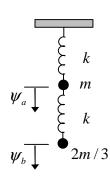
Física 2. Cátedra Vera Brudny

Guía 2: Modos normales y resonancia

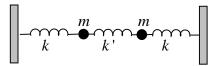
Sistemas libres: Modos normales

Problema 1. a) Considere el sistema de la figura en ausencia de gravedad y obtenga sus frecuencias naturales de oscilación y los modos normales correspondientes. Escriba las ecuaciones de movimiento de cada masa.

- b) Sabiendo que en t=0 el sistema satisface las siguientes condiciones $\psi_a(0)=1$ y $\psi_b(0)=0$ y que se encuentra en reposo, encuentre el movimiento de cada partícula.
- c) Analice cómo se modifica el resultado por la presencia de la gravedad.



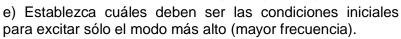
Problema 2. Considere el sistema de la figura. Las masas están apoyadas en una mesa sin rozamiento, sujetas a las paredes por resortes de constante k y unidas por otro resorte de constante k'. Obtenga las frecuencias y los modos transversales del sistema.

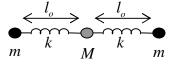


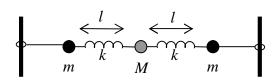
¿Bajo qué condiciones espera observar batidos? ¿Qué son batidos?

Problema 3. Considere el sistema simplificado de la figura que se basa en una molécula triatómica simétrica. En el equilibrio dos átomos de masa m están situados a ambos lados del átomo de masa M=2m y vinculados por resortes de constante k y longitud natural l_a . Sólo estamos interesados en analizar los modos longitudinales

- a) Encuentre las ecuaciones de movimiento de cada masa.
- b) Halle las frecuencias de los modos normales.
- c) Dibuie las configuraciones de cada modo.
- d) Si el centro de masa de la molécula se mueve con $v_o = cte$, halle la solución para $\psi_a(t)$, $\psi_b(t)$ y $\psi_c(t)$.





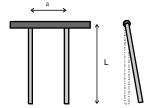


Problema 4. Se analizan las oscilaciones transversales del sistema de la figura.

- a) Encuentre las ecuaciones de movimiento de las masas.
- b) Halle las frecuencias de los modos normales.
- c) Dibuje la configuración correspondiente a cada modo normal.
- d) Si el centro de masa se encuentra en reposo, determine los desplazamientos de cada masa como función del tiempo.
- e) ¿Qué condiciones iniciales permiten excitar sólo el segundo modo?

f) ¿Cómo se modifican los resultados anteriores si solamente el extremo de la derecha se fija a la pared?

Problema 5. Se tienen dos barras iguales de longitud L, masa m y momento de inercia l acopladas con un resorte de torsión, separadas una distancia a, como se ve en la figura. El resorte horizontal sólo puede torsionarse (su eje central y su longitud permanecen fijo) y tiene sus extremos libres. El resorte ejerce una fuerza restitutiva sobre las barras proporcional al ángulo de torsión. Las barras pueden oscilar sólo en el plano perpendicular a la barra



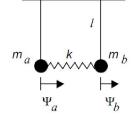
- a) Escriba las ecuaciones de movimiento de cada barra.
- b) Obtenga las frecuencias naturales del sistema y sus modos normales de oscilación.
- c) se desea asimetrizar el sistema agregándole una pesa a una de las barras. ¿Cuán grande debe ser esa pesa para que el sistema se lo pueda considerar esencialmente desacoplado?

Problema 6. Considere un sistema similar al del problema 5) pero ahora con los extremos del resorte fijos (de modo que no pueden torsionarse) a distancia I de cada barra.

- a) Discuta cualitativamente a priori como espera que sean los modos normales, y como serán sus frecuencias comparadas con las del sistema con extremos libres.
- b) Resuelva el problema analíticamente, suponiendo que hay pérdidas proporcionales a la velocidad de torsión que dominan los mecanismos de pérdidas. Discuta como se comparan las resonancias con el caso libre.

Problema 7. Considere el sistema de dos péndulos de igual longitud l pero de masas diferentes m_a y m_b , acoplados mediante un resorte de constante elástica k.

- a) Escriba las ecuaciones de movimiento de cada masa.
- b) Obtenga las frecuencias naturales del sistema y sus modos normales de oscilación. Interprete el significado físico de estos modos normales.



- c) Suponiendo que el acoplamiento es débil, es decir: $k << (g/l) m_a m_b/(m_a + m_b)$, y que las condiciones iniciales son $\psi_a(0) = 0$, $\psi_b(0) = 0$, $\psi_a(0) = 0$ y $\psi_b(0) = A$, obtenga el movimiento de cada masa y grafíquelo en función del tiempo.
- d) Calcule los valores medios, en un ciclo rápido, de T_a y T_b , donde T indica energía cinética. Grafique $< T_a > \ y < T_b >$, y analice las diferencias en el gráfico como función de las diferencias entre las masas ($m_a = m_b$ y m_a muy diferente de m_b). Calcule el valor medio de la energía de interacción entre las dos partículas.

Oscilaciones Forzadas: Resonancias

Problema 8. Se tiene el sistema del problema 3. El sistema se sumerge en un medio donde existe una fuerza de rozamiento proporcional a la velocidad con constante de amortiguamiento por unidad de masa Γ . Suponga que se aplica una fuerza armónica a una de las masas de los extremos, y se va variando la frecuencia.

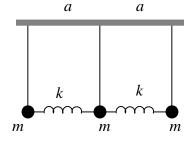
- a) ¿Qué observa?
- b) Graficar la amplitud de oscilación de cada masa, como función de la frecuencia de la fuerza excitadora. ¿Qué modo se excita con mayor eficiencia?
- c) ¿A qué masa conviene aplicar la fuerza para excitar más eficientemente el modo de mayor frecuencia?
- d) ¿Es posible observar el modo dos al variar la frecuencia de la fuerza armónica, si esta se aplica en la masa del medio?

Problema 9. Se tiene el sistema del problema 4, con M=2m. Se aplica a la masa del centro una fuerza armónica de frecuencia ω

- a) ¿Qué modos se observan si los dos extremos están fijos? ¿Cuáles son las resonancias del sistema?
- b) ¿Cómo se modifica el resultado a) si los extremos están libres?
- c) ¿Y si sólo está libre el de la derecha?

Problema 10. Considere el sistema de 3 péndulos acoplados que se muestra en la figura. Cada uno de ellos está sometido a una fuerza de amortiguamiento de coeficiente Γ

- a) Escriba la ecuación de movimiento para cada masa y encuentre las frecuencias propias y los modos normales del sistema.
- b) Considere que el estado de movimiento de cada masa está descripto por una superposición de modos normales. Analice el movimiento que realiza



- cada masa cuando el amortiguamiento es el crítico para alguna de las frecuencias propias.
- c) Suponga que en el extremo libre se aplica una fuerza $F(t) = F_o \cos(\omega t)$. Escriba la ecuación de movimiento para cada masa y encuentre la solución estacionaria para cada modo. ¿Cuáles son las frecuencias de resonancia?