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Abstract
Here we present a simple and amusing device that demonstrates some surprising
results of the dynamics of the rotation of a symmetrical rigid body. This system
allows for a qualitative demonstration or a quantitative study of the rotation
stability of a symmetric top. A simple and inexpensive technique is proposed
to carry out quantitative measurements to explore the theoretical predictions
of the model presented to explain the motion of the system. Our results agree
very well with the expectations of the theoretical model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is rewarding and instructive to share with friends and the public in general the fun and
excitement that we physicists often obtain from exploring the ways in which nature behaves.
Here we present a simple device that can be used to entertain friends at a party, while illustrating
the kind of problem a physicist enjoys working on. It can also be used in a regular laboratory
course to carry out quantitative measurements to explore the physics of the rotational stability
of a rigid body. The experiment consists of a rod the size of a pen or a ring attached to a
flexible wire or a fishing line of about 30 cm as illustrated in figure 1. At rest the rod or
the ring (symmetric top) hangs, as expected, with its centre of mass at its lowest position.
If we start spinning the wire with our fingers, the rod or the ring rotates with their centre of
mass in the same position, but if we increase the rotation frequency above a critical value,
the symmetric top begins to raise its centre of mass approaching a horizontal position as the
frequency increases. The rising of the centre of mass is at first sight surprising and contrary to
our intuition. If we naively attempt to calculate the potential and kinetic energy of the bar at a
given inclination, both terms increase monotonically with the elevation of the centre of mass
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Figure 1. Symmetric top rotating along the z axis. Left: the position adopted by a bar when
it is being spun through the wire with our fingers. Right: the figure shows the corresponding
equilibrium position of the ring when it is rotating. Axis 3 represents the symmetry axis, whereas
axes 1 and 2 are the other principal directions of the body.

independent of the angular frequency of rotation. Therefore, the observed effect appears to be
paradoxical.

The physics of the symmetrical top has important applications in several areas of physics,
such as classical mechanics, molecular, nuclear physics and astrophysics. Therefore its
understanding and inclusion in introductory and intermediate level courses is well justified
and the development of new experiments to explore its physics is also welcome. The physics
of the free rotating top is treated in most introductory and intermediate level texts on mechanics
[1–4]. There are also a number of very instructive and amusing demonstrations of the motion
of symmetric and asymmetric tops [5–8] among which the gyroscope is a classic example.
Nonetheless, the literature of experiments on this subject that allows for precise quantitative
measurements, which can be contrasted with the corresponding theory or models, is very
scarce.

In this work we develop a simple model to understand this behaviour qualitatively. Then
we develop a more refined model that can be directly compared with the experimental results.
The models can be readily tested using the results of the experiment. We analyse the case of
a bar and a ring.

2. Theoretical considerations

We begin examining the case of the rotating rod, whose length is h and mass is m, that hangs
from a very long wire of length L (�h). This system is illustrated schematically in figure 2.
The spinning angular frequency is ω along the z axis (in the space-fixed or inertial frame of
reference).

The behaviour of the bar becomes clear if we visualize our system from a body-fixed
frame of reference. In this frame, which rotates with frequency ω around the z axis, there are
two torques in opposite directions. The torque due to the string tension, τw, tends to restore
the rod to the vertical direction and the torque due to the centrifugal force [1, 2], τ c, tends to
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Figure 2. Schematic representation of a rod, of length h, that is being spun at an angular frequency
ω along the z axis by a long wire of length L. Left: the bar is shown in the space-fixed frame of
reference. Right: the bar is shown in the body-fixed frame (rotating frame) of reference. Here we
assume that L � h. Therefore, the string is almost parallel to the vertical direction (naı̈ve model).

bring the rod to a horizontal position. We take the centre of mass of the rod as a reference
point for calculating the torques. In equilibrium these two torques are equal, therefore

τw = m.g.
h

2
· sin θ = τc = m · ω2 h2

12
· sin θ · cos θ. (1)

The details of the calculation of the centrifugal torque are presented in appendix A. From
equation (1) it follows that the equilibrium position of the rod is determined by

cos θ = 6g

hω2
=

(ωc0

ω

)2
, (2)

with

ωc0 =
√

6g

h
. (3)

In order to obtain a solution of equation (1) different to θ = 0 the condition ω � ωc0 must
be satisfied. Consequently, we expect that at low rotational frequencies, ω < ωc0, the rod will
rotate in the vertical position (θ = 0), for ω > ωc0, the angle θ will increase as ω increases,
in accordance with equation (2). We will call the model just discussed the naı̈ve model. A
more general discussion of this problem is presented in appendices A and B, where the case
of a finite length of wire, and other geometries for the symmetrical top, are also considered.
The derivation presented in appendix A should be accessible to beginner students, whereas the
model discussed in appendix B requires some knowledge of intermediate analytical mechanics
[1–4].

3. The experiment

The experimental arrangement we used is shown in figure 3. It consisted of a variable speed dc
motor (with mechanical reduction) powered by a variable dc voltage source, that regulates the
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Figure 3. Schematic representation of a rod, of length h, that is being spun at an angular frequency
ω by a variable speed motor.

speed of the motor. We taped a plastic tube to the axis of the motor (axis flag) to interrupt the
beam of light of a photogate on every rotation. The photogate, connected to a computer, was
used to monitor the speed of the motor and measure its rotational frequency ω. As symmetrical
tops we used aluminium tubes of about 9 mm in an external diameter with different lengths
h. We drilled a small hole close to one of their extremes to attach a thin wire of length L that
was connected to the axis of the motor. We used a general purpose PVC insulated electronic
hook-up wire gauge 24 and about 35 cm in length. Its mass was less than 0.5% of the mass of
the rod and was neglected in our analysis. We also used metal rings of diameters between 5
and 10 cm.

A WebCam (Genius GE11) was used to obtain the digital photographs of the tops, once
they reached an equilibrium position. A plumb line was placed in the background to determine
the angle θ of the bar or ring. An advantage of many inexpensive WebCams, such as the one
used here, is that as the illumination gets dimmer the shutter speed of the camera is reduced.
Therefore, by regulating the illumination it is possible to obtain a photograph of the bar or ring
that averages over several positions of the top as shown in figure 4, where we clearly see the
orientation of the rod. These digital pictures allow us to obtain the orientation angle θ with a
few degrees of uncertainty for every frequency of the motor. Naturally, the same effect could
be obtained using a digital camera with shutter speed regulation. Another alternative that can
be used for measuring the orientation angle θ is to use the digital camera in video mode. The
procedure would involve recording a few revolutions of the top, and then examining the video
frame by frame to select the one where the wire and the bar are in the plane of the picture.
Then the picture is used to proceed as suggested in figure 4.

4. Results and discussion

In figure 5, we present the experimental results (symbols) obtained for a hollow aluminium
bar of length h = 25.5 cm and an external diameter d = 0.95 cm, attached to a thin wire of
L = 33.4 cm to a point on the bar at δ = 0.8 cm from one of its extremes. In the same figure
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Figure 4. Photograph of the rotating bar. A slow shutter speed was used such that each shot
averaged over several orientations of the bar. In the background the image of the plumb line is
shown that was used to define the vertical direction. This type of digital picture allowed us to obtain
the rotational equilibrium angle θ with an uncertainty of about 2◦ for each rotational frequency.
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Figure 5. The symbols represent the experimental results for a bar (h = 25.5 cm). The dotted
line corresponds to the prediction of the naı̈ve model given by equation (2). The dashed line
corresponds to the expectation of the model (no. 2) discussed in appendix A where the finite
length of the wire is included. The heavy line is the prediction of the model (no. 3) discussed in
appendix B where both the finite length of the wire and the distance δ of the point of connection
to the wire are also considered. In this case, L = 33.4 cm and δ = 0.8 cm.

we also show the theoretical expectation of the naı̈ve model equation (2). The models that
include the finite length of the wire and the distance δ of the point of attachment to the extreme
of the bar are also depicted in the same figure.

It is clear that for an adequate description of the experimental data model no. 3 that
includes both the finite length of the wire and the distance δ is necessary. This model is
developed in appendix B. In figure 6, we show the experimental results for another bar of a
different length and for a ring. In this figure we have also included the prediction of model
no. 3. Out of all the cases analysed in this work model no. 3 gives a very good description
of the observed results. It is interesting to note that due to the effect of the centrifugal force,
at high rotational frequencies, the driven symmetrical top tends to rotate about the axis of the
largest moment of inertia, independently of whether it is a symmetry axis or not.

In summary, we have devised a simple and inexpensive experiment that can be
implemented in an introductory or intermediate laboratory class on classical mechanics. We
also developed a realistic model that adequately reproduces the experimentally observed
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Figure 6. Experimental results (symbols) for a bar and a ring. The heavy continuous lines are the
expectation of the theoretical model (no. 3) presented in appendix B. The other lines in the case of
the bar are the prediction of the naı̈ve model (dotted) and model no. 2 (dashed).

equilibrium orientations of a spinning symmetrical top that can be used to study the rotational
stability of a rotating top. Our results are complementary to the analysis of supercritical
bifurcation carried out, with a different approach, for the case of the ring using a similar
experimental setup [9].
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Appendix A. Improved model of a rotating rod—model no. 2

Consider a rod forming an angle θ with the vertical. In the body-fixed frame, there is a
centrifugal force that tends to bring the rod to a horizontal position and the string tension
and weight that tend to restore the rod to the vertical position. The system is illustrated in
figure 7. Throughout all our analysis we will assume that the string or wire is longer than the
bar, i.e. L > h. The equilibrium of the vertical and horizontal forces implies that

T cos β = mg and T sin β = F (cm)
c = mω2ε sin θ, (A.1)

where T is the string tension and F (cm)
c is the centrifugal force acting on the centre of mass that

is revolving around the vertical that passes through the point of suspension, the net centrifugal
force. Here ε is the distance of the centre of mass of the rod to the point O (figure 7) where
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Figure 7. Schematic representation of a rod, of length h, that is being spun at an angular frequency
ω by a string of length L. Left: the system is in the fixed or inertial frame of reference. Right: the
system is in the body frame of reference (rotating). The point O on the rod is the intersection of
the axis of the rod with the vertical that passes through the point of suspension of the string, λ is
the distance from point O to the point of attachment of the wire.

the axis of the rod intersects the vertical that goes through the point of suspension. From the
geometry of our system we have that

λ · sin θ = L sin β, (A.2)

where λ is the distance from O to the point of attachment of the wire, therefore

tan β = λ

L
· sin θ√

1 − (λ/L)2 sin2 θ
. (A.3)

From the geometry (figure 7) we have that λ = h/2 − δ + ε, where δ is the distance from the
point attachment of the wire to the extreme of the bar. From (A.1) it follows that

ε = g

ω2

λ

L
· 1√

1 − (λ/L)2 sin2 θ
. (A.4)

Note that ε > 0 if L is finite, since ε depends on the ratio λ/L ≈ h/2L, ε → 0 for L �
h. This expression provides an implicit dependence of ε with θ and ω, since λ also depends
on ε. The values of ε and λ can be calculated recursively as we indicate below.

All torques will be calculated using the point O as a reference. The torque due to the
centrifugal force on an infinitesimal element of rod dx at a distance x from the centre of
mass is

dτc = (x + ε) · cos θ · dFc = (x + ε)2 · cos θ · dm · ω2 · sin θ. (A.5)

Here ω is the angular velocity of the rod and dm = (m/h) · dx is the mass of the infinitesimal
element of the rod. Since λ ≈ h/2, the total centrifugal torque will be

τc ≈ m

h
cos θ · sin θ · ω2 ·

∫ h/2

−h/2
(x + ε)2 · dx = m

12
h2ω2 cos θ sin θ · [1 + 12ε2/h2]. (A.6)

The torque due to the weight of the rod and the string tension is

τw = mgλ · sin θ + mg · sin β

cos β
λ cos θ − mgε sin θ, (A.7)
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or

τw = mg(λ − ε) · sin θ ·
[

1 +
λ

(λ − ε)

λ

L

cos θ√
1 − (λ/L)2 sin2 θ

]
. (A.8)

In equilibrium τw − τc, therefore

ω2 = 6g

h
·
[

1

cos θ
+

λ

(λ − ε)

λ

L
· 1√

1 − (λ/L)2 sin2 θ

]
· 2(λ − ε)/h

(1 + 12ε2/h2)
, for ω � ωcrit.

(A.9)

This relation describes the connection between θ and ω. Note that this is an implicit equation
between these variables. Its solution can be found recursively. First, based on the connection
between θ and ω given by the naı̈ve model, we can calculate ε(θ , ω) using equation (A.4).
This value of ε then allows us to calculate λ. Using equation (A.9) we obtain improved values
of θ and ω. This process can be repeated to the desired precision. In our experience, two
or three iterations are sufficient to determine θ and ω with 1–2% of uncertainty. The critical
value of ωcrit is obtained from (A.9) for θ = 0, i.e.,

ω2
crit = 6g

h
·
[

1 +
h

2L

1(
1 − 2δ

h

) (
1 − 2δ

h
+

2εc

h

)2
]

·
(
1 − 2δ

h

)
(
1 + 12ε2

c

h2

) , (A.10)

since λ − ε = h/2 − δ, to first order in δ/h and ε/h, this last expression becomes

ω2
crit ≈ 6g

h
·
[

1 − 2δ

h
+

h

2L

(
1 − 4δ

h
+

4εc

h

)]

≈ ω2
c0 ·

[
1 +

h

2L
− 2δ

h
− 2δ

L
+

2εc

L

]
, (A.11)

where εc = ε(ωcrit, θ = 0) ≈ (
g
/
ω2

c0

)
(λ/L) is the value of ε at the critical frequency. Since in

general εc and δ are small compared with h or L, see figure 9, we neglected the second-order
terms in (ε/h). Expression (A.11) can be further approximated for the case of δ � h and ε �
h < L as

ω2
crit ≈ ω2

c0 ·
[

1 +
h

2L

]
. (A.12)

Consequently, the effect of the finite length of the wire is to move ωcrit to the right of the value
predicted by the naı̈ve model equation (3). For L � h, the expressions (A.9) and (A.11) are
reduced to equations (2) and (3) respectively.

The z coordinate of the centre of mass, relative to its lowest position is

zCM = L + (λ − ε) −
√

L2 − λ2 · sin2 θ − (λ − ε) · cos θ, (A.13)

and
dzCM

dt
= (λ − ε) sin θ ·

(
1 +

(
λ

λ − ε

)
· λ cos θ√

L2 − λ2 · sin2 θ

)
· θ̇ , (A.14)

where (λ − ε) is the distance of the centre of mass to the hanging point of the bar.

Appendix B. Effective potential—model no. 3

For the analysis of the rotational stability of a symmetrical top, subject to a movable constraint
(wire) in a more general manner, it is useful to obtain the effective potential. To this purpose
we use the Lagrangian formulation of the problem [1–4]. Let us denote the principal axes of



Rotational stability—an amusing physical paradox 853

z=Rotation axis

(3)

(1)

(2)

y

x φ

θ

β

λ

L

z

O
(1)

(3)

(2)

y

x φ

θ

Line of 
nodes

β

λ

L

z

O

θp

Figure 8. Rotating symmetrical tops. We assume that ω = φ̇ and ψ̇ = 0, since there is no rotation
around axis 3. λ is the distance from point O to the hanging point. Left: illustrates the case of a
ring-like top. Right: corresponds to the rod-like top.

inertia of the top by 1, 2 and 3, axis 3 being the symmetry axis. Due to this symmetry the
moments of inertia along axes 1 and 2 are equal, i.e. I12 = I1 = I2 �= I3. The z axis (inertial
frame) is chosen to be in the vertical direction. We take z = 0 to coincide with the lowest
position of the centre of mass of the top.

The Lagrangian of this system is

L = Ttras + Trot + T
(cm)

rot − Vgrav, (B.1)

where Ttras is the translational kinetic energy associated with the raising or lowering of the
centre of mass of the top. According to (A.10) we have

Ttras = 1

2
m ·

(
dzCM

dt

)2

= 1

2
m

(
(λ − ε) sin θ ·

(
1 +

λ2

(λ − ε)

cos θ√
L2 − λ2 · sin2 θ

)
· θ̇

)2

,

(B.2)

where (λ − ε) is the distance from the centre of mass to the hanging point of the top. In the
case of the bar, (λ − ε) ≈ h/2 and for a ring (λ − ε) ≈ radius. The term T

(cm)
rot indicates the

kinetic rotational energy of the centre of mass, i.e.,

T
(cm)

rot = 1

2
mω2ε2 sin2 θ = 1

2
m

g2

ω2

(
λ

L

)2 sin2 θ

1 − (λ/L)2 sin2 θ
. (B.3)

The rotational kinetic energy, Trot, written in terms of the Euler angles [1–4], for a
symmetrical top is

Trot = 1

2

∑
i

Iiω
2
i = 1

2
[I12(θ̇

2 + φ̇2 sin2 θ) + I3(ψ̇ + φ̇ cos θ)2], (B.4)

where θ, φ and ψ are the Euler angles that are used in our problem as generalized coordinates
as indicated in figure 8. As usual, ψ describes the rotation of the top around axis 3 [1, 2].
In our case there is no rotation around this axis, since the wire does not twist, we have that
ψ = constant and ψ̇ = 0. The constraint imposed by the rotating wire implies that φ̇ = ω.
Therefore, according to our model θ becomes the only degree of freedom for our system and



854 C M Sendra et al

we use it as the generalized coordinate to describe its state. Expression (B.4) is different for
the cases of a ring-like and the rod-like tops as illustrated in figure 8. In the case of a rod-like
top we have

Trot = 1
2 [I12(θ̇

2 + ω2 sin2 θ) + I3ω
2 cos2 θ ]. (B.5)

In the case of a ring-like top we have

Trot = 1
2

[
I12(θ̇

2
p + ω2 sin2 θp) + I3ω

2 cos2 θp

]
, (B.6)

with θp = π/2 − θ and θ̇ p = −θ̇ . If we introduce a new variable, χ so that

χ =
{

π/2 for the case of the ring-like top

0 for the case of the rod-like top.
(B.7)

Then expressions (B.5) and (B.6) can be cast in a single convenient form

Trot = 1
2 [I12(θ̇

2 + ω2 sin2(χ − θ)) + I3ω
2 cos2(χ − θ)], (B.8)

For the gravitational potential energy according to equation (A.13) we have

Vgrav = mg · z = mg · [L + (λ − ε)(1 − cos θ) −
√

L2 − λ2 · sin2 θ ]. (B.9)

Consequently, the Lagrangian of our system is

L = 1

2
m(λ − ε)2 sin2 θ ·

(
1 +

λ2

(λ − ε)

cos θ√
L2 − λ2 · sin2 θ

)2

· θ̇2

+
1

2
[I12(θ̇

2 + ω2 sin2(χ − θ)) + I3ω
2 cos2(χ − θ)]

+
1

2
m

g2

ω2

(
λ

L

)2 sin2 θ

1 − (λ/L)2 sin2 θ

−mg · [L + (λ − ε)(1 − cos θ) −
√

L2 − λ2 · sin2 θ] (B.10)

and the conjugated momentum of θ is

pθ = ∂L

∂θ̇
=

[
m(λ − ε)2 sin2 θ

(
1 +

λ2

(λ − ε)

cos θ√
L2 − λ2 sin2 θ

)2

+ I12

]
· θ̇ . (B.11)

The Hamiltonian [1–4] of our system is

H = pθ · θ̇ − L = p2
θ

2
[
m(λ − ε)2 sin2 θ

(
1 + λ2

(λ−ε)
cos θ√

L2−λ2 sin2 θ

)2
+ I12

] + Veff(θ), (B.12)

where Veff(θ ) is the effective potential given by

Veff(θ) = −1

2
ω2(I12 sin2(χ − θ) + I3 cos2(χ − θ)) − 1

2
m

g2

ω2

(
λ

L

)2 sin2 θ

1 − (λ/L)2 sin2 θ

+ mg · (L + (λ − ε)(1 − cos θ) −
√

L2 − λ2 sin2 θ) (B.13)

and
∂Veff(θ)

∂θ
= −ω2 sin θ cos θ |I12 − I3| + mg sin θ

·
(

(λ − ε) +
λ2 cos θ√

L2 − λ2 sin2 θ
− g

ω2

(
λ

L

)2 cos θ(
1 − (λ/L)2 sin2 θ

)2

)
. (B.14)
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Therefore, to first-order expansion in the ratio (ε/L), Veff(θ ) has a minimum for θ = θ0 �= 0
when the following condition is satisfied:

cos θ0 = +
mg(λ − ε)

|I12 − I3|ω2
·
(

1 +
λ2 cos θ0

(λ − ε)L

[
1√

1 − (λ/L)2 sin2 θ0

− (g/ω2L)

(1 − (λ/L)2 sin2 θ0)2

])

for ω � ωcrit. (B.15)

This equation describes the relation between θ and ω, similar to equation (A.9) for the previous
model. As in that case, the values of θ and ω can be found recursively. For ω = ωcrit, θ0 = 0
therefore

ω2
crit = gm(λ − εc)

|I12 − I3| ·
[

1 +
λ2

L(λ − εc)
− εc

(λ − εc)

λ

L

]
= gm(λ − εc)

|I12 − I3| ·
[

1 +
λ

L

]
, (B.16)

where according to (A.4) εc = ε(ωcrit, θ = 0) = (
g
/
ω2

crit

)
(λ/L).

As was discussed in section 2, the condition ∂Veff/∂θ = 0 for ω < ωcrit will be satisfied
only for θ0 = 0.

For the case of a ring, with an external radius Rex and an internal radius Rin we have that

2I12 ≈ I3 = m

(
R2 + R2

ex

2

)
and λ − ε ≈ Rex, (B.17)

therefore the relation between θ0 and ω is according to (B.15), for ω � ωcrit we have

ω2 ≈ +
4g

Rex cos θ0
· 1

(1 + (Rin/Rex)2)

×
(

1 +
Rex

L

(
1 +

2ε

Rex

)
cos θ0√

1 − (Rex/L)2(1 + ε/Rex)2 sin2 θ0

B

)
, (B.18)

with

B = 1 − ε

(Rex + ε)

1

(1 − (Rex/L)2(1 + ε/Rex)2 sin2 θ0)
. (B.19)

Neglecting the terms in (ε/Rex), equation (B.18) can be approximated by

ω2 ≈ +
4g

Rex cos θ0
· 1

(1 + (Rin/Rex)2)

(
1 +

Rex cos θ0√
L2 − R2

ex sin2 θ0

)
for ω � ωcrit. (B.20)

In the case of the hollow bar of length h and diameter d, that is attached to a wire at a
distance δ from its extreme, we have

I12 = 1
12mh2, and I3 = 1

4md2 (B.21)

consequently from expression (B.16) we have

ω2
crit = 6g

h
· (1 − 2δ/h)

(1 − 3(d/h)2)

(
1 +

h

2L
+

(εc − δ)

L

)
, (B.22)

and

ω2
crit = 6g

h
·
(

1 − 2δ

h

) [
1 +

h

2L
+

εc − δ

L

]
≈ ω2

c0

(
1 +

h

2L
− 2δ

h
+

εc − δ

L

)
. (B.23)

This last approximation is valid for the usual case when d � h, εc and δ � h and
h < L. Expression (B.23) indicates very clearly the effect of the finite length of the wire and
the distance δ on ωcrit. Figure 6 illustrates these effects on the value of ωcrit. Figure 9 shows
the shape of the effective potential for two different angular velocities, one for ω < ωcrit and
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Figure 9. Top: shows the effective potential as a function of the angle for two different frequencies,
one below and another above the critical frequency (fcrit = 2.8 Hz, for a bar of length h = 25.5 cm).
In the first case the minimum occurs for θ0 = 0 and in the second case at about θ0 = 55◦. Bottom:
the variation of the equilibrium angle θ0 as a function of the rotating frequency as described by
equation (B.15), referred to the left vertical axis. The dotted line represents the variation of the
ratio ε/h as a function of the frequency, calculated using the recursive procedure described in the
text.

another for ω > ωcrit, for the rod of length h = 25.5 cm. The lower panel of this figure
shows the variation of θ0 with the rotational frequency f for the case of a bar as predicted by
equation (B.15). The lower panel also shows the ratio of ε/h as a function of f, referred to the
right vertical axis.

The effective potential for the naı̈ve model can also be obtained introducing

I3 ≈ 0, I12 = 1

12
m · h2, λ − ε = h/2 and

λ

L
≈ h

2L
→ 0; (B.24)

into equation (B.13), i.e.,

Veff(θ) = mg
h

2
(1 − cos θ) − 1

2
ω2I12 sin2 θ. (B.25)

Here I12 sin2 θ is the moment of inertia of the inclined rod. This expression indicates that,
in the space-fixed frame, the effective potential has two terms, the gravitational potential and
the centrifugal potential (second term on the right-hand side), that tend to bring the bar to a
horizontal position. It is interesting to note that the total energy of this system, for a constant
value of θ , would also contain the same terms as equation (B.25). However, in this case both
components of the total energy have a positive sign, making it difficult to explain the behaviour
of this system and giving rise to the apparent paradox.

If we take the derivative of the effective potential with respect to θ , we obtain the net
torque on the rod in the space-fixed frame of reference

τeff = −∂Veff(θ)

∂θ
= −mg

h

2
sin θ + ω2I12 sin θ cos θ. (B.26)
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The first term on the right-hand side is the torque due to the vertical component of string
tension (here the torque due to the horizontal component is negligible because L � h). The
second term is the component of the torque that tends to bring the bar to a horizontal position.
This last term is strongly dependent on the frequency of rotation and it cancels at θ = 0◦ and
θ = 90◦. In the space-fixed frame its physical origin is a consequence of Newton’s first law
or principle of inertia. At low frequencies the only stable position of the bar occurs at θ =
0◦, see figure 9. At higher frequencies the equilibrium between these two torques moves to
larger angles as indicated in figure 9, in agreement with our heuristic argument carried out in
the rotating system of reference, presented in the introduction to justify the naı̈ve model.
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