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Abstra
tThe 
onsequen
es of adopting other de�nitions of the 
on
epts of sum and 
onver-gen
e of a series are dis
ussed in the light of histori
al and epistemologi
al 
ontexts. Weshow that some divergent series appearing in the 
ontext of renormalization methods
annot be assigned �nite values while preserving a minimum of 
onsisten
y with stan-dard summation, without at the same time obtaining 
ontradi
tions, thus destroyingthe mathemati
al building (the 
onditions are known as Hardy's axioms). We �nallydis
uss the epistemologi
al 
osts of a

epting these pra
ti
es in the name of instrumen-talism.1 Introdu
tionThe possibility of assigning a �nite value to divergent series has made it to the news1 ina way that is unusual for s
ien
e or mathemati
s news. Indeed, this news and even somerelated Youtube videos seem to lie halfway between joke and serious matter but in the end itturns out that these 
ontributions are intended (by their authors) to be serious. In textbooks(see e.g., Nesterenko and Pirozhenko (1997) below) and in informal 
onversations, the bookby Hardy Hardy (1949) is mentioned as support for these pro
edures.It is then 
ompelling to assess the s
ienti�
 relevan
e of these methods and in parti
ularthe issue of (logi
al) 
onsisten
y of these methods in relation to the body of mathemati
alknowledge, as well as their epistemologi
al impli
ations. These are, hen
e, the main goalsof this work.We assume the reader to be familiar with the basi
 elements of the theory of series, asdeveloped in analysis textbooks Apostol (1967). For the sake of 
ompletion, in Appendix Awe review the relevant ingredients of the theory of series 
on
erning this work.In Se
tion 2 we dis
uss the role of mathemati
s along the pro
ess of understanding ourenvironement through the interplay between abstra
tion and signi�
ation. Following HardyHardy (1949) we dis
uss the ne
essary requirements that any de�nition for the sum of a1See the New York edition of New York Times, page D6 of February 4, 2014, on-line athttp://www.nytimes.
om/2014/02/04/s
ien
e/in-the-end-it-all-adds-up-to.html?smid=fb-share&_r=11
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series must have in order to have some 
han
es of retaining signi�
ation. Se
tion 3 
ontainsthe statement of the main results of this work i.e., the impossibility of retaining 
onsisten
y(and thereafter signi�
ation) when assigning a �nite value to divergent series (proofs arepresented in Appendix B) under basi
 reasonability 
onstraints. Further, we dis
uss thehistori
al and epistemologi
al issues related to these pra
ti
es in Se
tion 4, while Se
tion 5is devoted to 
on
lusions. We advan
e that Hardy's book provides the basis for reje
ting theassignment of �nite values to divergent series that appears in the 
ontext of renormalizationmethods, rather than giving support to these pra
ti
es.2 Signi�
ationMathemati
s 
an be regarded as a pro
ess of su

essive abstra
tions originating in real-lifesituations. Thus, natural numbers abstra
t the pro
ess of 
ounting obje
ts and involve theabstra
tion of the 
on
ept of addition as well. Instead of saying: one goat and another goatmakes two goats and another goat makes three goats . . . and the same for all indivisibleobje
ts, we say 1+1+1 . . . abstra
ting away the obje
ts and dressing the �nal answer withthem again (I 
ounted n goats). We in
rease our ability of 
ounting by moving to obje
tswith more elaborated properties (e.g., divisible obje
ts or portions of obje
ts, debts, missingobje
ts), produ
ing the realms of integers, rationals, et
. The properties of addition areextended (i.e., de�ned in a broader 
ontext while preserving its original properties when usedin the original 
ontext) to these higher levels of abstra
tion. The operations of abstra
tionand its inverse, dressing, relate mathemati
s to the material world. We 
all them morepre
isely abstra
tion and signi�
ation.The pro
ess of abstra
tion is also known as idealization and in physi
s is histori
allylinked with Galileo Galilei and his dis
ussion of free fall. (Galilei 1638, pp. 205) (for anEnglish translation see (Galilei 1914, pp. 170)) Insight on the pro
ess of signi�
ation 
analso be tra
ed ba
k to Galileo's words announ
ing that mathemati
s is the language ofthe universe Galilei (1623), thus re
ognising mathemati
s as belonging to the realm of thematerial world.Hen
e, when addressing issues of the material world and its s
ien
es, mathemati
al ob-je
ts retain a spe
i�
 signi�
ation. Any new mathemati
al obje
t introdu
ed along theinvestigation is related by abstra
tion and signi�
ation on one hand to the material world,on the other hand to mathemati
s where the obje
t be
omes 
ontext independent by thevery pro
ess of abstra
tion. Thus, when 
ounting apples we use the same addition as whenwe 
ount goats, nodes in a vibrating string or smiling fa
es. The re
ipro
ally inverse pro-
esses of abstra
tion and signi�
ation lie in the foundations of any attempt to understandthe material world with mathemati
al tools, and 
annot be disrupted nor negle
ted in anyof its parts. In plain words, the extension of a mathemati
al 
on
ept beyond its 
urrentlimits of appli
ability 
annot destroy the previously developed pro
esses of abstra
tion andsigni�
ation.2.1 Minimal RequirementsLet us suppose that we want to give up the usual 
on
ept of sum of in�nite series, i.e., we giveup the standard de�nition that extends the 
on
ept of �nite sums via a limit pro
ess in order2



to en
ompass in�nite sums. The goal of this pro
ess is to produ
e new (supposedly broader)de�nitions related to 
omputing a �nite number that somehow resembles summation, outof a sequen
e {a0, a1, a2, · · · } with divergent sum in the ordinary sense. We require howeverto keep as mu
h as possible of the original properties of series summation, sin
e �nite sumsand also the sum of 
onvergent series 
annot be given up as a fundamental part of ourunderstanding.Starting from the standard de�nition of sum of a series one arrives to several properties,among whi
h we 
ount(A) For any real k, ∑
n

an = s ⇒
∑

n

(kan) = ks.(B) ∑

n

an = s and ∑

n

bn = r ⇒
∑

n

(an + bn) = s+ r.(C) ∑

n=0

an = s ⇔
∑

n=1

an = s− a0.Hardy Hardy (1949) proposes to transform these properties into axioms, dropping the stan-dard de�nition.The �rst two axioms state that multiplying the elements of a summable series by a
onstant k, the result is also a summable series with sum equal to the original sum smultiplyied by the 
onstant k. The se
ond, states that the sum of two summable seriesis also a summable series with 
orresponding sum. The third axiom states that the sumof a summable series is insensitive to breaking out of the series the �rst term (in fa
t any�nite number of terms), summing it separately and adding the result to the remainder ofthe series.Giving up the standard de�nition 
arries along that all properties of series that do notfollow from the above axioms are lost as well, namely asso
iation, permutation and dilution(
orresponding respe
tively to grouping adja
ent terms, altering the order of the terms andinterposing zeroes between terms, see Appendix A).Also, the series symbol should be repla
ed by something new, sin
e the original seriessymbol had re
eived its meaning in De�nition 2 (Appendix A). Let us adopt the nota-tion2Y ({an}) to denote the new summation re
ipe. Ea
h new method of assigning values toin�nite sequen
es should provide its own de�nition (as well as signi�
ation) for this obje
t.We will distinguish those methods that sum 
onvergent series and series diverging toin�nity in the usual way, namely,De�nition 1 ((see p. 10 in Hardy (1949))). (a) A method Y assigning a �nite value to aseries is 
alled regular if this value 
oin
ides with the standard sum in the 
ase of standard
onvergent series.(b) A regular method Y is 
alled totally regular if series diverging to ±∞ with the standardde�nition also diverge to ±∞ in Y .Axioms (A-C) may be regarded as a minimal 
ompromise. The �rst two axioms extendthe linearity of standard sum to in�nite sums, while the third, 
alled stability, along withCorollary 1 states that a �nite portion of an in�nite sum behaves as a standard �nite sum.2The symbol Y is inspired in the Cyrilli
 word óêàç meaning de
ree or edi
t (formally: imposition).3



Any method whi
h is not linear and stable 
annot be seriously 
onsidered as an alternativeto the sum of a series (it would be either not linear or not �nitely related to ordinarysum). Also, in Hardy's (and our) view, regularity is a basi
 requirement: whi
hever methodnot 
omplying with standard results for standard 
onvergent problems 
annot be seriously
onsidered as an extension of the 
on
ept of sum.3 Statement of ResultsMany textbooks attempting to use the sum of divergent series dis
uss a few 
lasses of seriesNesterenko and Pirozhenko (1997). Two of these 
lasses are dis
ussed in the Theorems below(these being part of the 
entral results of this work), sin
e assigning a �nite number to themleads to in
onsisten
ies irrespe
tive of the summation method adopted. For the other 
lass,Euler's summation method is invoked. Euler's method was already addressed by Sierpi�nskiand others about a 
entury ago, see Appendix C.1 for details. For 
ompletion, we elaboratealso on Cesaro's summation method Hardy (1949) in Appendix C.2.Theorem 1. Any method Y assigning a �nite number to the expression 1+1+1+1+1+ · · ·is (i) not totally regular, (ii) not regular and (iii) 
ontradi
tory.Theorem 2. Any method Y assigning a �nite number to the expression 1+2+3+4+5+ · · ·is (i) not totally regular, (ii) not regular and (iii) 
ontradi
tory.By 
ontradi
tory we mean that in
ompatible statements 
orresponding to r = Y ({an}) =
s for (real) numbers r 6= s 
an be proved in this 
ontext. Proofs are given in Appendix B.It goes without saying that we are speaking about well-posed methods Y where theassigned values for Y ({an}) are unique, whenever the sequen
e belongs to the domain of themethod. Also, the de�nition of regularity naturally assumes that the sequen
es asso
iatedto all 
onvergent series belong to the domain of whi
hever method Y is under 
onsideration(even non-regular ones).4 Dis
ussion4.1 Histori
al DigressionExtending on Hardy's a

ount, it is to be noted that the modern 
on
ept of limit wasestablished by Cau
hy around 1821. However, he 
ould not solve the question of uniform
onvergen
e. In fa
t, it is said Lakatos (1976) that this issue worried Cau
hy to the point ofnever publishing the se
ond volume of his 
ourse of analysis, nor 
onsenting to a reeditionof the �rst. He eventually allowed the publi
ation of the le
ture notes of his 
lasses byhis friend and student Moigno in 1840 Moigno (1840). Again a

ording to Lakatos, thedistin
tion between point 
onvergen
e and uniform 
onvergen
e was unraveled by Seidel in1847 Lakatos (1976), thus 
ompleting the approa
h of Cau
hy. The modern way of regardinglimits and 
onvergen
e 
ould be said to originate around 1847.
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4.2 Epistemologi
al IssuesThe idea of substituting a de�nition with another one is not free from 
onsequen
es. De�-nitions in mathemati
s may look arbitrary at a �rst glan
e but they are always motivated.Fundamentally, (a) they satisfy the need of �lling a va
an
y of 
ontent in 
riti
al pla
eswhere pre
ision is needed (however, sin
e many textbooks present de�nitions without dis-
ussing the pro
ess for produ
ing them, the epistemologi
al requirements remain usuallyobs
ure) and (b) they are expli
itly forbidden to be 
ontradi
tory or logi
ally in
onsistentwith the previously existing body of mathemati
s on whi
h they rest. In addition, whendealing with the mathematisation of natural s
ien
es, de�nitions 
arry a signi�
ation, whi
his the support for using that parti
ular pie
e of mathemati
s in that parti
ular s
ien
e.While we appre
iate the exploration work around 
on
epts that has been done overthe years, we do not substitute a meaningful and established 
on
ept with something thatis inequivalent to it in the 
ommon domain of appli
ation. Again, when understandingnatural s
ien
es, su
h substitution would disrupt the signi�
ation 
hain. In simple words,we do not repla
e a meaningful 
ontent with a meaningless one. This would be to departfrom rationality, something that is positively reje
ted by mathemati
s as a whole as well asby s
ien
e in general and by a large part of so
iety.Along the presentation, we 
ared to put limits to the possible relation between Y ({·})and ordinary sums. In the light of the proven Theorems, it is veri�ed that su
h relation isfeeble or absent. Hen
e, the very inspirational root of these te
hniques be
omes divor
edfrom its results and e�e
ts. As stated above, the alternative of giving up one of axioms(A-C) also destroys any possible relation to ordinary sums.Repla
ements that assign Y ({n}) = a or Y ({1}) = b (with a, b real numbers) destroythe basis of mathemati
s, making it the same to have one goat that having a million goats.We must emphasize that regularity is a ne
essary 
ondition to preserve signi�
ation but itis not su�
ient. Whatever repla
ement we attempt must provide a rationale for the method,preserving signi�
ation within mathemati
s (in the 
hain of abstra
tions it belongs) and inrelation to natural s
ien
es. For the 
ase of series, signi�
ation is further destroyed alongwith properties su
h as asso
iation, permutation and dilution (
orresponding respe
tivelyto grouping adja
ent terms, altering the order of the terms and interposing zeroes betweenterms). The alternative of using one or another de�nition depending of the matter understudy simply destroys the role mathemati
s as a whole. Instead of having eternal andpure relations a

essible by reason alone Platon (360 AC), it will turn mathemati
s to bedependent of the 
ontext of use.4.2.1 The Epistemology of Su

essThe issue of assigning a �nite value to divergent series with methods that are not regular andare 
ontradi
tory under Hardy's axioms is not only material of newspaper notes, dis
ussionblogs or Youtube videos. It has a
tually rea
hed the surfa
e of so
iety from arti
les andbooks published as s
ienti�
 material. We support this statement by 
ommenting on a
ouple of referen
es. This issue is not just a feature of these two 
itations, but the standardpro
edure of a 
ommunity: just read the referen
es in Birrell and Davies (1982) to �nd alarge amount of pra
titioners of this 
ommunity.In Nesterenko and Pirozhenko (1997) we en
ounter an attempt to justify the use of the5



Riemann's Zeta fun
tion. The authors refer to Hardy's book for the a
tual method. Theyuse axioms A and B and the zeta fun
tion to write equality between ∑∞

n=1 n and −1/12(see their eq. (2.20)). The 
on
lusion is evident: the method does not 
omply with Hardy'saxioms. Furthermore, the result is false sin
e to rea
h their 
on
lusion the authors disregarda divergent 
ontribution. Hen
e, the equal sign does not relate identi
al quantities as itshould. The 
orre
t expression would be
Y (n) ≡ Y ({1, 2, 3, 4, · · · }) = −

1

12
(1)where Y must be understood as the method based on Riemann's Zeta fun
tion. Here,Theorem 2 applies.Our se
ond example is the book Birrell and Davies (1982) where on page 167 we read�The analyti
 
ontinuation method 
onverts a manifestly in�nite series into a �nite result�exemplifying this statement with the expression Y (1) ≡ Y ({1, 1, 1, · · · }) = 1/2 (our notation,the authors use standard series notation) using the same pro
edure as Nesterenko and Pirozhenko(1997). On p. 165 this expression was given the value −1/2, probably a typo. The authorsrefer expli
itly to Euler's method. We note though that by Theorem 1, any method assigninga �nite number to su
h series is defe
tive in the same way.Needless to say, the authors do not use the symbol Y but they refer to the methodas a �formal pro
edure�. This way of expression pla
es the issue within the ambiguities oflanguage. If by formal we read belonging to or 
onstituting the form or essen
e of a thing, westrongly disagree, sin
e essen
e is the result of an abstra
ting (usually analyti
) pro
edureHegel (1971). However, if �formal� is intended as in its se
ond a

epted meaning: followingor a

ording with established form, 
ustom, or rule, we agree, while observing that su
hso
ial agreements are not a part of s
ien
e.In defense of su
h pro
edures it is usually said that the theories using them are amongthe most pre
ise and su

essful in Physi
s. This argumentation 
laims, then, that questionsof uni
ity of results, ba
kward 
ompatibility of a method with standard 
onvergent series, orits relation to sums (let alone signi�
ation) are uninteresting. The value is assigned be
ausein su
h a way one obtains a �
orre
t� result. Hen
e they adhere to a (false) epistemology thatDira
 
alled instrumentalism (Kragh 1990, page 185) and we plainly 
all the epistemologyof su

ess.Hitting (what is 
laimed to be) the right answer is not equivalent to using the rightmethod. One may hit a 
orre
t answer with a wrong method just by 
han
e, by misun-derstanding, or even by adaptation to the known answer, et
. Paraphrasing Feyerabend'severything goes: an idea may be wel
ome as a starting point without deeper 
onsiderations(within ethi
al limits, of 
ourse). However, for that idea to be 
alled s
ienti�
 it has to
omply with the s
ienti�
 method. Moreover, it has to 
omply with rationality. The attitudedes
ribed by something is right be
ause it gives the 
orre
t answer is dangerous in many lev-els. The mathemati
al attitude is a
tually the opposite (and logi
ally inequivalent to it): Ifit gives the wrong answer, either the assumptions or the method in use are in
orre
t Popper(1959). This holds also for natural s
ien
es, where in addition we have, through signi�
ation,a safe and independent method to distinguish wrong answers from right answers. Note thatindependen
y is 
ru
ial. Natural s
ien
e makes predi
tions that 
an be tested independentlyof the theory involved. If veri�ed, they give 
ontinued support to the theory, while if refutedthey indi
ate where and why to 
orre
t it. As a 
ontrast, a theory making predi
tions that6




an only be tested within itself obtains at best internal support for being 
onsistent, but itnever speaks about Nature sin
e predi
tions are not independently testable. In any 
ase,having the right answer is not a 
erti�
ate of 
orre
tness (there may be an error somewhereelse) whereas having any wrong answer is a 
erti�
ate of in
orre
tness (the error is �there�).It is worth to keep in mind the attitude taken by the founding fathers of QuantumEle
trodynami
sThe shell game that we play [...℄ is te
hni
ally 
alled 'renormalization'. But nomatter how 
lever the word, it is still what I would 
all a dippy pro
ess! Havingto resort to su
h ho
us-po
us has prevented us from proving that the theoryof quantum ele
trodynami
s is mathemati
ally self-
onsistent. It's surprisingthat the theory still hasn't been proved self-
onsistent one way or the other bynow; I suspe
t that renormalization is not mathemati
ally legitimate. Ri
hardFeynman, 1985 Feynman (1983)I must say that I am very dissatis�ed with the situation, be
ause this so 
alledgood theory does involve negle
ting in�nities whi
h appear in its equations, ne-gle
ting them in an arbitrary way. This is just not sensible mathemati
s. Sensiblemathemati
s involves negle
ting a quantity when it turns out to be small - notnegle
ting it just be
ause it is in�nitely great and you do not want it! PaulDira
. (Kragh 1990, page 195)5 Con
luding RemarksDe�nitions are not arbitrary, any extension of an established operation (su
h as addition)needs to preserve the properties of the operation when applied to obje
ts in the originaldomain of de�nition (regularity). We have shown in this sense that some methods proposedas extensions for the sum of 
onvergent series (standard de�nition) fail on this regard. Animportant example are the proposed summations improperly justi�ed by using a series forRiemann's Zeta fun
tion outside its domain of validity. In some 
ases the use of Euler'ssummation method on it is improper, in others whi
hever method one intends to use wouldyield an improper result. Moreover, regularity of a proposed repla
ement for series summa-tion is not enough, the extension needs to preserve all the mathemati
al building-blo
ks itrests on.It is important to indi
ate that attempts to justify renormalization su
h as that found inNesterenko and Pirozhenko (1997) ought to be 
onsidered s
ienti�
 attempts on the groundof Popper's demar
ationism Popper (1959) sin
e by 
onne
ting to mathemati
al issues su
has the problem of in�nite series, they o�er the rationale behind their pro
edures of s
ienti�
enquire. The out
ome of the examination indi
ates that su
h repla
ements must be reje
ted.The de
ision to expose the issues 
on
erning the mathemati
al foundations of thesematters to the general publi
 should also be 
ommented. The understanding of s
ienti�
matters is not reserved to an elite of pra
titioners that guard the �truth� of the subje
t aspriests of a 
ult. Opening s
ien
e to the s
rutiny of the general publi
, in
luding s
ientistsoutside the paradigm is simply 
orre
t, as dis
ussed by Lakatos Lakatos (1976).The following thesis should be 
onsidered: the more than 50 years that this matter hasstayed without resolution is a demonstration that in 
losed elitist 
ommunities the interest7



of (return for) the 
ommunity may very well have priority over the publi
 (humane) interest.6 A
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kground on SeriesSum of a SeriesWe follow here standard textbooks (Apostol 1967, p. 383-4) reviewing the de�nition of seriesand some of its basi
 properties, fo
using on what will be relevant for the 
oming Se
tions.Consider a sequen
e {a0, a1, a2, · · · } and also its sequen
e of partial sums SN =
N∑

k=0

ak.This sequen
e of partial sums is 
alled an in�nite series, or simply series.De�nition 2. If there exists a number s su
h that s = limN→∞ SN we say that the series
∞∑

k=0

ak is 
onvergent with sum s and write ∞∑

k=0

ak = s. Otherwise, we say that the series isdivergent.Among divergent series we may distinguish those where the limN→∞ SN is +∞ or −∞on the one hand (we may 
all them divergent to in�nity) and those where this limit doesnot exist.De�nition 3. A 
onvergent series ∞∑

k=0

ak is 
alled absolutely 
onvergent if the series ∞∑

k=0

|ak|is 
onvergent. Otherwise, it is 
alled 
onditionally 
onvergent.Basi
 PropertiesWe follow an approa
h inspired on the posthumous book by Hardy Hardy (1949) on divergentseries. For 
onvergent series, the following properties 
an be demonstrated as theorems:(A) For any real k, ∑
n

an = s ⇒
∑

n

(kan) = ks.(B) ∑

n

an = s and ∑

n

bn = r ⇒
∑

n

(an + bn) = s+ r.(C) ∑

n=0

an = s ⇔
∑

n=1

an = s− a0. 8



The proofs are a dire
t appli
ation of the properties of the limit of a sequen
e (in this 
asethe sequen
e of partial sums).Remark 1. Properties (A) and (B) are re
ognised as linearity and (C) is 
alled stability.They extend the natural properties of sums for the sequen
e of partial sums SN all the waythrough the limit.An immediate generalisation of (C) to �nitely many operations is the followingCorollary 1. For any positive integer N ,
∑

n=0

an = s ⇔
∑

n=N

an = s−

N−1∑

k=0

ak.We list here other natural properties of 
onvergent series extrapolated from �nite sumsvia the limit properties for the sequen
e of partial sums.Corollary 2. (a) Asso
iativity If the series ∑
n
an has a (�nite or in�nite) sum, then theseries ∑

k
bk obtained via bk = a2k + a2k+1 for some or all nonnegative integers k, has thesame sum.(b1) Commutativity If the series ∑

n
an has a (�nite or in�nite) sum then the series ∑

n
bnobtained via (b2k, b2k+1) = P (a2k, a2k+1) = (a2k+1, a2k) for some or all nonnegative integers

k, has the same sum (P is the nontrivial permutation of 2 elements).(b2) For series having the 
ommutativity property, �nite 
ompositions of permutations oforder up to N (where N a positive integer) do not alter the sum of the series.(
) Dilution If the series with elements a0, a1, a2, · · · has a (�nite or in�nite) sum then theseries with elements a0, 0, a1, 0, a2, 0, · · · i.e., inserting a zero between some or all pairs ofelements in the original sequen
e, has the same sum.Proof. For asso
iativity, 
olle
ting up to N terms 
orresponds to pi
king a subsequen
efrom the original sequen
e of partial sums, having thus the same limit. For (b1) every otherpartial sum 
oin
ides with the original ones. For (b2), the partial sums of the new series
oin
ides with the original one every N steps. In between, they di�er at most in a �nitesum of terms that goes to zero for k → ∞. Hen
e, both sequen
es of partial sums havethe same limit. As for dilution, if one takes a 
onvergent sequen
e {SN} and dupli
ates itsterms: S1, S1, S2, S2, · · · , the new sequen
e has the same limit as the original one. Hen
e,dilution does not alter the sum of the series.The above properties 
an be arbitrarily (but �nitely) 
ombined, without altering thesum of a series. However, more drasti
 rearrangements need not preserve the sum unlessthe series is absolutely 
onvergent. In fa
t, any rearrangement of an absolutely 
onvergentseries produ
es a new series with the same sum as the original one. However, invarian
e infront of arbitrary rearrangements of terms does not hold for 
onditionally 
onvergent series.This is the 
ontent of Riemann rearrangement theorem (Apostol 1967, p. 413).Theorem (Riemann). Let σ(n) be an inje
tive fun
tion of the positive integers and K somereal number. Suppose that {a1, a2, a3, · · · } is a sequen
e of real numbers, and that ∑∞

n=1 an is
onditionally 
onvergent. Then there exists a rearrangement σ(n) of the sequen
e su
h that∑∞

n=1 aσ(n) = K. The sum 
an also be rearranged to diverge to ±∞ or to fail to approa
hany limit. 9



Remark 2. A 
lassi
al example of rearrangement is the series an = {
(−1)

n

n+1

}, n ≥ 1.This alternating series sums to s = ln 2. Create a new series by dilution adding one zerobefore ea
h element of the series and dividing by 2, i.e., {0, a1/2, 0, a2/2, · · · }. Combinethen this series and the original one as in property (B). The new series has sum s = 3
2 ln 2.However, after disregarding the intermediate zeroes, the 
ombined series is a rearrangementof the original one, where the negative terms (for n = 2k) appear every third element in-stead of every other element. The new series adds two positive numbers for every negative
ontribution, thus subtra
ting the negative 
ontributions in a di�erent way from that in theoriginal series.Remark 3. All 
onditionally 
onvergent series 
an be de
omposed into two monotoni
 se-ries: one with the positive terms, diverging to +∞ and another with the negative terms,diverging to −∞. What Riemann's Rearrangement Theorem tea
hes us is that if one wishesto interpret the sum of su
h a series pi
torially as the out
ome from �
an
ellation of bothin�nities�, then there is a
tually not one way to do it, but in�nitely many, depending ofthe order in whi
h the elements of the two parti
ipant series are pi
ked up. However, ea
hpossible result is the unique limit of a spe
i�
 sequen
e of partial sums.B Proofs of the main TheoremsProof of Theorem 1. That the method Y is not totally regular is immediate sin
e otherwiseit should assign the value +∞ to the proposed expression. By (C), Y ({1, 1, 1, · · · }) hasthe same value as 0 + 1 + 1 + 1 + · · · (namely Y ({0, 1, 1, · · · })) and hen
e the termwisedi�eren
e of both obje
ts by (B) must satisfy: 1 + 0 + 0 + 0 + · · · ≡ Y ({1, 0, 0, 0, · · · }) = 0.Sin
e 1 + 0 + 0 + 0 + · · · is a 
onvergent series with sum 1 with the standard de�nition,we 
on
lude that the method Y is not regular. As for 
ontradi
tion, using (A) we obtainin the same way: −1 + 0 + 0 + 0 + · · · ≡ Y ({−1, 0, 0, 0, · · · }) = 0 thus establishing by (C)that 1 = Y ({0, 0, 0, 0, · · · }) = −1 sin
e both those numbers 
an be assigned as value for

0 + 0 + 0 + 0 + · · · , whi
h by (C) belongs to the domain of the method Y . This result is
ontradi
tory with the whole body of mathemati
s sin
e obviously 1 6= −1.Proof of Theorem 2. That the method Y is not totally regular is immediate sin
e otherwiseit should assign the value +∞ to the proposed expression. As for regularity and 
onsisten
y,we will prove that Y ({1, 1, 1, 1, · · · }) belongs to the domain of Y and 
ompute its value.Let s be the value of 1 + 2 + 3 + 4 + 5 + · · · , i.e., Y ({1, 2, 3, 4, · · · }) = s. Then by (C),
Y ({0, 1, 2, 3, 4, · · · }) = s + 0 = s and also by (A), Y ({−0,−1,−2,−3,−4, · · ·}) = −s.Hen
e, we obtain by (B): 1 + 1 + 1 + 1 + · · · ≡ Y ({1, 1, 1, · · · }) = 0. Hen
e, this expressionbelongs to the domain of the method Y having the value zero and the previous theoremapplies. Moreover, repeated appli
ation of (C) on 1+ 1+ 1+ 1+ · · · ≡ Y ({1, 1, 1, · · · }) = 0,results in 1 + 1 + 1 + 1 + · · · ≡ Y ({1, 1, 1, · · · }) = −N for any nonnegative integer N . Thisresult provides an alternative proof of 
ontradi
tion in Theorem 1.
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C Other Related ResultsC.1 Euler's Continuation Method E Hardy (1949)Abel's method and Euler's 
ontinuation method E are highlighted (Hardy 1949, p. 7) inHardy's a

ount of possible alternatives to standard summation. While the method E isinvoked in textbooks Nesterenko and Pirozhenko (1997), already in Se
tion 1.4 of Hardy'sbook it is noted that this method of assigning values for divergent series is not regular, andhen
e inappropriate. We may say that Euler glimpsed a possible approa
h in a moment inhistory where the 
on
ept of 
onvergen
e was not fully developed (see Sube
tion 4.1) whileAbel formulated the idea with exhaustive pre
ision. We 
omment on Hardy's observationsfor the sake of 
ompleteness, in order to give a more detailed histori
al framework.Abel's se
ond theorem (Borel 1928, p. 3) 
an be stated as:Theorem (Abel). If ∑
n

an = s and lim
x→1−

∑

n

anx
n = S, then s = S.In other words, if the series is 
onvergent, with �nite sum s, and if the power series hasa (�nite) limit S, then both numbers 
oin
ide.Hardy's a

ount of E is that if ∑

n
anz

n de�nes an analyti
 fun
tion f(z) in some regionof the 
omplex plane su
h that the fun
tion is properly de�ned along a path from thatregion up to z = 1, then ∑
n
an = f(1). E is indeed less pre
ise than Abel's theorem. Letus 
onsider in whi
h ways the assumptions of Abel's theorem may fail in the 
ontext of E.Either {an} is a divergent series or limz→1

∑
n
anz

n does not exist (now with z ∈ C).For the �rst 
ase, 
onsider the geometri
 series for f(z) = (1−z)−1 
ontrasting the seriesinspired in Riemann's zeta fun
tion: g(z) = ∑
n≥1 n

1−z. Both series have disjoint domainsof 
onvergen
e in the 
omplex plane. The point z = 1 lies outside the domain of 
onvergen
eof any of the series. Hen
e, neither g(1) nor f(1) 
an be expressed by the 
orrespondingsums in the respe
tive rhs. However, in the 
ontext of Y () any of them 
ould be taken torepresent 1+1+1+1+ · · · , but while g(1) is a �nite number, f(1) is not de�ned (diverges).For the se
ond 
ase, namely that limz→1

∑
n
anz

n does not exist (for z ∈ C), Sierpi�nskiSierpi�nski (1916) gives an example of a 
onvergent series ∑
n
an and a power series derived

H(z) from it (de�ning a fun
tion f(z)) su
h that while the power series has a limit for
x → 1− along the real axis (fully 
ompatible with Abel's theorem), the limit does not existalong arbitrary paths z → 1 in the 
omplex plane.Clearly, E 
annot be used as a tool in this 
ontext. On the 
ontrary, following Borel(1928) we may say that Abel's approa
h is exhaustive and there is no room for improvement.Di�erent attempts to prove the 
onverse of Abel's theorem after adding adequate additionalhypotheses, have originated the bran
h of mathemati
s 
alled Tauberian theorems.Moreover, there are examples of power series having exa
tly the same shape in di�erentregions of the 
omplex plane, while de�ning di�erent fun
tions. Then there is not always anuniquely de�ned fun
tion f(z) to be used as a means for summing series when one 
hoosesto ignore the domains of 
onvergen
e. For an example with the fun
tions f(z) = ±

1 + z2

1− z2see (Hardy 1949, p.16).This has more than ane
doti
 value, sin
e Sierpi�nski series 
ombined with E 
ould beused to �destroy 
onvergen
e�. Let ∑
n
anz

n be Sierpi�nski's power series and r =
∑

n
an be11



the sum of the asso
iated Sierpi�nski's series (see above). Let ∑
n
bn = S be an absolutely
onvergent series, de�ning a power series ∑

n
bnz

n with radius of 
onvergen
e R > 1. Theseries ∑
n
(an + bn) − r is absolutely 
onvergent with sum S. Consider the power series∑

n
(an + bn)z

n − r. We may use to sum the series 
orre
tly to S via the method of Abel'sTheorem. However, E 
annot 
ompute the sum of this 
onvergent series, sin
e the powerseries is dis
ontinuous for z = 1 (for the same reasons as in Sierpi�nski (1916)).C.2 Asso
iativity, Commutativity and DilutionLet us now 
onsider Y ({(−1)n}) ≡ Y ({1,−1, 1,−1, · · · }) (where n ≥ 0). Any methodassigning a �nite value s to it should satisfy s = 1 − s by (A) and (C) and hen
e s = 1/2.There exist many totally regular methods for the purpose, the most famous of whi
h isprobably the Cesaro sum, de�ned as the limit of the the sequen
e of su

essive averages ofpartial sums, i.e., letting Zn = ( 1
n
)
∑

n−1
k=0 Sk for n ≥ 1, (being Sk the partial sum of the �rst
onse
utive elements of the original series up to k) we have Zn = (12 ) + ( c

n
), where c = 0 or

1 and the Cesaro sum of Y ({(−1)n}) is limn→∞ Zn = 1/2.Lemma 1. Cesaro sums ful�ll none of the properties asso
iativity, 
ommutativity anddilution.Proof. For asso
iativity just note that summing the elements of Y ({(−1)n}) pairwise weobtain either 0+ 0+ 0+ · · · or 1+ 0+ 0+ · · · (starting the asso
iation in the �rst or in these
ond element of the original series), both having di�erent Cesaro sums and both di�erentfrom 1/2. For 
ommutativity, permute the elements (an, an+1) for all odd n, obtaining
1 + 1− 1− 1 + 1 + 1− 1− 1 + · · · whose Cesaro sum is unity. For dilution, insert one zeroonly after ea
h positive element, obtaining the Cesaro sum 2/3.Lemma 2. Any 
ommutative method Y assigning a (�nite) value to Y ({(−1)n}) is 
ontra-di
tory.Proof. (A) and (C) for
e Y ({(−1)n}) = r = 1 − r and hen
e r = 1/2, regardless ofthe 
hosen 
ommutative method Y . However, by permuting the elements pairwise, from
Y ({(−1)n}) = r, we obtain Y ({(−1)n+1}) = r. Also, Y ({(−1)n+1}) = −r is obtainedfrom the �rst expression by (A) and multipli
ation with −1. We obtain the 
ontradi
tion
r = Y ({(−1)n+1}) = −r with r = 1/2.Referen
esApostol T (1967) Cal
ulus, Volume 1: One-variable Cal
ulus, with an Introdu
tion to LinearAlgebra. Wiley, New York, se
ond EditionBirrell ND, Davies PCW (1982) Quantum Fleds in Curved Spa
es. Cambridge UniversityPressBorel �E (1928) Le
tures on Divergent Series. Gauthier-Villars, ParisFeynman RP (1983) QED. The Strange Theory of Light and Matter. Prin
eton University12
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