the asymmetry of the period on t
coordinate is presented in Appendix A. In the~usual! case
whena/u20!1, Eq. ~12! yields

u20
2

u10
2 '12

y0

l 0
. ~19!

Combining Eqs.~7! and ~19! with Eq. ~17!, we obtain

DT~u10,a!5T12~u10,a!2T12
0 '

a

u10

T1

p S y0

l 0
D . ~20!

This result indicates that the effect of a nonzero value ofz, or
equivalently a nonzero value ofa, is to introduce a deviation
or perturbation in the period of the interrupted pendulu
with reference to the casez50 (T12

0 ) that is proportional to
the ratioa/u10. Note that the perturbation is proportional
the parametersa or z, but is inversely proportional to the
amplitude of the oscillationu10.

We shall see that the dependence of the period on am
tude whenzÞ0 is different in nature to the convention
dependence of the period of the simple pendulum on am
tude for large angles, discussed in many introduct

Fig. 2. The dependence of the period of an interrupted pendulum on
maximum amplitude, according to Eq.~18!. The values of the parameter
correspond to those used in our real experiment. The different lines c
spond to predictions for different values ofz. The values ofz indicated in the
figure are expressed in centimeters.
1117 Am. J. Phys., Vol. 71, No. 11, November 2003
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books.3,9,10 This dependence of the period with amplitude
a consequence of the nonparabolic nature of the pote
energy of the pendulum and is given by

T1~u10!'T1S 11
sin2~u10/2!

4
1¯ D

'T1S 11
u10

2

16
1¯ D . ~21!

For moderately small angles, the quadratic term is su
cient. This correction is related to the fact that the poten
energy in a pendulum is proportional to (12cosu).9,10 The
parabolic potential energies assumed in Eqs.~5! and ~6! are
only first-order approximations. For the interrupted pend
lum, this correction to first order becomes

T12~u10!'
T1

2 S 11
u10

2

16
1¯ D 1

T2

2 S 11
u20

2

16
1¯ D .

~22!

Combining this expression with Eqs.~7! and~16!, we ob-
tain for z50,

T12~u10,z50!'T12
0 S 11

u10
2

16
A l 0

~ l 02y0!
D . ~23!

The two corrections described by Eqs.~18! and ~23! are
independent and are due to different physical processes.
effect of the interruption withzÞ0 leads to the correction
expressed by Eq.~18!, and, because the actual potential
the pendulum is not strictly parabolic@see Eqs.~5! and~6!#,
we obtain the correction expressed by Eq.~23!. These two
effects can be combined to the lowest order inu10 andz as
follows:

T12~u10,z!'T12
0
•H 11

2

p S z

l 0u10
D S Al 0

Al 01Al 02y0
D

3F12
1

2

~ l 02y0!

l 0y0
2 S z

u10
D 2G J

•S 11
u10

2

16
A l 0

~ l 02y0!
D , ~24!

where the first factor in parentheses on the right-hand s
contains the dependence of the period with amplitude du
the misalignment of the interruption with the vertical axis
the pendulum, as described by Eq.~18!, and the second fac
tor on the right-hand side is the dependence of the pe
with amplitude due to the nonparabolic form of the potenti
Figure 3 displays the dependence of the period with am
tude of the interrupted pendulum, as described by Eq.~24!,
for several values ofz. This figure illustrates the way in
which the period of the interrupted pendulum tends to
verge asu10 decreases ifzÞ0, as was shown in Fig. 2. Th
smooth positive slope of the different curves depicted in F
3 for values of amplitude larger than 20° shows the effect
the non-strictly-parabolic shape of the real potential of
pendulum.

A better description of the behavior at lower angles can
obtained using the exact expression forzÞ0, given by Eq.
~15!:

he

e-
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Eq.
T12~u10,a!'T12
0 H 11

1

pT12
0 FT1 sin21S a

u10
D

2T2 sin21S a

u20
D G J S 11

u10
2

16
A l 0

~ l 02y0!
D .

~25!

The physical meaning of the two correction terms in t
equation are the same as those discussed in Eq.~24!.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The interrupted pendulum that we built was essentially
one that is illustrated in Fig. 1, with a photogate connected
a PC and placed at the lowest position of the bob. The p
togate was set up to measure the complete period of
oscillation. A horizontal meter stick was placed just belo
the bob, and by visual inspection we were able to read
maximum amplitude,u10. The total length of our pendulum
wasl 05(152.060.2) cm and the interruption was located
y05(86.960.1) cm. The distancez was varied from 6 to22
cm. For each positionz, we measured the periodT12 and
maximum amplitudeu10, as the system slowly damped ou

In Fig. 4 we present the results of measurements for
ferent values ofz and the theoretical expectations calculat
by using Eq.~25!. There is a very good agreement betwe
our model and the experimental results. The agreemen
z50 is the least satisfactory, most likely because for t
position the relative error inz is the largest.

IV. CONCLUSIONS

We have found that the interrupted pendulum does
converge to a definite period as the maximum amplitude
the oscillation approaches zero, if the interruption is n
placed along the vertical axis that contains the point of s
pension. We have developed a simple model to accoun
this dependence of the period with amplitude that agr
very well with the experimental results. This property of t
interrupted pendulum is a general property of the parab
potential, consisting of two quadratic forms with differe
curvatures that joint at a point different from the apexz

Fig. 3. The dependence of the period of an interrupted pendulum on
maximum amplitude, according to Eq.~24!. The values of the parameter
correspond to those used in our real experiment. The different lines c
spond to predictions for different values ofz. The values ofz indicated in the
figure are expressed in centimeters.
1118 Am. J. Phys., Vol. 71, No. 11, November 2003
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Þ0). If the transition between the two parabolas of differe
curvature occurs at the apex or vertex of the potential,
period is indeed isochronous, otherwise the period does
converge to a definite value as the amplitude approac
zero.
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APPENDIX: PHYSICAL AND GEOMETRICAL
INTERPRETATION OF THE PHENOMENA

In this appendix we explore the physical and geometri
origin of the dependence of the period of the interrup
pendulum on the maximum amplitudeu10 and on the hori-
zontal offset in the position of the interruptionz or equiva-
lently on a5z/y0 .

According to Eqs.~8! and ~9! the potential energyV(u)
for our system can be written as

V~u!5H 1
2 Tv1

2u2, if u<a,

1

2
Tv1

2S l 02y0

l 0
D S u21S y0

l 02y0
Da2D , if u.a,

~A1!

where we have introduced the parameterT[ml0
2. The ki-

netic energyT(u) andV(u) as a function ofu are displayed
in the upper panel of Fig. 5. Taking the variableu as a gen-
eralized coordinate, according to Eqs.~8! and ~9!, the asso-
ciated momentum9 pu is

pu5
]T

]u̇
5H Tu̇, if u<a,

TS y0

l 02y0
D u̇, if u.a.

~A2!

he

e-

Fig. 4. Experimental results of the period of the interrupted pendulum a
function of the amplitude, for different values of the offset parameterz. The
values ofz indicated in the figure are expressed in cm. The continu
curves are the corresponding predictions of our model calculated using
~25!. The angular range in this figure spans 23°.
1118S. Gil and D. E. Di Gregorio
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Note thatpu is related to theangular momentumof the
system, but is not theconventionalangular momentum, sinc
in our case the axis of rotation undergoes a sudden cha
whenu5a.

Also, from Eqs.~10! and ~11! we can write a generalize
velocity u̇(u) as

u̇~u!5H v1Au10
2 2u2, if u<a,

v1A l 0

l 02y0
Au20

2 2u2, if u.a.
~A3!

It is interesting to make a phase diagram9 of the motion of
the system, i.e., a plot ofpu vs u. In the middle panel of Fig.
5, we show the phase diagram forz.0 ~or a.0) and z
50 ~or a50). Because the phase diagram for our system
symmetric with respect to the horizontal axisu, only the
upper half of this diagram has been plotted. Also, in
lower panel of the figure, we display 1/u̇ vs u. Note that
while V(u) andT(u) are continuous in the neighborhood

u5a, the variablespu , u̇ and 1/u̇, are discontinuous atu

5a. At first glance, a discontinuity in a velocity (u̇) may
appear physically paradoxical. To gain a deeper insight
the problem, let us consider the case forz50 in more detail.
From the conservation of energy we can write

Fig. 5. In the upper panel, the solid line represents the potential energyV(u)
as a function of the generalized coordinateu. The dashed line represents th
kinetic energyT(u). The horizontal dot–dashed line indicates the total e
ergy of the system. The vertical dot–dashed line indicates the angular
tion of the interruption atu5a. In the middle panel, we present the pha
space diagram (pu vs u! of the motion of the interrupted pendulum, both fo
z50 ~or a50) in dashed lines, and forz.0 ~or a.0) in solid lines. In the

lower panel, we plot 1/u̇ vs u. The dashed lines correspond to the case
z50 and the solid lines~superimposed on the dashed lines! represent the
corresponding case forz.0. The area of the hatched rectangle is the g
metrical representation of the perturbation on the periodDT(u10 ,a), in first
order given by Eq.~20!. The units used for the vertical scales are in MK
for each variable for the system under study.
1119 Am. J. Phys., Vol. 71, No. 11, November 2003
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u10

2
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1

2
ml2„u̇~02!…2, for u<0; ~A4!

therefore

u̇~u502![u̇~02!5v1u10, for u<0. ~A5!

Similarly, we have

u̇~u501![u̇~01!5A l 0

l 02y0
v1u20, for u.0.

~A6!

Equation~12! also leads in this case (z50) to

u205u10A l 0

l 02y0
; ~A7!

consequently,

u̇~02!5S l 02y0

l 0
D u̇~01!, ~A8!

and the generalized velocityu̇ is discontinuous atu5a50.
Nonetheless, the tangential or linear velocityn in the neigh-
borhood of this point (u50) is

n~u502!5 l 0u̇~02!5 l 0v1u10, if u<0,
~A9!

n~u501!5~ l 02y0!u̇~01!5 l 0v1u10, if u.0.

Therefore, the linear velocity and the kinetic energy are c
tinuous atu50, as expected from a physical point of view.
discontinuity in energy would imply infinite power. This dis
cussion makes the discontinuities observed in the middle
lower panels of Fig. 5 atu5a, physically consistent. More

over, we can understand the discontinuities ofpu , and 1/u̇ as
a consequence of the change in the axis of rotation of
system atu5a. All the above observations hold true in ge
eral, even ifaÞ0.

Coming back to the question of the variation of the peri
of the interrupted pendulumT12(u0 ,a); according to Eq.

~13!, it is associated with twice the area of the plot of 1/u̇ vs
u shown in the lower panel of Fig. 5.

Therefore, the variation of the period of the interrupt
pendulum for the case ofzÞ0 ~or aÞ0) with reference to
the case ofz50 (T12

0 ) is given in first approximation by the
area of the hatched region depicted in the lower panel of F
5. Of course, this will be the case if the contribution to t
integrals indicated in Eq.~13! at u'u10 and u'u20 are in-
dependent ofa. To test this ansatz, we estimatedDT(u10,a)
given by Eq.~20! for the case where the conditiona/u20

!1 is satisfied, using the value of the area of the hatc
region in Fig. 5, i.e.,

DT~u10,a!'2a•S 1

u̇~a1!
2

1

u̇~a2!
D

'2aS 1

u̇~01!
2

1

u̇~02!
D , ~A10!

the value of the last parenthesis~the height of the hatched
rectangle! can be estimated using Eqs.~A5! and ~A8! as

-
si-

f
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u̇~01!
2

1

u̇~02!
D 5

1

u10v1
S y0

l 0
D ; ~A11!

consequently,

DT~u10,a!'
a

u10

T1

p S y0

l 0
D . ~A12!

This expression is identical to Eq.~20! and, therefore, it in-
dicates that our ansatz of associatingDT(u10,a) with the
hatched area in the lower panel of Fig. 5 is correct. Furth
more, this analysis allows us to obtain a physical interpre
tion of the value of perturbation of the period of the inte
rupted pendulumDT(u10,a). It is originated in the sudden
jump of the generalized~angular! velocity at the position of
the interruption (u5a). If a.0 ~or z.0) the period of
interrupted pendulum is larger compared to the case oa
50, due to the fact that the jump to a higher velocity occ
later in the motion than fora50. In other words, the inter
rupted pendulum spends a larger fraction of its motion a
longer pendulum, which has a larger period. For a sim
reason, the period fora,0 is smaller than fora50. Fur-
thermore, the origin of the linear dependence ofDT(u10,a)
on a is readily connected to the base of the rectangu
hatched region in Fig. 5~lower panel!. On the other hand, the
dependence ofDT(u10,a) on 1/u10 is related to the jump in

the angular velocityu̇(u) in the neighborhood of the discon
1120 Am. J. Phys., Vol. 71, No. 11, November 2003
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tinuity at u5a, as Eq.~A11! indicates. This last result is
related to the fact that the maximum velocity of the pend

lum u̇(02) is proportional to the amplitudeu10, as Eq.~A5!
indicates. In more simple terms, for a given value ofa.0,
the fraction of time that the interrupted pendulum spends
a longer pendulum will be larger asu10 decreases and con
sequently its total period will increase.
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CONCISE WRITING

Vigorous writing is concise. A sentence should contain no unnecessary words, a paragraph no
unnecessary sentences, for the same reason that a drawing should have no unnecessary lines and
a machine no unnecessary parts. This requires not that the writer make all sentences short, or that
he avoid all detail and treat his subjects only in outline, but that every word tell.

William Strunk, Jr.,The Elements of Style, 3rd Edition ~MacMillan Publishing Company, Inc., New York, 1979!, p. 23.
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