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AbstratThe onsequenes of adopting other de�nitions of the onepts of sum and onver-gene of a series are disussed in the light of historial and epistemologial ontexts. Weshow that some divergent series appearing in the ontext of renormalization methodsannot be assigned �nite values while preserving a minimum of onsisteny with stan-dard summation, without at the same time obtaining ontraditions, thus destroyingthe mathematial building (the onditions are known as Hardy's axioms). We �nallydisuss the epistemologial osts of aepting these praties in the name of instrumen-talism.1 IntrodutionThe possibility of assigning a �nite value to divergent series has made it to the news1 ina way that is unusual for siene or mathematis news. Indeed, this news and even somerelated Youtube videos seem to lie halfway between joke and serious matter but in the end itturns out that these ontributions are intended (by their authors) to be serious. In textbooks(see e.g., Nesterenko and Pirozhenko (1997) below) and in informal onversations, the bookby Hardy Hardy (1949) is mentioned as support for these proedures.It is then ompelling to assess the sienti� relevane of these methods and in partiularthe issue of (logial) onsisteny of these methods in relation to the body of mathematialknowledge, as well as their epistemologial impliations. These are, hene, the main goalsof this work.We assume the reader to be familiar with the basi elements of the theory of series, asdeveloped in analysis textbooks Apostol (1967). For the sake of ompletion, in Appendix Awe review the relevant ingredients of the theory of series onerning this work.In Setion 2 we disuss the role of mathematis along the proess of understanding ourenvironement through the interplay between abstration and signi�ation. Following HardyHardy (1949) we disuss the neessary requirements that any de�nition for the sum of a1See the New York edition of New York Times, page D6 of February 4, 2014, on-line athttp://www.nytimes.om/2014/02/04/siene/in-the-end-it-all-adds-up-to.html?smid=fb-share&_r=11
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series must have in order to have some hanes of retaining signi�ation. Setion 3 ontainsthe statement of the main results of this work i.e., the impossibility of retaining onsisteny(and thereafter signi�ation) when assigning a �nite value to divergent series (proofs arepresented in Appendix B) under basi reasonability onstraints. Further, we disuss thehistorial and epistemologial issues related to these praties in Setion 4, while Setion 5is devoted to onlusions. We advane that Hardy's book provides the basis for rejeting theassignment of �nite values to divergent series that appears in the ontext of renormalizationmethods, rather than giving support to these praties.2 Signi�ationMathematis an be regarded as a proess of suessive abstrations originating in real-lifesituations. Thus, natural numbers abstrat the proess of ounting objets and involve theabstration of the onept of addition as well. Instead of saying: one goat and another goatmakes two goats and another goat makes three goats . . . and the same for all indivisibleobjets, we say 1+1+1 . . . abstrating away the objets and dressing the �nal answer withthem again (I ounted n goats). We inrease our ability of ounting by moving to objetswith more elaborated properties (e.g., divisible objets or portions of objets, debts, missingobjets), produing the realms of integers, rationals, et. The properties of addition areextended (i.e., de�ned in a broader ontext while preserving its original properties when usedin the original ontext) to these higher levels of abstration. The operations of abstrationand its inverse, dressing, relate mathematis to the material world. We all them morepreisely abstration and signi�ation.The proess of abstration is also known as idealization and in physis is historiallylinked with Galileo Galilei and his disussion of free fall. (Galilei 1638, pp. 205) (for anEnglish translation see (Galilei 1914, pp. 170)) Insight on the proess of signi�ation analso be traed bak to Galileo's words announing that mathematis is the language ofthe universe Galilei (1623), thus reognising mathematis as belonging to the realm of thematerial world.Hene, when addressing issues of the material world and its sienes, mathematial ob-jets retain a spei� signi�ation. Any new mathematial objet introdued along theinvestigation is related by abstration and signi�ation on one hand to the material world,on the other hand to mathematis where the objet beomes ontext independent by thevery proess of abstration. Thus, when ounting apples we use the same addition as whenwe ount goats, nodes in a vibrating string or smiling faes. The reiproally inverse pro-esses of abstration and signi�ation lie in the foundations of any attempt to understandthe material world with mathematial tools, and annot be disrupted nor negleted in anyof its parts. In plain words, the extension of a mathematial onept beyond its urrentlimits of appliability annot destroy the previously developed proesses of abstration andsigni�ation.2.1 Minimal RequirementsLet us suppose that we want to give up the usual onept of sum of in�nite series, i.e., we giveup the standard de�nition that extends the onept of �nite sums via a limit proess in order2



to enompass in�nite sums. The goal of this proess is to produe new (supposedly broader)de�nitions related to omputing a �nite number that somehow resembles summation, outof a sequene {a0, a1, a2, · · · } with divergent sum in the ordinary sense. We require howeverto keep as muh as possible of the original properties of series summation, sine �nite sumsand also the sum of onvergent series annot be given up as a fundamental part of ourunderstanding.Starting from the standard de�nition of sum of a series one arrives to several properties,among whih we ount(A) For any real k, ∑
n

an = s ⇒
∑

n

(kan) = ks.(B) ∑

n

an = s and ∑

n

bn = r ⇒
∑

n

(an + bn) = s+ r.(C) ∑

n=0

an = s ⇔
∑

n=1

an = s− a0.Hardy Hardy (1949) proposes to transform these properties into axioms, dropping the stan-dard de�nition.The �rst two axioms state that multiplying the elements of a summable series by aonstant k, the result is also a summable series with sum equal to the original sum smultiplyied by the onstant k. The seond, states that the sum of two summable seriesis also a summable series with orresponding sum. The third axiom states that the sumof a summable series is insensitive to breaking out of the series the �rst term (in fat any�nite number of terms), summing it separately and adding the result to the remainder ofthe series.Giving up the standard de�nition arries along that all properties of series that do notfollow from the above axioms are lost as well, namely assoiation, permutation and dilution(orresponding respetively to grouping adjaent terms, altering the order of the terms andinterposing zeroes between terms, see Appendix A).Also, the series symbol should be replaed by something new, sine the original seriessymbol had reeived its meaning in De�nition 2 (Appendix A). Let us adopt the nota-tion2Y ({an}) to denote the new summation reipe. Eah new method of assigning values toin�nite sequenes should provide its own de�nition (as well as signi�ation) for this objet.We will distinguish those methods that sum onvergent series and series diverging toin�nity in the usual way, namely,De�nition 1 ((see p. 10 in Hardy (1949))). (a) A method Y assigning a �nite value to aseries is alled regular if this value oinides with the standard sum in the ase of standardonvergent series.(b) A regular method Y is alled totally regular if series diverging to ±∞ with the standardde�nition also diverge to ±∞ in Y .Axioms (A-C) may be regarded as a minimal ompromise. The �rst two axioms extendthe linearity of standard sum to in�nite sums, while the third, alled stability, along withCorollary 1 states that a �nite portion of an in�nite sum behaves as a standard �nite sum.2The symbol Y is inspired in the Cyrilli word óêàç meaning deree or edit (formally: imposition).3



Any method whih is not linear and stable annot be seriously onsidered as an alternativeto the sum of a series (it would be either not linear or not �nitely related to ordinarysum). Also, in Hardy's (and our) view, regularity is a basi requirement: whihever methodnot omplying with standard results for standard onvergent problems annot be seriouslyonsidered as an extension of the onept of sum.3 Statement of ResultsMany textbooks attempting to use the sum of divergent series disuss a few lasses of seriesNesterenko and Pirozhenko (1997). Two of these lasses are disussed in the Theorems below(these being part of the entral results of this work), sine assigning a �nite number to themleads to inonsistenies irrespetive of the summation method adopted. For the other lass,Euler's summation method is invoked. Euler's method was already addressed by Sierpi�nskiand others about a entury ago, see Appendix C.1 for details. For ompletion, we elaboratealso on Cesaro's summation method Hardy (1949) in Appendix C.2.Theorem 1. Any method Y assigning a �nite number to the expression 1+1+1+1+1+ · · ·is (i) not totally regular, (ii) not regular and (iii) ontraditory.Theorem 2. Any method Y assigning a �nite number to the expression 1+2+3+4+5+ · · ·is (i) not totally regular, (ii) not regular and (iii) ontraditory.By ontraditory we mean that inompatible statements orresponding to r = Y ({an}) =
s for (real) numbers r 6= s an be proved in this ontext. Proofs are given in Appendix B.It goes without saying that we are speaking about well-posed methods Y where theassigned values for Y ({an}) are unique, whenever the sequene belongs to the domain of themethod. Also, the de�nition of regularity naturally assumes that the sequenes assoiatedto all onvergent series belong to the domain of whihever method Y is under onsideration(even non-regular ones).4 Disussion4.1 Historial DigressionExtending on Hardy's aount, it is to be noted that the modern onept of limit wasestablished by Cauhy around 1821. However, he ould not solve the question of uniformonvergene. In fat, it is said Lakatos (1976) that this issue worried Cauhy to the point ofnever publishing the seond volume of his ourse of analysis, nor onsenting to a reeditionof the �rst. He eventually allowed the publiation of the leture notes of his lasses byhis friend and student Moigno in 1840 Moigno (1840). Again aording to Lakatos, thedistintion between point onvergene and uniform onvergene was unraveled by Seidel in1847 Lakatos (1976), thus ompleting the approah of Cauhy. The modern way of regardinglimits and onvergene ould be said to originate around 1847.
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4.2 Epistemologial IssuesThe idea of substituting a de�nition with another one is not free from onsequenes. De�-nitions in mathematis may look arbitrary at a �rst glane but they are always motivated.Fundamentally, (a) they satisfy the need of �lling a vaany of ontent in ritial plaeswhere preision is needed (however, sine many textbooks present de�nitions without dis-ussing the proess for produing them, the epistemologial requirements remain usuallyobsure) and (b) they are expliitly forbidden to be ontraditory or logially inonsistentwith the previously existing body of mathematis on whih they rest. In addition, whendealing with the mathematisation of natural sienes, de�nitions arry a signi�ation, whihis the support for using that partiular piee of mathematis in that partiular siene.While we appreiate the exploration work around onepts that has been done overthe years, we do not substitute a meaningful and established onept with something thatis inequivalent to it in the ommon domain of appliation. Again, when understandingnatural sienes, suh substitution would disrupt the signi�ation hain. In simple words,we do not replae a meaningful ontent with a meaningless one. This would be to departfrom rationality, something that is positively rejeted by mathematis as a whole as well asby siene in general and by a large part of soiety.Along the presentation, we ared to put limits to the possible relation between Y ({·})and ordinary sums. In the light of the proven Theorems, it is veri�ed that suh relation isfeeble or absent. Hene, the very inspirational root of these tehniques beomes divoredfrom its results and e�ets. As stated above, the alternative of giving up one of axioms(A-C) also destroys any possible relation to ordinary sums.Replaements that assign Y ({n}) = a or Y ({1}) = b (with a, b real numbers) destroythe basis of mathematis, making it the same to have one goat that having a million goats.We must emphasize that regularity is a neessary ondition to preserve signi�ation but itis not su�ient. Whatever replaement we attempt must provide a rationale for the method,preserving signi�ation within mathematis (in the hain of abstrations it belongs) and inrelation to natural sienes. For the ase of series, signi�ation is further destroyed alongwith properties suh as assoiation, permutation and dilution (orresponding respetivelyto grouping adjaent terms, altering the order of the terms and interposing zeroes betweenterms). The alternative of using one or another de�nition depending of the matter understudy simply destroys the role mathematis as a whole. Instead of having eternal andpure relations aessible by reason alone Platon (360 AC), it will turn mathematis to bedependent of the ontext of use.4.2.1 The Epistemology of SuessThe issue of assigning a �nite value to divergent series with methods that are not regular andare ontraditory under Hardy's axioms is not only material of newspaper notes, disussionblogs or Youtube videos. It has atually reahed the surfae of soiety from artiles andbooks published as sienti� material. We support this statement by ommenting on aouple of referenes. This issue is not just a feature of these two itations, but the standardproedure of a ommunity: just read the referenes in Birrell and Davies (1982) to �nd alarge amount of pratitioners of this ommunity.In Nesterenko and Pirozhenko (1997) we enounter an attempt to justify the use of the5



Riemann's Zeta funtion. The authors refer to Hardy's book for the atual method. Theyuse axioms A and B and the zeta funtion to write equality between ∑∞

n=1 n and −1/12(see their eq. (2.20)). The onlusion is evident: the method does not omply with Hardy'saxioms. Furthermore, the result is false sine to reah their onlusion the authors disregarda divergent ontribution. Hene, the equal sign does not relate idential quantities as itshould. The orret expression would be
Y (n) ≡ Y ({1, 2, 3, 4, · · · }) = −

1

12
(1)where Y must be understood as the method based on Riemann's Zeta funtion. Here,Theorem 2 applies.Our seond example is the book Birrell and Davies (1982) where on page 167 we read�The analyti ontinuation method onverts a manifestly in�nite series into a �nite result�exemplifying this statement with the expression Y (1) ≡ Y ({1, 1, 1, · · · }) = 1/2 (our notation,the authors use standard series notation) using the same proedure as Nesterenko and Pirozhenko(1997). On p. 165 this expression was given the value −1/2, probably a typo. The authorsrefer expliitly to Euler's method. We note though that by Theorem 1, any method assigninga �nite number to suh series is defetive in the same way.Needless to say, the authors do not use the symbol Y but they refer to the methodas a �formal proedure�. This way of expression plaes the issue within the ambiguities oflanguage. If by formal we read belonging to or onstituting the form or essene of a thing, westrongly disagree, sine essene is the result of an abstrating (usually analyti) proedureHegel (1971). However, if �formal� is intended as in its seond aepted meaning: followingor aording with established form, ustom, or rule, we agree, while observing that suhsoial agreements are not a part of siene.In defense of suh proedures it is usually said that the theories using them are amongthe most preise and suessful in Physis. This argumentation laims, then, that questionsof uniity of results, bakward ompatibility of a method with standard onvergent series, orits relation to sums (let alone signi�ation) are uninteresting. The value is assigned beausein suh a way one obtains a �orret� result. Hene they adhere to a (false) epistemology thatDira alled instrumentalism (Kragh 1990, page 185) and we plainly all the epistemologyof suess.Hitting (what is laimed to be) the right answer is not equivalent to using the rightmethod. One may hit a orret answer with a wrong method just by hane, by misun-derstanding, or even by adaptation to the known answer, et. Paraphrasing Feyerabend'severything goes: an idea may be welome as a starting point without deeper onsiderations(within ethial limits, of ourse). However, for that idea to be alled sienti� it has toomply with the sienti� method. Moreover, it has to omply with rationality. The attitudedesribed by something is right beause it gives the orret answer is dangerous in many lev-els. The mathematial attitude is atually the opposite (and logially inequivalent to it): Ifit gives the wrong answer, either the assumptions or the method in use are inorret Popper(1959). This holds also for natural sienes, where in addition we have, through signi�ation,a safe and independent method to distinguish wrong answers from right answers. Note thatindependeny is ruial. Natural siene makes preditions that an be tested independentlyof the theory involved. If veri�ed, they give ontinued support to the theory, while if refutedthey indiate where and why to orret it. As a ontrast, a theory making preditions that6



an only be tested within itself obtains at best internal support for being onsistent, but itnever speaks about Nature sine preditions are not independently testable. In any ase,having the right answer is not a erti�ate of orretness (there may be an error somewhereelse) whereas having any wrong answer is a erti�ate of inorretness (the error is �there�).It is worth to keep in mind the attitude taken by the founding fathers of QuantumEletrodynamisThe shell game that we play [...℄ is tehnially alled 'renormalization'. But nomatter how lever the word, it is still what I would all a dippy proess! Havingto resort to suh hous-pous has prevented us from proving that the theoryof quantum eletrodynamis is mathematially self-onsistent. It's surprisingthat the theory still hasn't been proved self-onsistent one way or the other bynow; I suspet that renormalization is not mathematially legitimate. RihardFeynman, 1985 Feynman (1983)I must say that I am very dissatis�ed with the situation, beause this so alledgood theory does involve negleting in�nities whih appear in its equations, ne-gleting them in an arbitrary way. This is just not sensible mathematis. Sensiblemathematis involves negleting a quantity when it turns out to be small - notnegleting it just beause it is in�nitely great and you do not want it! PaulDira. (Kragh 1990, page 195)5 Conluding RemarksDe�nitions are not arbitrary, any extension of an established operation (suh as addition)needs to preserve the properties of the operation when applied to objets in the originaldomain of de�nition (regularity). We have shown in this sense that some methods proposedas extensions for the sum of onvergent series (standard de�nition) fail on this regard. Animportant example are the proposed summations improperly justi�ed by using a series forRiemann's Zeta funtion outside its domain of validity. In some ases the use of Euler'ssummation method on it is improper, in others whihever method one intends to use wouldyield an improper result. Moreover, regularity of a proposed replaement for series summa-tion is not enough, the extension needs to preserve all the mathematial building-bloks itrests on.It is important to indiate that attempts to justify renormalization suh as that found inNesterenko and Pirozhenko (1997) ought to be onsidered sienti� attempts on the groundof Popper's demarationism Popper (1959) sine by onneting to mathematial issues suhas the problem of in�nite series, they o�er the rationale behind their proedures of sienti�enquire. The outome of the examination indiates that suh replaements must be rejeted.The deision to expose the issues onerning the mathematial foundations of thesematters to the general publi should also be ommented. The understanding of sienti�matters is not reserved to an elite of pratitioners that guard the �truth� of the subjet aspriests of a ult. Opening siene to the srutiny of the general publi, inluding sientistsoutside the paradigm is simply orret, as disussed by Lakatos Lakatos (1976).The following thesis should be onsidered: the more than 50 years that this matter hasstayed without resolution is a demonstration that in losed elitist ommunities the interest7



of (return for) the ommunity may very well have priority over the publi (humane) interest.6 AknowledgementsWe thank Alejandro Romero Fern�andez for his valuable support in historial-philosophialissues. We thank Frank Wikstr�om for explaining and disussing issues around Sierpi�nski'sartile.This work has been performed without any spei� grant or support from funding agen-ies. The authors have no on�iting interest in relation to this work, be it inome, soialreognition or areerism . . .A Bakground on SeriesSum of a SeriesWe follow here standard textbooks (Apostol 1967, p. 383-4) reviewing the de�nition of seriesand some of its basi properties, fousing on what will be relevant for the oming Setions.Consider a sequene {a0, a1, a2, · · · } and also its sequene of partial sums SN =
N∑

k=0

ak.This sequene of partial sums is alled an in�nite series, or simply series.De�nition 2. If there exists a number s suh that s = limN→∞ SN we say that the series
∞∑

k=0

ak is onvergent with sum s and write ∞∑

k=0

ak = s. Otherwise, we say that the series isdivergent.Among divergent series we may distinguish those where the limN→∞ SN is +∞ or −∞on the one hand (we may all them divergent to in�nity) and those where this limit doesnot exist.De�nition 3. A onvergent series ∞∑

k=0

ak is alled absolutely onvergent if the series ∞∑

k=0

|ak|is onvergent. Otherwise, it is alled onditionally onvergent.Basi PropertiesWe follow an approah inspired on the posthumous book by Hardy Hardy (1949) on divergentseries. For onvergent series, the following properties an be demonstrated as theorems:(A) For any real k, ∑
n

an = s ⇒
∑

n

(kan) = ks.(B) ∑

n

an = s and ∑

n

bn = r ⇒
∑

n

(an + bn) = s+ r.(C) ∑

n=0

an = s ⇔
∑

n=1

an = s− a0. 8



The proofs are a diret appliation of the properties of the limit of a sequene (in this asethe sequene of partial sums).Remark 1. Properties (A) and (B) are reognised as linearity and (C) is alled stability.They extend the natural properties of sums for the sequene of partial sums SN all the waythrough the limit.An immediate generalisation of (C) to �nitely many operations is the followingCorollary 1. For any positive integer N ,
∑

n=0

an = s ⇔
∑

n=N

an = s−

N−1∑

k=0

ak.We list here other natural properties of onvergent series extrapolated from �nite sumsvia the limit properties for the sequene of partial sums.Corollary 2. (a) Assoiativity If the series ∑
n
an has a (�nite or in�nite) sum, then theseries ∑

k
bk obtained via bk = a2k + a2k+1 for some or all nonnegative integers k, has thesame sum.(b1) Commutativity If the series ∑

n
an has a (�nite or in�nite) sum then the series ∑

n
bnobtained via (b2k, b2k+1) = P (a2k, a2k+1) = (a2k+1, a2k) for some or all nonnegative integers

k, has the same sum (P is the nontrivial permutation of 2 elements).(b2) For series having the ommutativity property, �nite ompositions of permutations oforder up to N (where N a positive integer) do not alter the sum of the series.() Dilution If the series with elements a0, a1, a2, · · · has a (�nite or in�nite) sum then theseries with elements a0, 0, a1, 0, a2, 0, · · · i.e., inserting a zero between some or all pairs ofelements in the original sequene, has the same sum.Proof. For assoiativity, olleting up to N terms orresponds to piking a subsequenefrom the original sequene of partial sums, having thus the same limit. For (b1) every otherpartial sum oinides with the original ones. For (b2), the partial sums of the new seriesoinides with the original one every N steps. In between, they di�er at most in a �nitesum of terms that goes to zero for k → ∞. Hene, both sequenes of partial sums havethe same limit. As for dilution, if one takes a onvergent sequene {SN} and dupliates itsterms: S1, S1, S2, S2, · · · , the new sequene has the same limit as the original one. Hene,dilution does not alter the sum of the series.The above properties an be arbitrarily (but �nitely) ombined, without altering thesum of a series. However, more drasti rearrangements need not preserve the sum unlessthe series is absolutely onvergent. In fat, any rearrangement of an absolutely onvergentseries produes a new series with the same sum as the original one. However, invariane infront of arbitrary rearrangements of terms does not hold for onditionally onvergent series.This is the ontent of Riemann rearrangement theorem (Apostol 1967, p. 413).Theorem (Riemann). Let σ(n) be an injetive funtion of the positive integers and K somereal number. Suppose that {a1, a2, a3, · · · } is a sequene of real numbers, and that ∑∞

n=1 an isonditionally onvergent. Then there exists a rearrangement σ(n) of the sequene suh that∑∞

n=1 aσ(n) = K. The sum an also be rearranged to diverge to ±∞ or to fail to approahany limit. 9



Remark 2. A lassial example of rearrangement is the series an = {
(−1)

n

n+1

}, n ≥ 1.This alternating series sums to s = ln 2. Create a new series by dilution adding one zerobefore eah element of the series and dividing by 2, i.e., {0, a1/2, 0, a2/2, · · · }. Combinethen this series and the original one as in property (B). The new series has sum s = 3
2 ln 2.However, after disregarding the intermediate zeroes, the ombined series is a rearrangementof the original one, where the negative terms (for n = 2k) appear every third element in-stead of every other element. The new series adds two positive numbers for every negativeontribution, thus subtrating the negative ontributions in a di�erent way from that in theoriginal series.Remark 3. All onditionally onvergent series an be deomposed into two monotoni se-ries: one with the positive terms, diverging to +∞ and another with the negative terms,diverging to −∞. What Riemann's Rearrangement Theorem teahes us is that if one wishesto interpret the sum of suh a series pitorially as the outome from �anellation of bothin�nities�, then there is atually not one way to do it, but in�nitely many, depending ofthe order in whih the elements of the two partiipant series are piked up. However, eahpossible result is the unique limit of a spei� sequene of partial sums.B Proofs of the main TheoremsProof of Theorem 1. That the method Y is not totally regular is immediate sine otherwiseit should assign the value +∞ to the proposed expression. By (C), Y ({1, 1, 1, · · · }) hasthe same value as 0 + 1 + 1 + 1 + · · · (namely Y ({0, 1, 1, · · · })) and hene the termwisedi�erene of both objets by (B) must satisfy: 1 + 0 + 0 + 0 + · · · ≡ Y ({1, 0, 0, 0, · · · }) = 0.Sine 1 + 0 + 0 + 0 + · · · is a onvergent series with sum 1 with the standard de�nition,we onlude that the method Y is not regular. As for ontradition, using (A) we obtainin the same way: −1 + 0 + 0 + 0 + · · · ≡ Y ({−1, 0, 0, 0, · · · }) = 0 thus establishing by (C)that 1 = Y ({0, 0, 0, 0, · · · }) = −1 sine both those numbers an be assigned as value for

0 + 0 + 0 + 0 + · · · , whih by (C) belongs to the domain of the method Y . This result isontraditory with the whole body of mathematis sine obviously 1 6= −1.Proof of Theorem 2. That the method Y is not totally regular is immediate sine otherwiseit should assign the value +∞ to the proposed expression. As for regularity and onsisteny,we will prove that Y ({1, 1, 1, 1, · · · }) belongs to the domain of Y and ompute its value.Let s be the value of 1 + 2 + 3 + 4 + 5 + · · · , i.e., Y ({1, 2, 3, 4, · · · }) = s. Then by (C),
Y ({0, 1, 2, 3, 4, · · · }) = s + 0 = s and also by (A), Y ({−0,−1,−2,−3,−4, · · ·}) = −s.Hene, we obtain by (B): 1 + 1 + 1 + 1 + · · · ≡ Y ({1, 1, 1, · · · }) = 0. Hene, this expressionbelongs to the domain of the method Y having the value zero and the previous theoremapplies. Moreover, repeated appliation of (C) on 1+ 1+ 1+ 1+ · · · ≡ Y ({1, 1, 1, · · · }) = 0,results in 1 + 1 + 1 + 1 + · · · ≡ Y ({1, 1, 1, · · · }) = −N for any nonnegative integer N . Thisresult provides an alternative proof of ontradition in Theorem 1.
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C Other Related ResultsC.1 Euler's Continuation Method E Hardy (1949)Abel's method and Euler's ontinuation method E are highlighted (Hardy 1949, p. 7) inHardy's aount of possible alternatives to standard summation. While the method E isinvoked in textbooks Nesterenko and Pirozhenko (1997), already in Setion 1.4 of Hardy'sbook it is noted that this method of assigning values for divergent series is not regular, andhene inappropriate. We may say that Euler glimpsed a possible approah in a moment inhistory where the onept of onvergene was not fully developed (see Subetion 4.1) whileAbel formulated the idea with exhaustive preision. We omment on Hardy's observationsfor the sake of ompleteness, in order to give a more detailed historial framework.Abel's seond theorem (Borel 1928, p. 3) an be stated as:Theorem (Abel). If ∑
n

an = s and lim
x→1−

∑

n

anx
n = S, then s = S.In other words, if the series is onvergent, with �nite sum s, and if the power series hasa (�nite) limit S, then both numbers oinide.Hardy's aount of E is that if ∑

n
anz

n de�nes an analyti funtion f(z) in some regionof the omplex plane suh that the funtion is properly de�ned along a path from thatregion up to z = 1, then ∑
n
an = f(1). E is indeed less preise than Abel's theorem. Letus onsider in whih ways the assumptions of Abel's theorem may fail in the ontext of E.Either {an} is a divergent series or limz→1

∑
n
anz

n does not exist (now with z ∈ C).For the �rst ase, onsider the geometri series for f(z) = (1−z)−1 ontrasting the seriesinspired in Riemann's zeta funtion: g(z) = ∑
n≥1 n

1−z. Both series have disjoint domainsof onvergene in the omplex plane. The point z = 1 lies outside the domain of onvergeneof any of the series. Hene, neither g(1) nor f(1) an be expressed by the orrespondingsums in the respetive rhs. However, in the ontext of Y () any of them ould be taken torepresent 1+1+1+1+ · · · , but while g(1) is a �nite number, f(1) is not de�ned (diverges).For the seond ase, namely that limz→1

∑
n
anz

n does not exist (for z ∈ C), Sierpi�nskiSierpi�nski (1916) gives an example of a onvergent series ∑
n
an and a power series derived

H(z) from it (de�ning a funtion f(z)) suh that while the power series has a limit for
x → 1− along the real axis (fully ompatible with Abel's theorem), the limit does not existalong arbitrary paths z → 1 in the omplex plane.Clearly, E annot be used as a tool in this ontext. On the ontrary, following Borel(1928) we may say that Abel's approah is exhaustive and there is no room for improvement.Di�erent attempts to prove the onverse of Abel's theorem after adding adequate additionalhypotheses, have originated the branh of mathematis alled Tauberian theorems.Moreover, there are examples of power series having exatly the same shape in di�erentregions of the omplex plane, while de�ning di�erent funtions. Then there is not always anuniquely de�ned funtion f(z) to be used as a means for summing series when one hoosesto ignore the domains of onvergene. For an example with the funtions f(z) = ±

1 + z2

1− z2see (Hardy 1949, p.16).This has more than anedoti value, sine Sierpi�nski series ombined with E ould beused to �destroy onvergene�. Let ∑
n
anz

n be Sierpi�nski's power series and r =
∑

n
an be11



the sum of the assoiated Sierpi�nski's series (see above). Let ∑
n
bn = S be an absolutelyonvergent series, de�ning a power series ∑

n
bnz

n with radius of onvergene R > 1. Theseries ∑
n
(an + bn) − r is absolutely onvergent with sum S. Consider the power series∑

n
(an + bn)z

n − r. We may use to sum the series orretly to S via the method of Abel'sTheorem. However, E annot ompute the sum of this onvergent series, sine the powerseries is disontinuous for z = 1 (for the same reasons as in Sierpi�nski (1916)).C.2 Assoiativity, Commutativity and DilutionLet us now onsider Y ({(−1)n}) ≡ Y ({1,−1, 1,−1, · · · }) (where n ≥ 0). Any methodassigning a �nite value s to it should satisfy s = 1 − s by (A) and (C) and hene s = 1/2.There exist many totally regular methods for the purpose, the most famous of whih isprobably the Cesaro sum, de�ned as the limit of the the sequene of suessive averages ofpartial sums, i.e., letting Zn = ( 1
n
)
∑

n−1
k=0 Sk for n ≥ 1, (being Sk the partial sum of the �rstonseutive elements of the original series up to k) we have Zn = (12 ) + ( c

n
), where c = 0 or

1 and the Cesaro sum of Y ({(−1)n}) is limn→∞ Zn = 1/2.Lemma 1. Cesaro sums ful�ll none of the properties assoiativity, ommutativity anddilution.Proof. For assoiativity just note that summing the elements of Y ({(−1)n}) pairwise weobtain either 0+ 0+ 0+ · · · or 1+ 0+ 0+ · · · (starting the assoiation in the �rst or in theseond element of the original series), both having di�erent Cesaro sums and both di�erentfrom 1/2. For ommutativity, permute the elements (an, an+1) for all odd n, obtaining
1 + 1− 1− 1 + 1 + 1− 1− 1 + · · · whose Cesaro sum is unity. For dilution, insert one zeroonly after eah positive element, obtaining the Cesaro sum 2/3.Lemma 2. Any ommutative method Y assigning a (�nite) value to Y ({(−1)n}) is ontra-ditory.Proof. (A) and (C) fore Y ({(−1)n}) = r = 1 − r and hene r = 1/2, regardless ofthe hosen ommutative method Y . However, by permuting the elements pairwise, from
Y ({(−1)n}) = r, we obtain Y ({(−1)n+1}) = r. Also, Y ({(−1)n+1}) = −r is obtainedfrom the �rst expression by (A) and multipliation with −1. We obtain the ontradition
r = Y ({(−1)n+1}) = −r with r = 1/2.ReferenesApostol T (1967) Calulus, Volume 1: One-variable Calulus, with an Introdution to LinearAlgebra. Wiley, New York, seond EditionBirrell ND, Davies PCW (1982) Quantum Fleds in Curved Spaes. Cambridge UniversityPressBorel �E (1928) Letures on Divergent Series. Gauthier-Villars, ParisFeynman RP (1983) QED. The Strange Theory of Light and Matter. Prineton University12
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