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José Flores
Departamento de Fı´sica ‘‘J. J. Giambiagi,’’ Universidad de Buenos Aires, Argentina
and Facultad de Ingenierı´a y Ciencias de la Universidad Favaloro, Buenos Aires, Argentina

Guillermo Solovey
Departamento de Fı´sica ‘‘J. J. Giambiagi,’’ Universidad de Buenos Aires, Argentina

Salvador Gila)

Departamento de Fı´sica ‘‘J. J. Giambiagi,’’ Universidad de Buenos Aires, Argentina,
Escuela de Ciencia y Tecnologı´a de la Universidad Nacional de San Martı´n, Buenos Aires, Argentina,
and Facultad de Ingenierı´a y Ciencias de la Universidad Favaloro, Buenos Aires, Argentina

~Received 3 September 2002; accepted 12 March 2003!

We studied the motion of a variable mass oscillator. The mass used is a container full of sand that
loses sand at a constant rate and hangs from a spring. The spring was suspended from a force sensor
connected to a data acquisition system that let us study the evolution of the system. In the
underdamped regime we identified three distinct types of behavior for the system, depending on the
relation between the energy loss due to the exit of mass and the energy loss through friction. The
experimental results are well described by both the numerical solution to the equations of motion
and our model, which makes it simple to predict the different types of behavior and to assess the
relevant physical parameters involved in the dynamics of this system. ©2003 American Association of

Physics Teachers.

@DOI: 10.1119/1.1571838#
du
tiv
,
ct
m
fr
e
th

ia
th
e

a-
sc

t
th

o
rn
cq
se
dy
ar
th
o

he
w

that
ri-
d
as

ttle

ons
ing

ns-

fre-
or-
ur
er
re

-
the
ch
-
ttle

e
ct
in
I. INTRODUCTION

Variable mass systems are seldom discussed in intro
tory physics courses, but offer an interesting and instruc
perspective on Newton’s second law.1–3 We present a simple
inexpensive, and novel device that can be easily constru
and used with introductory and intermediate students of
chanics. We address the question of how the natural
quencyv of a harmonic oscillator changes with time if th
mass of the system varies. In particular, we determine if
relation

v5Ak

m
, ~1!

where k is the spring constant andm is the mass of the
system, remains valid if the mass is variable, that is, ifm
5m(t).4

As discussed in Ref. 5, the flow of a granular mater
through an opening is constant in time, regardless of
height of the column of the granular material in th
container.5,6 The constant flow rate property of granular m
terials lets us study the case in which the mass of the o
lator decreases linearly with time. Furthermore, because
flow rate of granular materials depends on the area of
opening,6,7 we can control the flux of sand.

II. EXPERIMENTAL SETUP

The experimental setup consists of an inverted plastic s
bottle filled with sand and hung from a spring, which in tu
is suspended from a force sensor connected to a data a
sition system, as illustrated schematically in Fig. 1. We u
openings of different sizes in the lids of the bottle to stu
the behavior of the oscillator for different flow rates. To ch
acterize the variation of the mass with time and measure
flux rate, we simply hung the bottle from the force sens
721 Am. J. Phys.71 ~7!, July 2003 http://ojps.aip.org/aj
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and measuredm(t). Because the geometrical shape of t
system is the same, so is the friction force for all the flo
rates used.

Because the container is accelerating, it is not obvious
the flow rate will still be constant. To study this issue expe
mentally, we hung the spring with the bottle from a fixe
point. Then we hung a bucket from the sensor that w
placed below the oscillating bottle~see Fig. 2!. In this man-
ner we were able to compare the flux rate when the bo
was still and when it was oscillating~Fig. 2!.

III. EXPERIMENTAL RESULTS

Using the setup illustrated in Fig. 2~upper panel!, we
studied whether the flow rate changed during the oscillati
of the bottle. We detected no change in the flow rate dur
the oscillation of the system. Figure 2~lower panel! shows a
typical result. The slopes in both cases~bottle oscillating and
stationary! are the same. We performed a fast Fourier tra
form ~FFT! on the data form(t) anddm(t)/dt and searched
for components of the FFT that corresponded to the
quency of the oscillation or its harmonics and found no c
relation. We thus conclude that, within the sensitivity of o
system~5%!, there is no change in the flow rate for eith
case. This result is not trivial, because if the bottle we
falling with an accelerationg, the local acceleration of grav
ity, we would expect the flow rate to be zero. In our case
maximum values of the oscillator acceleration were mu
less thang with ^a(t)&'0. This result justifies our observa
tion that the flow rate is independent of whether the bo
was stationary or oscillating.

By using different lids, we studied the behavior of th
oscillator for different flow rates. We observed three distin
types of behavior according to the flow rate as illustrated
Fig. 3. Figure 4 illustrates the variation of the periodT
52p/v as a function of time. We observed thatv was well
721p/ © 2003 American Association of Physics Teachers
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described by the relationv25k/m(t). This result will be a
useful bench mark to further constrain the theoretical m
els.

IV. THEORETICAL CONSIDERATIONS

The equation of motion for a variable mass system t
loses mass at a ratec52dm(t)/dt, such that the mas
leaves the container with a velocityq relative to it, can be
written as5,7

F5
P~ t !

dt
5M ~ t !

dn

dt
2q

dM

dt
. ~2!

We assume that the relative velocity,q, of the sand, at the
moment it leaves the container is equal to zero. Con
quently, there is no thrust in our case, and therefore

dP

dt
5M ~ t !

dn

dt
. ~3!

The air drag friction force,F f , of an object moving in a fluid
at low velocities is proportional to the velocity,F f52bn,
where the constant of proportionalityb depends on the ge
ometry of the object and the viscosity of the fluid.8 The pa-
rametersk andb can be measured independently.9

According to Eq.~3!, the equation of motion for our sys
tem is

m~ t !
d2x

dt2
1b

dx

dt
1kx50. ~4!

If we multiply Eq. ~4! by dx/dt, we find

m~ t !
d2x

dt2
dx

dt
1b

dx

dt

dx

dt
1k.x

dx

dt
50. ~5!

The derivative of the kinetic energy,Ek , of a variable
mass system can be written as

dEk

dt
5

1

2

dm~ t !

dt S dx

dt D
2

1m~ t !
dx

dt

d2x

dt2
. ~6!

Fig. 1. Schematic of experimental setup. The spring is hung from the f
sensor which is connected to a data acquisition system. The bottle with
is the variable mass system. Lids with different size openings are use
study oscillations for different flow rates.
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Because the potential energy of the spring isEp

51/2k.x2, Eq. ~5! can be written as

d~Ek1Ep!

dt
2

1

2

dm~ t !

dt S dx

dt D
2

1bS dx

dt D
2

50. ~7!

In our casem(t)5m02ct, anddm(t)/dt52c. Therefore,
Eq. ~7! becomes

d~Ek1Ep!

dt
52S b1

c

2D S dx

dt D
2

. ~8!

Equation~8! quantifies the energy loss of the system
friction and mass loss.10 We can use Eq.~8! to determine the
variation of the amplitude of the system with time. We sh
express this amplitude asA(t)5A0 f (t). If we consider two
consecutive oscillations, the time rate of energy loss can
written as

d~Ek1Ep!

dt
5

d

dt S 1

2
kA2D'2S b1

c

2D ^n2&, ~9!

where^n2& represents the mean square average of the ve
ity over a particular period and is estimated byA2v2/2,
wherev is the angular frequency associated with the cor
sponding period. We can further approximatev2'k/m(t),

e
nd
to

Fig. 2. Upper panel: Schematic diagram of experimental setup 2. The bu
is hung from the force sensor which is connected to a data acquis
system. By replacing the spring by a string, we can analyze whether the
any variation in the flux due to oscillations. Lower panel: Experimental d
of the mass as a function of time. The triangles indicate the data for a fi
bottle and the squares are the corresponding data for an oscillating b
The flow rate remains constant and has the same slope in both case
correlation was found between the FFT spectrum ofm(t) anddm(t)/dt and
the frequency of oscillation of the bottle.
722Flores, Solovey, and Gil
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which is consistent with our experimental observations~see
Fig. 4!. These approximations combined with Eq.~9! lead to

dA

dt
'2

1

2 S b1
c

2D A

m~ t !
. ~10!

The solution of Eq.~10! is

Fig. 3. Experimental variation of position,x(t), as a function of time, for
the three types of underdamped oscillations. The common friction co
cient is b525 g/s. ~a! Typical behavior of the underdamped oscillatio
corresponding to low flow rate,c52 g/s and«@1. ~b! The flow rate isc
515 g/s and«'1. ~c! Highest flow rate,c590 g/s and«,1. Notice the
different time scale in the three cases, which scales with the mass flow
723 Am. J. Phys., Vol. 71, No. 7, July 2003
A~ t !5A0f ~ t !5A0S 12
ct

m0
D «

, ~11!

with «5b/2c1 1
4. The termb/2c represents the ratio of th

energy loss by friction and the energy leaving the system
to the mass loss. Note that the concavity of the envelo
characterized by the sign of the second derivative of Eq.~11!
depends on the value of«. If «.1, A9(t).0 and the enve-
lope is concave; the opposite is true if«,1, and for«51
A9(t)50. If we consider the limit of Eq.~11! when t
5ct/m0 goes to zero~that is,c→0), we obtain

lim
t→0

A~ t !5A0 expS 2
b

2m0
t D , ~12!

which is the well-known result for the variation of the am
plitude with time for an underdamped harmonic oscillator
is interesting to note that the limitt→0 means small fluxes
or, equivalently, a time scale much smaller thanm0 /c, that
is, when the bottle is far from being empty.

There are two interesting special cases of Eq.~11!:
~a! «51 (b/2c5 3

4) leads to

A~ t !5A0S 12
ct

m0
D . ~13!

In this case the amplitude decreases linearly with time, si
lar to the behavior illustrated in Fig. 3~b!.

~b! «5 1
4 (b/2c!1) leads to

A~ t !5A0S 12
ct

m0
D 1/4

. ~14!

Equation~14! represents the most convex envelope, that
the second derivative of Eq.~14! is as negative as it can be
In this case the energy loss is dominated by the exiting m
Figures 3 and 5 illustrate three distinct types of behavior a
indicate how well our model describes the experimental d

Now that we have obtained an adequate description of
amplitude, we will find an approximate solution to Eq.~2! by
making the ansatz:

x~ t !5A0f ~ t ! sin~h~ t !!. ~15!

-

te.

Fig. 4. Variation of the square of the measured period of oscillations,T(t)2,
as a function of the mass. The linear variation is clearly visible, in agr
ment with the prediction of Eq.~1!. Circles represent data collected forc
52 g/s flow rate («!1), squares forc515 g/s («'1), and triangles for
c590 g/s («,1).
723Flores, Solovey, and Gil
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If we substitute Eq.~15! in Eq. ~4!, we can findf (t) and
h(t). The details are discussed in the Appendix. Thus,
solution to the differential equation~4! is

x~ t !5A0S 12
ct

m0
D «

sin~h0~ t !1f!, ~16!

Fig. 5. Variation of the amplitude as a function of time.~a! Low flow rate
case,c52 g/s («@1) @Fig. 3~a!#. ~b! c515 g/s («'1) @Fig. 3~b!#. ~c! c
590 g/s («,1) @Fig. 3~c!#. The circles represent the observed data obtai
from the peaks of the oscillations. The numerical integration of Eq.~4! using
MatLab is represented by triangles. The lines correspond to the predictio
our model, Eq.~11!. The agreement among the numerical integration,
model, and the data is excellent.
724 Am. J. Phys., Vol. 71, No. 7, July 2003
e

where, as usual, the constantsA0 and f are determined by
the initial conditions of the system, andh0(t) is given by

h0~t!5
2.b

c FarctanSA12a2t

a D 2SA12a2t

a D G .
~17!

According to the Appendix, Eq.~16! is expected to be an
adequate solution to Eq.~4! as long as the condition,

~b1c/2!~b13c/2!

4k
!m~ t !, ~18!

is satisfied. Therefore, we can expect our model to be in
equate when the bottle is close to running out of sand.

V. DISCUSSION

In Fig. 6 we present the experimental results ofx(t) to-
gether with the predictions of our model. In all the cases
studied, the agreement is quite good. Furthermore, we
compared the approximate solution of our model, Eq.~16!,
with the numerical integration of Eq.~4!. Again, there is
excellent agreement between these two approaches. We
that although the numerical integration of Eq.~4! is straight-
forward, it hides the physics, which in our approxima
model, Eq.~16!, is clearly apparent. For example, suppo
that we wish to obtain an approximate expression for
variation of the period of the system with time,T(t). We
define the period as the time interval over which the ph
changes by 2p, that is, from Eq.~A5!,

E t1T

h8~t! dt'h8~ t !T~ t !52p. ~19!

Therefore, using Eq.~1! for the frequency, we obtain

T2~ t ![
4p2

v2~ t !
'4p2

m~ t !

k
. ~20!

This connection between the period and the mass is cle
illustrated in Fig. 4, which also shows the advantages
having a model. Finally, our model also helps us to interp
the physics behind the change in shape of the envelope o
oscillator according to the magnitude of the flow rate.
discussed, the total energy of the system is related to
amplitudeA(t) of the oscillation according to Eq.~9!. The
rate of energy loss of the system depends on two mec

d

of
r

Fig. 6. Comparison of the experimental result ofx(t) ~open circles! for the
case illustrated in Fig. 3~c!, together with the prediction of our model~light
solid line!, Eq. ~16!. The agreement is excellent for all cases~different
values of«!. The heavy solid line represents the envelope predicted by
~11!. When the bottle is running out of sand, we begin to see the limitat
of the model, as would be expected from Eq.~18!.
724Flores, Solovey, and Gil
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nisms: friction and mass loss. If the mass loss is neglig
(c'0), the variation in time of the envelope is conca
@A9(t).0# and is similar to the familiar exponential de
crease of an underdamped oscillatory system. As the en
loss due to the exiting mass becomes more important,
expect the amplitude to decrease in time more rapidly. W
the two energy loss mechanisms are comparable («'1), the
envelope becomes linear. If the flow rate increases e
more, so does the rate of energy loss, and we expect
amplitude to decrease in time even more rapidly than
early, and therefore the envelope becomes convex@A9(t)
,0# as in Fig. 3~c!.
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APPENDIX: MODEL SOLUTION OF THE
EQUATION OF MOTION

We wish to find a solution for the equation of motion, E
~4!. For this purpose we substitute the ansatz in Eq.~15! in
Eq. ~4! and separately equate the coefficients of sin(h(t)) and
cos(h(t)) to zero. We obtain a sufficient condition for th
solution of Eq.~4!. This procedure yields

m~ t !~ f 92 f ~h8!2!1b f81k f50, ~A1!

and

m~ t !~2 f 8h81 f h9!1b f h850. ~A2!

We then combine Eqs.~11! and ~A2! to obtain

h8~ t !5S k

m~ t !
2

~b1c/2!~b13c/2!

4~m~ t !!2 D 1/2

. ~A3!

Next we define

h0~ t !5E
0

t

h8~t! dt. ~A4!

This integral can be solved analytically, and the solution

h0~t!5
2.b

c FarctanSA12a2t

a D 2SA12a2t

a D G ,
~A5!
725 Am. J. Phys., Vol. 71, No. 7, July 2003
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whereb5 1
2A(b1 1

2c)(b1 3
2c), a5b2/m0k, andt5ct/m0 .

Whent→0 (c→0), Eq. ~A5! reduces to the familiar equa
tion

h0~ t !→vt5SA k

m0
2

b2

4m0
2D t, ~A6!

which is the expected result for the constant mass harm
oscillator.

The solution to Eq.~4! according to our model is

x~ t !5A0S 12
ct

m0
D «

sin~h0~ t !1f!, ~A7!

whereh0(t) is given by Eq.~A5!. If we substitute our solu-
tion for h(t) into Eq.~A2!, we find that Eq.~A7! is a solution
of Eq. ~4! as long as the condition,

~b1c/2!~b13c/2!

4~m~ t !!2 !
k

m~ t !
, ~A8!

is satisfied. This constraint is equivalent to the well-know
condition for underdamped oscillations for constant m
(c50). Equation~A8! is equivalent to

~b1c/2!~b13c/2!

4k
!m~ t !. ~A10!

Therefore, we expect our model to become less adeq
when the bottle is close to running out of sand.
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